Citation: Farrokh Alemi. Worry less about the algorithm, more about the sequence of events[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6557-6572. doi: 10.3934/mbe.2020342
[1] | D. Heckerman, D. Geiger, D. Chickering, Learning Bayesian networks: the combination of knowledge and statistical data, Mach. Learn., 20 (1995), 197-234. |
[2] | G. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Mach. Learn., 7 (1992), 299-347. |
[3] | W. Buntine, Theory refinement on Bayesian networks, in Uncertainty in Artificial Intelligence: Proceedings of the Seventh Conference (1991), 26 (1991), 52-60. |
[4] | W. Lam, F. Bacchus, Theory refinement on Bayesian networks, Comput. Intell., 10 (1994), 269-293. |
[5] | C. Wallace, K. Korb, H. Dai, Causal discovery via MML, Int. Confer. Mach. Learn., (1996), 516-524. |
[6] | H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Contr. 19 (1974), 716-723. |
[7] | G. Schwarz, Estimating the dimension of a model, Annals. Stat., 6 (1978), 461-464. |
[8] | D. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks: Search methods and experimental results, in Fifth International Workshop on Artificial Intelligence and Statistics, (1995), 112- 128. |
[9] | N. Friedman, I. Nachman, D. Pe'er, Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm, in Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI1999), 1999. |
[10] | P. Naï m, P. H. Wuillemin, P. Leray, O. Pourret, A. Becker, Réseaux Bayésiens, Eyrolles, Paris, 2011. |
[11] | P. Munteanu, M. Bendou, The EQ framework for learning equivalence classes of Bayesian networks, in Proceedings of the 2001 IEEE International Conference on Data Mining, (2001), 417- 424. |
[12] | W. Lam, F. Bacchus, Learning Bayesian belief networks: An approach based on the MDL principle, Comput. Intell., 10 (1994), 269-293. |
[13] | L. Jouffe, P. Munteanu, New search strategies for learning Bayesian networks, in Proceedings of the 10th International Symposium on Applied Stochastic Models and Data Analysis, Compiègne, France, (2001), 591-596. |
[14] | J. Cheng, R. Greiner, J. Kelly, D. A. Bell, E. Liu, Learning Bayesian networks from data: an information-theory based approach, Artif. Intell. J., 137 (2002), 43-90. |
[15] | P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, Springer-Verlag, 2000. |
[16] | J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, 1988. |
[17] | T. Verma, J. Pearl, Equivalence and synthesis of causal models, in UAI '90: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, (1990), 255-270. |
[18] | D. Margaritis, Learning Bayesian Network Model Structure from Data, Ph.D thesis, Carnegie Mellon University, 2003. |
[19] | C. F. Aliferis, I. Tsamardinos, A. Statnikov, HITON: A novel Markov Blanket algorithm for optimal variable selection, AMIA Annu. Symp. Proc., 2003 (2003), 21-25. |
[20] | P. Spirtes, An anytime algorithm for causal inference, AISTATS, 2001. |
[21] | F. Fu, Q. Zhou, Learning sparse causal Gaussian networks with experimental intervention: regularization and coordinate descent, J. Am. Stat. Assoc., 108 (2013), 288-300. |
[22] | B. Aragam, Q. Zhou, Concave penalized estimation of sparse Gaussian Bayesian networks, J. Mach. Learn. Res., 16 (2015), 2273-2328. |
[23] | G. I. Allen, Z. A. Liu, A Local Poisson Graphical Model for inferring networks from sequencing data, IEEE Trans. Nanobiosci., 12 (2013), 189-198. |
[24] | A. Agresti, Categorical Data Analysis, Wiley-Interscience, 2002. |
[25] | G. Park, G. Raskutti, Learning large-scale poisson DAG models based on over dispersion scoring, in Advances in Neural Information Processing Systems, (2015), 631-639. |
[26] | S. W. Han, H. Zhong, Estimation of sparse directed acyclical graphs for multivariate counts, Biometrics, 72 (2016), 791-803. |
[27] | A. Shojaie, G. Michaildis, Analysis of gene sets based on the underlying regulatory network, J. Comp. Biol., 16 (2009), 407-426. |
[28] | J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge University Press, 2000. |
[29] | N. Friedman, D. Koller, Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks, Mach. Learn., 50 (2003), 95-125. |
[30] | P. Larrafiaga, M. Poza, Y. Yurramendi, R. H. Murga, C. M. H. Kuijpers, Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters, IEEE Trans. Pattern Anal. Mach. Intell., 18 (1996). |
[31] | M. Teyssier, D. Koller, Ordering-based search: A simple and effective algorithm for learning Bayesian networks, in Proceedings of the 21st conference on Uncertainty in AI (2005), 584. |
[32] | M. Zargoush, F. Alemi, V. E. Vinzi, J. Vang, R. Kheirbek, A psychological approach to learning causal networks, Health Care Manage. Sci., 17 (2014), 194-201. |
[33] | C. R. Levy, M. Zargoush, A. E. Williams, A. R. Williams, P. Giang, J. Wojtusiak, et al., Sequence of functional loss and recovery in nursing homes, Gerontologist, 56 (2016), 52-61. |
[34] | L. A. Goodman, W. H. Kruskal, Measures of association for cross classifications, Part I, J. Am. Stat. Assoc., 49 (1954), 732-764. |
[35] | J. Vang, Using a model of human cognition of causality to orient arcs in structural learning of Bayesian networks, Ph.D thesis, George Mason University, 2008. |
[36] | D. D. Dunlop, S. L. Hughes, L. M. Manheim, Disability in activities of daily living: patterns of change and a hierarchy of disability, Am. J. Public Health., 87 (1997), 378-383. |
[37] | L. Ferrucci, J. M. Guralnik, F. Cecchi, N. Marchionni, B. Salani, J. Kasper, et al., Constant hierarchic patterns of physical functioning across seven populations in five countries, Gerontologist, 38 (2008), 286-294. |
[38] | S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, M. W. Jaffe, Studies of illness in the aged, the index of ADL: A standardized measure of biological and psychological function, JAMA, 185 (1963), 914-919. |
[39] | I. Tsamardinos, C. F. Aliferis, A. Statnikov, Algorithms for large scale Markov blanket discovery, in Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference, (2003), 376-381. |
[40] | I. Tsamardinos, L. E. Brown, C. F. Aliferis, The max-min hill-climbing Bayesian network structure learning algorithm, Mach. Learn., 65 (2006), 31-78. |
[41] | H. S. Sousa, F. Prieto-Castrillo, J. C. Matos, J. M. Branco, P. B. Lourenço, Combination of expert decision and learned based Bayesian networks for multi-scale mechanical analysis of timber elements, Expert Syst. Appl., 93 (2018), 156-168. |