Citation: Xinli Hu, Wenjie Qin, Marco Tosato. Complexity dynamics and simulations in a discrete switching ecosystem induced by an intermittent threshold control strategy[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2164-2178. doi: 10.3934/mbe.2020115
[1] | J. C. Van Lenteren, J. Woets, Biological and integrated pest control in greenhouses, Annu. Rev. Entomol., 33 (1998), 239-269. |
[2] | S. E. Kunz, K. D. Murrell, G. Lambert, L. F. James, C. E. Terrill, Estimated losses of livestock to pests, in Handbook of Pest Management in Agriculture, Boca Raton, CRC Press, 1 (1991), 69-98. |
[3] | R. L. Metcalf, W. H. Luckmann, Introduction to Insect Pest Management, 3nd edition, John Wiley Sons INC, New York, 1994. |
[4] | T. W. Culliney, Crop losses to arthropods, in Integrated Pest Management: Pesticide Problems, (eds. D. Pimentel and P. Peshin), Dordrecht: Springer, (2014), 201-225. |
[5] | A. Fournier-Level, The future of pest control lies within (the pest), Australas. Sci., 38 (2017), 23-24. |
[6] | D. Pimentel, World Food, Pest Losses, and the Environment, CRC Press, Boca Raton, 2019. |
[7] | Revolution from the Ground up Securing World Food Supplies with Integrated Crop Protection. Available from: https://www.research.bayer.com/en/revolution-from-the-ground-up.aspx. |
[8] | C. Augusto, M. L. Juarez, M. G. Socias, M. G. Mura, S. Prieto, S. Medina, et al., Review of the host plants of fall armyworm, spodoptera frugiperda (lepidoptera: Noctuidae), Rev. Soc. Entomol. Argent., 69 (2010), 209-231. |
[9] | J. L. Apple, R. F. Smith, Integrated Pest Management, Springer-Verlag, New York, 1976. |
[10] | J. C. Van Lenteren, Integrated pest management in protected crops, in Integrated Pest Management Chapman, Hall, (1995), 311-320. |
[11] | M. A. Altieri, J. G. Farrell, S. B. Hecht, M. Liebman, F. Magdoff, B. Murphy, et al., Integrated pest management, in Agroecology, CRC Press, (2018), 267-281. |
[12] | G. J. Hallman, D. L. Denlinger, Temperature sensitivity in insects and application, in Integrated Pest Management, CRC Press, 2019. |
[13] | J. A. McMurtry, N. F. Sourassou, P. R. Demite, The phytoseiidae (acari: Mesostigmata) as biological control agents, in Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms, Springer, Cham, (2015), 133-149. |
[14] | G. R. Stirling, Biological control of plant-parasitic nematodes, in Diseases of Nematodes, CRC Press, (2018), 103-150. |
[15] | G. O. Poinar, Nematodes for Biological Control of Insects, CRC press, 2018. |
[16] | G. M. Gurr, H. F. Van Emden, S. D. Wratten, Habitat manipulation and natural enemy efficiency: Implications for the control of pests, in Conservation Biological Control, Academic Press, (1988), 155-183. |
[17] | D. Pimentel, Pesticides and pest control, in Integrated Pest Management: InnovationDevelopment Process, Springer, (2009), 83-87. |
[18] | S. Tang, Y. Xiao, R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 80 (2010), 894-921. |
[19] | K. R. Summy, E. G. King, Cultural control of cotton insect pests in the United States, Crop Prot., 11 (1992), 307-319. |
[20] | E. C. Oerke, Crop losses to pests, J. Agric. Sci., 144 (2006), 31-43. |
[21] | V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems, Mir Publishers. 1978. |
[22] | V. I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag, 1992. |
[23] | L. P. Pedigo, S. H. Hutchins, L. G. Higley, Economic injury levels in theory and practice, Annu. Rev. Entomol., 31 (1986), 341-368. |
[24] | J. C. Headley, Defining the economic threshold, in Pest Control Strategies for the Future, 1972. |
[25] | H. C. Chiang, General model of the economic threshold level of pest populations, in Plant Protection Bulletin, 1979. |
[26] | S. Tang, R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257-292. |
[27] | S. Tang, J. Liang, Y. Xiao, R. A. Cheke, Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080. |
[28] | S. Tang, C. Li, B. Tang, X. Wang, Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-hump discrete map, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 104900. |
[29] | W. Qin, X. Tan, X. Shi, J. Chen, Dynamics and bifurcation analysis of a Filippov predator-prey ecosystem in a seasonally fluctuating environment, Int. J. Bifurcation Chaos, 29 (2019), 1950020. |
[30] | W. Qin, X. Tan, M. Tosato, X. Liu, Threshold control strategy for a non-smooth Filippov ecosystem with group defense, Appl. Math. Comput., 362 (2019), 124532. |
[31] | R. J. Beverton, S. J. Holt, The Theory of Fishing, Sea Fisheries; Their Investigation in the United Kingdom, Edward Arnold, London, 1956. |
[32] | J. M. Cushing, S. M. Henson, A periodically forced Beverton-Holt equation, J. Differ. Eq. Appl., 8 (2002), 1119-1120. |
[33] | V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Dordrecht Kluwer Academic Publishers, 1993. |
[34] | A. J. Nicholson, V. A. Bailey, The balance of animal populations, in Part I. Proceedings of the Zoological Society of London, (1935), 551-598. |
[35] | S. Tang, Y. Xiao, R. A. Cheke, Multiple attractors of host-parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak, Theor. Popul. Biol., 73 (2008), 181-197. |
[36] | E. I. Jury, Inners and Stability of Dynamic Systems, Wiley, New York, 1974. |
[37] | C. Xiang, Z. Xiang, S. Tang, J. Wu, Discrete switching host-parasitoid models with integrated pest control, Int. J. Bifurcation Chaos, 24 (2014), 1450114. |
[38] | L. Zhang, C. Zhang, Dynamics of a hyperparasitic system with prolonged diapause for host, Int. J. Mod. Nonlinear Theory Appl., 2 (2013), 201-208. |
[39] | P. Wang, W. Qin, G. Tang, Modelling and analysis of a Host-Parasitoid impulsive ecosystem under resource limitation, Complexity, 2019 (2019), 9365293. |
[40] | J. Liang, S. Tang, R. A. Cheke, Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 327-341. |
[41] | W. Qin, X. Tan, X. Shi, C. Xiang, IPM strategies to a discrete switching predator-prey model induced by a mate-finding Allee effect, J. Biol. Dyn., 13 (2019), 586-605. |