Review Topical Sections

A review of carbon fiber-reinforced polymer composite used to solve stress shielding in total hip replacement

  • Received: 06 February 2024 Revised: 15 April 2024 Accepted: 16 April 2024 Published: 22 April 2024
  • Arthroplasty is generally used to treat advanced osteoarthritis or other degenerative joint diseases. However, it can also be considered in younger patients with severe joint damage that seriously limits their function and quality of life. Young patients are at risk of aseptic mobilization and bone resorption due to the uneven distribution of stress on the contact surface between the prosthesis and the femur that generates the stress-shielding phenomenon. To overcome this occurrence, it is necessary to use biocompatible materials with a stiffness that is similar to bone. Composite hip prostheses, consisting of continuous fiber-reinforced polymers, play a progressively key role in the development of prosthetic devices. Composite materials can be designed more carefully than monolithic stems (single-phase materials such as metals), allowing for the development of more effective tissue substitutes. Our purpose of this review was to analyze the state of the art in the use of carbon femoral prostheses. In particular, the major mechanical properties of reinforcement (fiber) and matrix were outlined with their applications in the prosthetic field.

    Citation: Mario Ceddia, Bartolomeo Trentadue. A review of carbon fiber-reinforced polymer composite used to solve stress shielding in total hip replacement[J]. AIMS Materials Science, 2024, 11(3): 449-462. doi: 10.3934/matersci.2024023

    Related Papers:

  • Arthroplasty is generally used to treat advanced osteoarthritis or other degenerative joint diseases. However, it can also be considered in younger patients with severe joint damage that seriously limits their function and quality of life. Young patients are at risk of aseptic mobilization and bone resorption due to the uneven distribution of stress on the contact surface between the prosthesis and the femur that generates the stress-shielding phenomenon. To overcome this occurrence, it is necessary to use biocompatible materials with a stiffness that is similar to bone. Composite hip prostheses, consisting of continuous fiber-reinforced polymers, play a progressively key role in the development of prosthetic devices. Composite materials can be designed more carefully than monolithic stems (single-phase materials such as metals), allowing for the development of more effective tissue substitutes. Our purpose of this review was to analyze the state of the art in the use of carbon femoral prostheses. In particular, the major mechanical properties of reinforcement (fiber) and matrix were outlined with their applications in the prosthetic field.



    加载中


    [1] Savio D, Bagno A (2022) When the total hip replacement fails: A review on the stress-shielding effect. Processes 10: 612. https://doi.org/10.3390/pr10030612 doi: 10.3390/pr10030612
    [2] Brodt S, Matziolis G, Buckwitz B, et al. (2020) Long-term follow-up of bone remodelling after cementless hip arthroplasty using different stems. Sci Rep 10: 10143. https://doi.org/10.1038/s41598-020-67189-x doi: 10.1038/s41598-020-67189-x
    [3] Koh Y, Park K, Lee J, et al. (2019) Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: A review. Mater Sci Eng C 100: 70–81. https://doi.org/10.1016/j.msec.2019.02.082 doi: 10.1016/j.msec.2019.02.082
    [4] Kheir M, Drayer N, Chen A (2020) A update on cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am 102: 1646–1661. https://doi.org/10.2106/JBJS.19.01397 doi: 10.2106/JBJS.19.01397
    [5] Solórzano W, Ojeda C, Lantada A (2020) Biomechanical study of proximal femur for designing stems for total hip replacement. Appl Sci 10: 4208. https://doi.org/10.3390/app10124208 doi: 10.3390/app10124208
    [6] Naghavi S, Lin C, Sun C, et al. (2022) Stress shielding and bone resorption of press-fit polyether-ether-ketone (PEEK) hip prosthesis: A sawbone model study. Polymers 14: 4600. https://doi.org/10.3390/polym14214600 doi: 10.3390/polym14214600
    [7] Ait Moussa A, Fischer J, Yadav R, et al. (2017) Minimizing stress shielding and cement damage in cemented femoral component of a hip prosthesis through computational design optimization. Adv Orthop 2017: 8437956. https://doi.org/10.1155/2017/8437956 doi: 10.1155/2017/8437956
    [8] Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1: 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001 doi: 10.1016/j.jmbbm.2007.07.001
    [9] Savin L, Pinteala T, Mihai D, et al. (2023) Updates on biomaterials used in total hip arthroplasty (THA). Polymers 15: 3278. https://doi.org/10.3390/polym15153278 doi: 10.3390/polym15153278
    [10] Bhaskar B, Arun S (2016) Biomaterials in total hip joint replacements: The evolution of basic concepts, trends, and current limitations—A review, In: Kothiyal GP, Srinivasan A, Trends in Biomaterials, New York: Jenny Stanford Publishing. https://doi.org/10.1201/b19906
    [11] Pezzotti G, Kengo Y (2014) Artificial hip joints: The biomaterials challenge. J Mech Behav Biomed Mater 31: 3–20. https://doi.org/10.1016/j.jmbbm.2013.06.001 doi: 10.1016/j.jmbbm.2013.06.001
    [12] Solarino G, Zagra L, Piazzolla A, et al. (2019) Results of 200 consecutive ceramic-on-ceramic cementless hip arthroplasties in patients up to 50 years of age: A 5–24 years of follow-up study. J Arthroplasty 34: S232–S237. https://doi.org/10.1016/j.arth.2019.01.057 doi: 10.1016/j.arth.2019.01.057
    [13] Zhu W, Fu H, Li F, et al. (2022) Optimization of CFRP drilling process: A review. Int J Adv Manuf Technol 123: 1403–1432. https://doi.org/10.1007/s00170-022-10112-7 doi: 10.1007/s00170-022-10112-7
    [14] Theivendran K, Arshad F, Hanif U, et al. (2021) Carbon fibre reinforced PEEK versus traditional metallic implants for orthopaedic trauma surgery: A systematic review. J Clin Orthop Trauma 23: 101674. https://doi.org/10.1016/j.jcot.2021.101674 doi: 10.1016/j.jcot.2021.101674
    [15] Kumar N, Gangwar A, Devi K (2018) Carbon fibers in biomedical applications, In: Khanna R, Cayumil R, Recent Developments in the Field of Carbon Fibers, London: IntechOpen Limited, 6: 83–102. http://dx.doi.org/10.5772/intechopen.75826
    [16] Sun G, Tong S, Chen D, et al. (2018) Mechanical properties of hybrid composites reinforced by carbon and basalt fibers. Int J Mech Sci 148: 636–651. http://dx.doi.org/10.1016/j.ijmecsci.2018.08.007 doi: 10.1016/j.ijmecsci.2018.08.007
    [17] Naranjo-Lozada J, Ahuett-Garza H, Orta-Castañ ón P, et al. (2019) Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit Manuf 26: 227–241. http://dx.doi.org/10.1016/j.addma.2018.12.020 doi: 10.1016/j.addma.2018.12.020
    [18] Elanchezhian C, Ramnath B, Ramakrishnan G, et al. (2018) Review on mechanical properties of natural fiber composites. Mater Today Proc 5: 1785–1790. http://dx.doi.org/10.1016/j.matpr.2017.11.276 doi: 10.1016/j.matpr.2017.11.276
    [19] Jebaraj J, Ramadoss R, Gunasekaran K, et al. (2021) Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aerospace application. Mater Today Proc 47: 4438–4443. http://dx.doi.org/10.1016/j.matpr.2021.05.304 doi: 10.1016/j.matpr.2021.05.304
    [20] Callister W, Rethwisch D (2020) Callister's Materials Science and Engineering, Hoboken: John Wiley & Sons.
    [21] Li H, Shi J, Zhao J, et al. (2021) Tensile behavior analysis of CFRP (carbon‐fiber‐reinforced‐polymer)–titanium joint under preload. Polym Compos 44: 2205–2221. https://doi.org/10.1002/pc.27237 doi: 10.1002/pc.27237
    [22] Pathak A, Garg H, Subhedar K, et al. (2021) Significance of carbon fiber orientation on thermomechanical properties of carbon fiber reinforced epoxy composite. Fibers Polym 22: 1923–1933. https://doi.org/10.1007/s12221-021-0703-9 doi: 10.1007/s12221-021-0703-9
    [23] Jiang D, Smith D (2017) Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication. Addit Manuf 18: 84–94. http://dx.doi.org/10.1016/j.addma.2017.08.006 doi: 10.1016/j.addma.2017.08.006
    [24] Park J, Hwang T, Kim H, et al. (2006) Experimental and numerical study of the electrical anisotropy in unidirectional carbon-fiber-reinforced polymer composites. Smart Mater Struct 16: 57. http://dx.doi.org/10.1088/0964-1726/16/1/006 doi: 10.1088/0964-1726/16/1/006
    [25] Hak D, Mauffrey C, Seligson D, et al. (2014) Use of carbon-fiber-reinforced composite implants in orthopedic surgery. Orthopedics 37: 825–830. https://doi.org/10.3928/01477447-20141124-05 doi: 10.3928/01477447-20141124-05
    [26] Asgari S, Hamouda A, Mansor S, et al. (2005) Natural fiber reinforced composites for femoral component of total hip arthroplasty. J Mech Med Biol 5: 443–454. http://dx.doi.org/10.1142/S0219519405001576 doi: 10.1142/S0219519405001576
    [27] Shao Y, Matsushita M, Yang Y, et al. (2020) Effect of the carding process and reinforcement method of carbon fiber/polypropylene fiber nonwoven fabrics on the anisotropic mechanical properties of hot-pressed composites. Fibers Polym 21: 1115–1125. http://dx.doi.org/10.1007/s12221-020-9622-4 doi: 10.1007/s12221-020-9622-4
    [28] Gupta A, Gurunathan P, Ramesha K, et al. (2019) Effect of heat treatment temperature on energy storage performance of PAN co‐MMA-based carbon nanofibers as freestanding lithium-ion batteries anode. Energy Storage 1: 89. http://dx.doi.org/10.1002/est2.89 doi: 10.1002/est2.89
    [29] Zeng S, Li X, Li M, et al. (2019) Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 155: 34–43. https://doi.org/10.1016/j.carbon.2019.08.024 doi: 10.1016/j.carbon.2019.08.024
    [30] Geng P, Zhao J, Wu W, et al. (2018) Effect of thermal processing and heat treatment condition on 3D printing PPS properties. Polymers 10: 875. https://doi.org/10.3390/polym10080875 doi: 10.3390/polym10080875
    [31] Chua C, Liu H, Di Trani N, et al. (2021) Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 271: 120719. https://doi.org/10.1016/j.biomaterials.2021.120719 doi: 10.1016/j.biomaterials.2021.120719
    [32] Jeon I, Lee M, Choi H, et al. (2021) Mechanical properties and bioactivity of polyetheretherketone/hydroxyapatite/carbon fiber composite prepared by the mechanofusion process. Polymers 13: 1978. https://doi.org/10.3390/polym13121978 doi: 10.3390/polym13121978
    [33] Hendler-Neumark S, Wulf V, Bisker G (2021) In vivo imaging of fluorescent single-walled carbon nanotubes within C. elegans nematodes in the near-infrared window. Mater Today Bio 12: 100175. https://doi.org/10.1016/j.mtbio.2021.100175 doi: 10.1016/j.mtbio.2021.100175
    [34] Chen M, Ren M, Shi Y, et al. (2023) State-of-the-art polyetheretherketone three-dimensional printing and multifunctional modification for dental implants. Front Bioeng Biotech 11: 1271629. https://doi.org/10.3389/fbioe.2023.1271629 doi: 10.3389/fbioe.2023.1271629
    [35] Rajzer I, Menaszek E, Bacakova L, et al. (2010) In vitro and in vivo studies on biocompatibility of carbon fibres. Mater Sci: Mater Med 21: 2611–2622. https://doi.org/10.1007/s10856-010-4108-3 doi: 10.1007/s10856-010-4108-3
    [36] Petersen R (2016) Carbon fiber biocompatibility for implants. Fibers 4: 1. https://doi.org/10.3390/fib4010001 doi: 10.3390/fib4010001
    [37] Zheng H, Zhang W, Li B, et al. (2022) Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos Part B-Eng 233: 109639. https://doi.org/10.1016/j.compositesb.2022.109639 doi: 10.1016/j.compositesb.2022.109639
    [38] Istgaldi H, Nayebi B, Ahmadi Z, et al. (2020) Characterization of ZrB2–TiC composites reinforced with short carbon fibers. Ceram Int 46: 23155–23164. http://dx.doi.org/10.1016/j.ceramint.2020.06.095 doi: 10.1016/j.ceramint.2020.06.095
    [39] Li H, Liebscher M, Zhao D, et al. (2023) A review of carbon fiber surface modification methods for tailor-made bond behavior with cementitious matrices. Prog Mater Sci 132: 101040. http://dx.doi.org/10.1016/j.pmatsci.2022.101040 doi: 10.1016/j.pmatsci.2022.101040
    [40] Tang S, Hu C (2017) Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review. J Mater Sci Technol 33: 117–130. https://doi.org/10.1016/j.jmst.2016.08.004 doi: 10.1016/j.jmst.2016.08.004
    [41] Shivam V, Nitin S, Saurabh K, et al. (2021) Developments of PEEK (polyetheretherketone) as a biomedical material: A focused review. Eur Polym J 147: 110295. http://dx.doi.org/10.1016/j.eurpolymj.2021.110295 doi: 10.1016/j.eurpolymj.2021.110295
    [42] Akay C, Ersöz M (2020) PEEK in dentistry, properties and application areas. Int Dent Res 10: 60–65. http://dx.doi.org/10.5577/intdentres.2020.vol10.no2.6 doi: 10.5577/intdentres.2020.vol10.no2.6
    [43] Sofia A, Lisa P (2020) Nanomechanical analysis of medical grade PEEK and carbon fiber-reinforced PEEK composites. J Mech Behav Biomed Mater 111: 104008. https://doi.org/10.1016/j.jmbbm.2020.104008 doi: 10.1016/j.jmbbm.2020.104008
    [44] Ma H, Suonan A, Zhou J, et al. (2021) PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab J Chem 14: 102977. http://dx.doi.org/10.1016/j.arabjc.2020.102977 doi: 10.1016/j.arabjc.2020.102977
    [45] Adil S, Lazoglu I (2023) A review on additive manufacturing of carbon fiber‐reinforced polymers: Current methods, materials, mechanical properties, applications and challenges. J Appl Polym Sci 140: 53476. https://doi.org/10.1002/app.53476 doi: 10.1002/app.53476
    [46] Stratton-Powell A, Pasko K, Brockett C, et al. (2016) The biologic response to polyetheretherketone (PEEK) wear particles in total joint replacement: A systematic review. Clin Orthop Relat R 474: 2394–2404. https://doi.org/10.1007/s11999-016-4976-z doi: 10.1007/s11999-016-4976-z
    [47] Chua C, Liu H, Di Trani N, et al. (2021) Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 271: 120719. https://doi.org/10.1016/j.biomaterials.2021.120719 doi: 10.1016/j.biomaterials.2021.120719
    [48] Nakahara I, Takao M, Bandoh S, et al. (2013) In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J Orthop Res 31: 485–492. https://doi.org/10.1002/jor.22251 doi: 10.1002/jor.22251
    [49] Hacking S, Pauyo T, Lim L, et al. (2010) Tissue response to the components of a hydroxyapatite-coated composite femoral implant. J Biomed Mater Res 94: 953–960. https://doi.org/10.1002/jbm.a.32758 doi: 10.1002/jbm.a.32758
    [50] Scotchford C, Garle M, Batchelor J, et al. (2003) Use of a novel carbon fibre composite material for the femoral stem component of a THR system: In vitro biological assessment. Biomaterials 24: 4871–4879. https://doi.org/10.1016/s0142-9612(03)00403-4 doi: 10.1016/s0142-9612(03)00403-4
    [51] Darwich A, Nazha H, Abbas W (2019) Numerical study of stress shielding evaluation of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials. Biomed Res-India 30: 169–174. https://doi.org/10.35841/biomedicalresearch.30-18-1048 doi: 10.35841/biomedicalresearch.30-18-1048
    [52] Caouette C, Yahia L, Bureau M (2011) Reduced stress shielding with limited micromotions using a carbon fibre composite biomimetic hip stem: A finite element model. Proc Inst Mech Eng H 225: 907–919. https://doi.org/10.1177/0954411911412465 doi: 10.1177/0954411911412465
    [53] Sridhar I, Adie P, Ghista D (2010) Optimal design of customised hip prosthesis using fiber reinforced polymer composites. Mater Design 31: 2767–2775. https://doi.org/10.1016/j.matdes.2010.01.016 doi: 10.1016/j.matdes.2010.01.016
    [54] Ceddia M, Trentadue B, De Giosa G, et al. (2023) Topology optimization of a femoral stem in titanium and carbon to reduce stress shielding with the FEM method. J Compos Sci 7: 298. https://doi.org/10.3390/jcs7070298 doi: 10.3390/jcs7070298
    [55] Tavakkoli Avval P, Samiezadeh S, Klika V, et al. (2015) Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study using mechano-biochemical model. J Mech Behav Biomed Mater 41: 56–67. https://doi.org/10.1016/j.jmbbm.2014.09.019 doi: 10.1016/j.jmbbm.2014.09.019
    [56] Adam F, Hammer D, Pfautsch S, et al. (2002) Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface. J Arthroplasty 17: 217–223. https://doi.org/10.1054/arth.2002.30285 doi: 10.1054/arth.2002.30285
    [57] Bennett D, Hill J, Dennison J, et al. (2014) Metal-carbon fiber composite femoral stems in hip replacements: a randomized controlled parallel-group study with mean ten-year follow-up. J Bone Joint Surg Am 96: 2062–2069. https://doi.org/10.2106/JBJS.M.01542 doi: 10.2106/JBJS.M.01542
    [58] Campbell M, Bureau MN, Yahia L (2008) Performance of CF/PA12 composite femoral stems. J Mater Sci 19: 683–693. https://doi.org/10.1007/s10856-007-3073-y doi: 10.1007/s10856-007-3073-y
    [59] Lyu H, Jiang N, Li Y, et al. (2021) Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes. Compos Sci Technol 210: 108831. http://dx.doi.org/10.1016/j.compscitech.2021.108831 doi: 10.1016/j.compscitech.2021.108831
    [60] Li C, Granger C, Del Schutte H, et al. (2002) Progressive failure analysis of laminated composite femoral prostheses for total hip arthroplasty. Biomaterials 23: 4249–4262. https://doi.org/10.1016/s0142-9612(02)00188-6 doi: 10.1016/s0142-9612(02)00188-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1161) PDF downloads(250) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog