Research article Special Issues

Media impact research: a discrete SIR epidemic model with threshold switching and nonlinear infection forces


  • Received: 15 June 2023 Revised: 14 August 2023 Accepted: 11 September 2023 Published: 18 September 2023
  • The media's coverage has the potential to impact human behavior and aid in the control of emergent infectious diseases. We aim to quantify and evaluate the extent to which media coverage can influence infectious disease control through a mathematical model, thus proposing a switching epidemic model that considers the effect of media coverage. The threshold strategy incorporates media influence only when the number of infected cases surpasses a specific threshold; otherwise, it is disregarded. When conducting qualitative analysis of two subsystems, focusing on the existence and stability of equilibria. Using numerical methods, the codimension-2 bifurcation analysis is adopted here to investigate the various types of equilibria within the switching system that play a vital role in pest control. On the other hand, codimension-1 bifurcation analysis reveals the existence of periodic, chaotic solutions, period-doubling bifurcations, multiple attractors and other complexities within the proposed model, which could pose challenges in disease control. Additionally, the impact of key parameters on epidemic outbreaks is analyzed, such as the initial values of susceptible and infective individuals, and discuss the potential benefits of mass media coverage in preventing emerging infectious diseases. The modeling and analytical techniques developed for threshold control strategies can be applied to other disease control efforts.

    Citation: Wenjie Qin, Jiamin Zhang, Zhengjun Dong. Media impact research: a discrete SIR epidemic model with threshold switching and nonlinear infection forces[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 17783-17802. doi: 10.3934/mbe.2023790

    Related Papers:

  • The media's coverage has the potential to impact human behavior and aid in the control of emergent infectious diseases. We aim to quantify and evaluate the extent to which media coverage can influence infectious disease control through a mathematical model, thus proposing a switching epidemic model that considers the effect of media coverage. The threshold strategy incorporates media influence only when the number of infected cases surpasses a specific threshold; otherwise, it is disregarded. When conducting qualitative analysis of two subsystems, focusing on the existence and stability of equilibria. Using numerical methods, the codimension-2 bifurcation analysis is adopted here to investigate the various types of equilibria within the switching system that play a vital role in pest control. On the other hand, codimension-1 bifurcation analysis reveals the existence of periodic, chaotic solutions, period-doubling bifurcations, multiple attractors and other complexities within the proposed model, which could pose challenges in disease control. Additionally, the impact of key parameters on epidemic outbreaks is analyzed, such as the initial values of susceptible and infective individuals, and discuss the potential benefits of mass media coverage in preventing emerging infectious diseases. The modeling and analytical techniques developed for threshold control strategies can be applied to other disease control efforts.



    加载中


    [1] Q. Gan, R. Xu, Y. Li, R. Hu, Travelling waves in an infectious disease model with a fixed latent period and a spatio–temporal delay, Math. Comput. Model., 53 (2011), 814–823. https://doi.org/10.1016/j.mcm.2010.10.018 doi: 10.1016/j.mcm.2010.10.018
    [2] M. Y. Li, Z. Shuai, C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38–47. https://doi.org/10.1016/j.jmaa.2009.09.017 doi: 10.1016/j.jmaa.2009.09.017
    [3] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. Van den, et al., Modelling strategies for controlling SARS outbreaks, Proc. R. Soc. Lond. B., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
    [4] M. Premkumar, D. Devurgowda, S. Dudha, R. Maiwall, C. Bihari, S. Grover, et al., A/H1N1/09 influenza is associated with high mortality in liver cirrhosis, J. Clin. Exp. Hepato., 9 (2019), 162–170. https://doi.org/10.1016/j.jceh.2018.04.006 doi: 10.1016/j.jceh.2018.04.006
    [5] J. Deng, S. Tang, H. Shu, Joint impacts of media, vaccination and treatment on an epidemic filippov model with application to covid-19, J. Theor. Biol., 523 (2021), 110698. https://doi.org/10.1016/j.jtbi.2021.110698 doi: 10.1016/j.jtbi.2021.110698
    [6] C. Q. Ling, Complementary and alternative medicine during covid-19 pandemic: What we have done, J. Integr. Med., 20 (2022), 1–3. https://doi.org/10.1016/j.joim.2021.11.008 doi: 10.1016/j.joim.2021.11.008
    [7] S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of transmission dynamics of covid-19 mathematical model under abc fractional order derivative, Results Phys., 19 (2020), 103507. https://doi.org/10.1016/j.rinp.2020.103507 doi: 10.1016/j.rinp.2020.103507
    [8] S. Bhattacharya, S. Paul, The behaviour of infection, survival and testing effort variables of SARS-CoV-2: A theoretical modelling based on optimization technique, Results Phys., 19 (2020), 103568. https://doi.org/10.1016/j.rinp.2020.103568 doi: 10.1016/j.rinp.2020.103568
    [9] Z. E. Ma, Y. C. Zhou, W. D. Wang, Z. Jin, Mathematical modeling and, research on the dynamics of infectious diseases, Science Press, Beijing, 2004.
    [10] A. Misra, A. Sharma, J. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221–1228. https://doi.org/10.1016/j.mcm.2010.12.005 doi: 10.1016/j.mcm.2010.12.005
    [11] G. P. Sahu, J. Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, J. Math. Anal. Appl., 421 (2015), 1651–1672. https://doi.org/10.1016/j.jmaa.2014.08.019 doi: 10.1016/j.jmaa.2014.08.019
    [12] V. Capasso, G. Serio, A generalization of the kermack-mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [13] J. A. Cui, X. Tao, H. Zhu, An sis infection model incorporating media coverage, Rocky Mountain J. Math., 38 (2008), 1323–1334.
    [14] J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith, C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), 1–14. https://doi.org/10.1186/1471-2458-11-S1-S5 doi: 10.1186/1471-2458-11-S1-S5
    [15] J. M. Tchuenche, C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission, Int. Scholarly Res. Notices, 2012 (2012). https://doi.org/10.5402/2012/581274 doi: 10.5402/2012/581274
    [16] Z. Sun, H. Zhang, Y. Yang, H. Wan, Y. Wang, Impacts of geographic factors and population density on the covid-19 spreading under the lockdown policies of China, Sci. Total Environ., 746 (2020), 141347. https://doi.org/10.1016/j.scitotenv.2020.141347 doi: 10.1016/j.scitotenv.2020.141347
    [17] A. Misra, S. N. Mishra, A. L. Pathak, P. K. Srivastava, P. Chandra, A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay, Chaos Soliton. Fract., 57 (2013), 41–53. https://doi.org/10.1016/j.chaos.2013.08.002 doi: 10.1016/j.chaos.2013.08.002
    [18] T. Tonia, Social media in public health: is it used and is it useful?, Int. J. Public Health, 59 (2014), 889–891. https://doi.org/10.1007/s00038-014-0615-1 doi: 10.1007/s00038-014-0615-1
    [19] R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164.
    [20] J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Diff. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
    [21] J. Liu, X. Liu, W. C. Xie, Input-to-state stability of impulsive and switching hybrid systems with time-delay, Automatica, 47 (2011), 899–908. https://doi.org/10.1016/j.automatica.2011.01.061 doi: 10.1016/j.automatica.2011.01.061
    [22] P. Mason, U. Boscain, Y. Chitour, Common polynomial lyapunov functions for linear switched systems, SIAM J. Control and Optim., 45 (2006), 226–245. https://doi.org/10.1137/040613147 doi: 10.1137/040613147
    [23] Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. http://dx.doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
    [24] Y. Liu, Y. Xiao, An epidemic model with saturated media/psychological impact, Appl. Math. Mech., 34 (2013), 399–407.
    [25] M. Zhao, Qualitative and quantitative study of a non-smooth filippov epidemical model with threshold strategy, Master thesis, Xi'an University of Science and Technology in Xi'an, 2018.
    [26] Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model, Math. Comput. Simul., 97 (2014), 80–93. https://doi.org/10.1016/j.matcom.2013.08.008 doi: 10.1016/j.matcom.2013.08.008
    [27] Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo, A. Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, J. Diff. Equations Appl., 18 (2012), 1163–1181.
    [28] V. I. Utkin, Sliding modes and their applications in variable structure systems, Mir Moscow, (1978).
    [29] V. I. Utkin, Scope of the theory of sliding modes, in Sliding Modes in Control and Optimization, Springer, (1992), 1–11. https://doi.org/10.1007/978-3-642-84379-2_1
    [30] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [31] L. J. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Math. Biosci., 124 (1994), 83–105. https://doi.org/10.1016/0025-5564(94)90025-6 doi: 10.1016/0025-5564(94)90025-6
    [32] C. Castillo-Chavez, A. A. Yakubu, Dispersal, disease and life-history evolution, Math. Biosci., 173 (2001), 35–53. https://doi.org/10.1016/S0025-5564(01)00065-7 doi: 10.1016/S0025-5564(01)00065-7
    [33] Y. Zhou, P. Fergola, Dynamics of a discrete age-structured SIS models, Discrete Cont. Dyn. Syst. B, 4 (2004), 841–850. https://doi.org/10.3934/dcdsb.2004.4.841 doi: 10.3934/dcdsb.2004.4.841
    [34] X. Hu, W. Qin, M. Tosato, Complexity dynamics and simulations in a discrete switching ecosystem induced by an intermittent threshold control strategy, Math. Biosci. Eng., 17 (2020), 2164–2179.
    [35] Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 1–9. https://doi.org/10.1038/srep07838 doi: 10.1038/srep07838
    [36] C. Xiang, Z. Xiang, S. Tang, J. Wu, Discrete switching host-parasitoid models with integrated pest control, Int. J. Bifurcat. Chaos, 24 (2014), 1450114. https://doi.org/10.1142/S0218127414501144 doi: 10.1142/S0218127414501144
    [37] E. Jury, L. Stark, V. Krishnan, Inners and stability of dynamic systems, IEEE Trans. Syst. Man Cybern., 10 (1976), 724–725.
    [38] Y. Lv, L. Chen, F. Chen, Z. Li, Stability and bifurcation in an SI epidemic model with additive allee effect and time delay, Int. J. Bifurcat. Chaos, 31 (2021), 2150060. https://doi.org/10.1142/S0218127421500607 doi: 10.1142/S0218127421500607
    [39] W. Yin, Z. Li, F. Chen, M. He, Modeling allee effect in the leslie-gower predator–prey system incorporating a prey refuge, Int. J. Bifurcat. Chaos, 32 (2022), 2250086. https://doi.org/10.1142/S0218127422500869 doi: 10.1142/S0218127422500869
    [40] T. Liu, L. Chen, F. Chen, Z. Li, Dynamics of a leslie–gower model with weak allee effect on prey and fear effect on predator, Int. J. Bifurcat. Chaos, 33 (2023), 2350008. https://doi.org/10.1142/S0218127423500086 doi: 10.1142/S0218127423500086
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1622) PDF downloads(79) Cited by(2)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog