Citation: Yuntao Hu, Fei Hao, Chao Meng, Lili Sun, Dashuai Xu, Tianqi Zhang. Spatial general autoregressive model-based image interpolation accommodates arbitrary scale factors[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6573-6600. doi: 10.3934/mbe.2020343
[1] | Y. Tian, M. M. Kaleemullah, M. A. Rodhaan, B. Song, A. Al-Dhelaan, T. Ma, A privacy preserving location service for cloud-of-things system, J. Parallel Distrib. Comput., 123 (2019), 215-222. doi: 10.1016/j.jpdc.2018.09.005 |
[2] | W. Wang, W. Zhang, Z. Jin, K. Sun, R. Zou, C. Huang, et al., A Novel Location Privacy Protection Scheme with Generative Adversarial Network, International Conference on Big Data and Security Springer, 2019. |
[3] | L. Wang, X. Shu, W. Zhang, Y. Chen, Design and Optimization of Evaluation Metrics in Object Detection and Tracking for Low-Altitude Aerial Video, International Conference on Big Data and Security, 2019. |
[4] | Y. Liu, M. Pang, Research on Medical Image Encryption Method Based on Chaotic Scrambling and Compressed Sensing, International Conference on Big Data and Security, 2019. |
[5] | B. Song, M. M. Hassan, A. Alamri, A. Alelaiwi, Y. Tian, M. Pathan, et al., A two-stage approach for task and resource management in multimedia cloud environment, Computing, 98 (2016), 119-145. |
[6] | Z. Pan, C. N. Yang, V. S. Sheng, N. Xiong, W. Meng, Machine Learning for Wireless Multimedia Data Security, Sec. Commun. Networks, 2019 (2019), 7682306. |
[7] | S. Ousguine, F. Essannouni, L. Essannouni, M. Abbad, D. Aboutajdine, A New Image Interpolation Using Laplacian Operator, International Symposium on Ubiquitous Networking, 2016, Singapore. |
[8] | S. Pan, L. Han, Y. Tao, Q. Liu, Study on Indicator Recognition Method of Water Meter Based on Convolution Neural Network, International Conference on Big Data and Security, 2019, Springer. |
[9] | J. A. Parker, R. V. Kenyon, D. E. Troxel, Comparison of Interpolating Methods for Image Resampling, IEEE Trans. Med. Imaging, 2 (1983), 31-39. doi: 10.1109/TMI.1983.4307610 |
[10] | R. Hanssen, R. Bamler, Evaluation of interpolation kernels for SAR interferometry, IEEE Trans. Geosci. Remote Sens., 37 (1999), 318-321. doi: 10.1109/36.739168 |
[11] | T. M. Lehmann, C. Gonner, K. Spitzer, Survey: interpolation methods in medical image processing, IEEE Trans. Med. Imaging, 18 (1999), 1049-1075. doi: 10.1109/42.816070 |
[12] | D. Y. Han, Comparison of Commonly Used Image Interpolation Methods, Proceedings of the 2nd international conference on computer science and electronics engineering, Atlantis Press, 2013. |
[13] | A. Amanatiadis, I. Andreadis, Performance evaluation techniques for image scaling algorithms, IEEE International Workshop on Imaging Systems and Techniques, 2008. |
[14] | Y. Li, F. Qi, Y. Wan, Improvements On Bicubic Image Interpolation, 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2019. |
[15] | H. Hsieh, H. Andrews, Cubic splines for image interpolation and digital filtering, IEEE Trans. Acoust. Speech Signal Process., 26 (1978), 508-517. doi: 10.1109/TASSP.1978.1163154 |
[16] | S. Abbas, M. Irshad, M. Z. Hussain, Adaptive image interpolation technique based on cubic trigonometric B-spline representation, IET Image Process., 12 (2018), 769-777. doi: 10.1049/iet-ipr.2016.0393 |
[17] | D. D. Muresan, T. W. Parks, Adaptively quadratic (AQua) image interpolation, IEEE Trans. Image Process., 13 (2004), 690-698. doi: 10.1109/TIP.2004.826097 |
[18] | C. Chen, C. Lai, Iterative Linear Interpolation Based on Fuzzy Gradient Model for Low-Cost VLSI Implementation, IEEE Trans. VLSI Syst., 22 (2014), 1526-1538. doi: 10.1109/TVLSI.2013.2276410 |
[19] | Q. Wang and R. K. Ward, A New Orientation-Adaptive Interpolation Method, IEEE Trans. Image Process., 16 (2007), 889-900. doi: 10.1109/TIP.2007.891794 |
[20] | C. M. Zwart, D. H. Frakes, Segment Adaptive Gradient Angle Interpolation, IEEE Trans. Image Process., 22 (2013), 2960-2969. doi: 10.1109/TIP.2012.2228493 |
[21] | X. Li, M. T. Orchard, New edge-directed interpolation, IEEE Trans. Image Process., 10 (2001), 1521-1527. doi: 10.1109/83.951537 |
[22] | X. Zhang, X. Wu, Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-Decision Estimation, IEEE Trans. Image Process., 17 (2008), 887-896. doi: 10.1109/TIP.2008.924279 |
[23] | Q. Wang, J. Liu, W. Yang, Z. Guo, Adaptive autoregressive model with window extension via explicit geometry for image interpolation, IEEE International Conference on Image Processing (ICIP), 2015. |
[24] | W. Yang, J. Liu, S. Yang, Z. Guo, Novel autoregressive model based on adaptive window-extension and patch-geodesic distance for image interpolation, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015. |
[25] | W. H. Yang, J. Y. Liu, M. D. Li, Z. Gao, Isophote-Constrained Autoregressive Model With Adaptive Window Extension for Image Interpolation, IEEE Trans. Circuits Syst. Video Technol., 28 (2018), 1071-1086. doi: 10.1109/TCSVT.2016.2638864 |
[26] | F. Hao, J. Shi, R. Chen, S, Zhu, Z. Zhang, Noise-insensitive and edge-preserving resolution upconversion scheme for digital image based on the spatial general autoregressive model, IET Image Process., 10 (2016), 280-288. doi: 10.1049/iet-ipr.2015.0095 |
[27] | K. Chang, P. L. K. Ding, B. Li, Single Image Super-resolution Using Collaborative Representation and Non-local Self-Similarity, Signal Process., 149 (2018), 49-61. |
[28] | D. Cheng, K. I. Kou, FFT Multichannel Interpolation and Application to Image Super-resolution, Signal Process., 162 (2019), 21-34. doi: 10.1016/j.sigpro.2019.03.025 |
[29] | A. Giachetti, N. Asuni, Real-Time Artifact-Free Image Upscaling, IEEE Trans. Image Process., 20 (2011), 2760-2768. doi: 10.1109/TIP.2011.2136352 |
[30] | H. Kim, Y. Cha, S. Kim, Curvature Interpolation Method for Image Zooming, IEEE Trans. Image Process., 20 (2011), 1895-1903. doi: 10.1109/TIP.2011.2107523 |
[31] | A. Marquina, S. Osher, A New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal, International Conference on Scale-Space Theories in Computer Vision, 1999. |
[32] | T. F. Chan, J. J. Shen, Image processing and analysis: variational, PDE, wavelet, and stochastic methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. |
[33] | J. Hu, Y. Luo, Single-image superresolution based on local regression and nonlocal self-similarity, J. Electron. Imaging, 23 (2014), 033014. doi: 10.1117/1.JEI.23.3.033014 |
[34] | N. Asuni, A. Giachetti, Accuracy Improvements and Artifacts Removal in Edge Based Image Interpolation, VISAPP (1), 8 (2008), 58-65. |
[35] | W. Dong, L. Zhang, R. Lukac, G. Shi, Sparse Representation Based Image Interpolation With Nonlocal Autoregressive Modeling, IEEE Trans. Image Process., 22 (2013), 1382-1394. doi: 10.1109/TIP.2012.2231086 |
[36] | F. Hao, J. Shi, Z. Zhang, R, Chen, S. Zhu, Canny edge detection enhancement by general auto-regression model and bi-dimensional maximum conditional entropy, Optik, 125 (2014), 3946-3953. doi: 10.1016/j.ijleo.2014.01.153 |
[37] | M. Li, J. Liu, J. Ren, Z. Guo, Adaptive General Scale Interpolation Based on Weighted Autoregressive Models, IEEE Trans. Circuits Syst. Video Technol., 25 (2015), 200-211. doi: 10.1109/TCSVT.2014.2347531 |
[38] | A. Ullah, M. Z. Asghar, A. Habib, S. Aleem, F. M. Kundi, A. M. Khattak, Optimizing the Efficiency of Machine Learning Techniques, International Conference on Big Data and Security, 2019. |
[39] | R. M. Rifkin, R. A. Lippert, Notes on regularized least squares, Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory, 2007. |
[40] | K. Koh, S. J. Kim, S. Boyd, An interior-point method for large-scale l1-regularized logistic regression, J. Mach. Learn. Res., 8 (2007), 1519-1555. |
[41] | J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Software, 33 (2010), 1. |
[42] | H. Wang, W. Guan, K. Zhang, Over-Sampling Multi-classification Method Based on Centroid Space, International Conference on Big Data and Security, 2019. |
[43] | Y. Gong, I. F. Sbalzarini, Curvature filters efficiently reduce certain variational energies, IEEE Trans. Image Process., 26 (2017), 1786-1798. doi: 10.1109/TIP.2017.2658954 |
[44] | X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, J. Sun, Meta-SR: A Magnification-Arbitrary Network for Super-Resolution, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. |