Modeling soil moisture as a function of meteorological data is necessary for agricultural applications, including irrigation scheduling. In this study, empirical water balance models and empirical compartment models are assessed for estimating soil moisture, for three locations in Colombia. The daily precipitation and average, maximum and minimum air temperatures are the input variables. In the water balance type models, the evapotranspiration term is based on the Hargreaves model, whereas the runoff and percolation terms are functions of precipitation and soil moisture. The models are calibrated using field data from each location. The main contributions compared to closely related studies are: i) the proposal of three models, formulated by combining an empirical water balance model with modifications in the precipitation, runoff, percolation and evapotranspiration terms, using functions recently proposed in the current literature and incorporating new modifications to these terms; ii) the assessment of the effect of model parameters on the fitting quality and determination of the parameters with higher effects; iii) the comparison of the proposed empirical models with recent empirical models from the literature in terms of the combination of fitting accuracy and number of parameters through the Akaike Information Criterion (AIC), and also the Nash-Sutcliffe (NS) coefficient and the root mean square error. The best models described soil moisture with an NS efficiency higher than 0.8. No single model achieved the highest performance for the three locations.
Citation: Alejandro Rincón, Fredy E. Hoyos, John E. Candelo-Becerra. Comparison, validation and improvement of empirical soil moisture models for conditions in Colombia[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 17747-17782. doi: 10.3934/mbe.2023789
Modeling soil moisture as a function of meteorological data is necessary for agricultural applications, including irrigation scheduling. In this study, empirical water balance models and empirical compartment models are assessed for estimating soil moisture, for three locations in Colombia. The daily precipitation and average, maximum and minimum air temperatures are the input variables. In the water balance type models, the evapotranspiration term is based on the Hargreaves model, whereas the runoff and percolation terms are functions of precipitation and soil moisture. The models are calibrated using field data from each location. The main contributions compared to closely related studies are: i) the proposal of three models, formulated by combining an empirical water balance model with modifications in the precipitation, runoff, percolation and evapotranspiration terms, using functions recently proposed in the current literature and incorporating new modifications to these terms; ii) the assessment of the effect of model parameters on the fitting quality and determination of the parameters with higher effects; iii) the comparison of the proposed empirical models with recent empirical models from the literature in terms of the combination of fitting accuracy and number of parameters through the Akaike Information Criterion (AIC), and also the Nash-Sutcliffe (NS) coefficient and the root mean square error. The best models described soil moisture with an NS efficiency higher than 0.8. No single model achieved the highest performance for the three locations.
[1] | D. Jia, J. Wen, T. Zhang, J. Xi, Responses of soil moisture and thermal conductivity to precipitation in the mesa of the Loess Plateau, Environm. Earth Sci., 75 (2016), 395. https://doi.org/10.1007/s12665-016-5350-x doi: 10.1007/s12665-016-5350-x |
[2] | M. Sadeghi, T. Hatch, G. Huang, U. Bandara, A. Ghorbani, E. C. Dogrul, Estimating soil water flux from single-depth soil moisture data, J. Hydrol., 610 (2022), 127999. https://doi.org/10.1016/j.jhydrol.2022.127999 doi: 10.1016/j.jhydrol.2022.127999 |
[3] | M. Saeedi, A. Sharafati, L. Brocca, A. Tavakol, Estimating rainfall depth from satellite-based soil moisture data: A new algorithm by integrating SM2RAIN and the analytical net water flux models, J. Hydrol., 610 (2022), 127868. https://doi.org/10.1016/j.jhydrol.2022.127868 doi: 10.1016/j.jhydrol.2022.127868 |
[4] | S. A. Kannenberg, M. L. Barnes, D. R. Bowling, A. W. Driscoll, J. S. Guo, W. R. L. Anderegg, Quantifying the drivers of ecosystem fluxes and water potential across the soil-plant-atmosphere continuum in an arid woodland, Agr. Forest Meteorol., 329 (2023), 109269. https://doi.org/10.1016/j.agrformet.2022.109269 doi: 10.1016/j.agrformet.2022.109269 |
[5] | K. A. Ishola, G. Mills, R. M. Fealy, Ó. N. Choncubhair, R. Fealy, Improving a land surface scheme for estimating sensible and latent heat fluxes above grasslands with contrasting soil moisture zones, Agr. Forest Meteorol., 294 (2020), 108151. https://doi.org/10.1016/j.agrformet.2020.108151 doi: 10.1016/j.agrformet.2020.108151 |
[6] | J. Zhang, L. Duan, T. Liu, Z. Chen, Y. Wang, M. Li, et al., Experimental analysis of soil moisture response to rainfall in a typical grassland hillslope under different vegetation treatments, Environ. Res., 213 (2022), 113608. https://doi.org/10.1016/j.envres.2022.113608 doi: 10.1016/j.envres.2022.113608 |
[7] | D. Rai, B. C. Kusre, P. K. Bora, L. Gajmer, A study on soil moisture model for agricultural water management under soil moisture stress conditions in Sikkim (India), Sustain. Water Resour. Manag., 5 (2019), 1243–1257. https://doi.org/10.1007/s40899-018-0298-5 doi: 10.1007/s40899-018-0298-5 |
[8] | T. Yu, G. Jiapaer, G. Long, X. Li, J. Jing, Y. Liu, et al., Interannual and seasonal relationships between photosynthesis and summer soil moisture in the Ili River basin, Xinjiang, 2000–2018, Sci. Total Environ., 856 (2023), 159191. https://doi.org/10.1016/j.scitotenv.2022.159191 doi: 10.1016/j.scitotenv.2022.159191 |
[9] | T. Yu, G. Jiapaer, A. Bao, G. Zheng, J. Zhang, X. Li, et al., Disentangling the relative effects of soil moisture and vapor pressure deficit on photosynthesis in dryland Central Asia, Ecolog. Indicat., 137 (2022), 108698. https://doi.org/10.1016/j.ecolind.2022.108698 doi: 10.1016/j.ecolind.2022.108698 |
[10] | R. Zhu, T. Hu, Q. Zhang, X. Zeng, S. Zhou, F. Wu, et al., A stomatal optimization model adopting a conservative strategy in response to soil moisture stress, J. Hydrol., 617 (2023), 128931. https://doi.org/10.1016/j.jhydrol.2022.128931 doi: 10.1016/j.jhydrol.2022.128931 |
[11] | M. Bassiouni, S. P. Good, C. J. Still, C. W. Higgins, Plant water uptake thresholds inferred from satellite soil moisture, Geophys. Res. Letters, 47 (2020), e2020GL087077. https://doi.org/10.1029/2020GL087077 doi: 10.1029/2020GL087077 |
[12] | S. Wang, R. Li, Y. Wu, W. Wang, Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN), Sci. Total Environ., 876 (2023), 162558. https://doi.org/10.1016/j.scitotenv.2023.162558 doi: 10.1016/j.scitotenv.2023.162558 |
[13] | K. Yang, H. Wang, L. Luo, S. Zhu, H. Huang, Z. Wei, et al., Effects of different soil moisture on the growth, quality, and root rot disease of organic Panax notoginseng cultivated under pine forests, J. Environ. Manag., 329 (2023), 117069. https://doi.org/10.1016/j.jenvman.2022.117069 doi: 10.1016/j.jenvman.2022.117069 |
[14] | Z. Zhao, Y. Jiang, S. Yuan, M. Cui, D. Shi, F. Xue, et al., Inconsistent response times to precipitation and soil moisture in Picea crassifolia growth, Dendrochronologia, 77 (2023), 126032. https://doi.org/10.1016/j.dendro.2022.126032 doi: 10.1016/j.dendro.2022.126032 |
[15] | J. Peng, C. Albergel, A. Balenzano, L. Brocca, O. Cartus, M. H. Cosh, et al., A roadmap for high-resolution satellite soil moisture applications— confronting product characteristics with user requirements, Remote Sens. Environ., 252 (2021), 112162. https://doi.org/10.1016/j.rse.2020.112162 doi: 10.1016/j.rse.2020.112162 |
[16] | Z.-L. Li, P. Leng, C. Zhou, K.-S. Chen, F.-C. Zhou, G.-F. Shang, Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future, Earth-Sci. Rev., 218 (2021), 103673. https://doi.org/10.1016/j.earscirev.2021.103673 doi: 10.1016/j.earscirev.2021.103673 |
[17] | L. Zappa, S. Schlaffer, L. Brocca, M. Vreugdenhil, C. Nendel, W. Dorigo, How accurately can we retrieve irrigation timing and water amounts from (satellite) soil moisture?, Int. J. Appl. Earth Observ. Geoinform., 113 (2022), 102979. https://doi.org/10.1016/j.jag.2022.102979 doi: 10.1016/j.jag.2022.102979 |
[18] | Z. Gu, T. Zhu, X. Jiao, J. Xu, Z. Qi, Neural network soil moisture model for irrigation scheduling, Comput. Electron. Agr., 180 (2021), 105801. https://doi.org/10.1016/j.compag.2020.105801 doi: 10.1016/j.compag.2020.105801 |
[19] | R. Liao, S. Zhang, X. Zhang, M. Wang, H. Wu, L. Zhangzhong, Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept, Agr. Water Manag., 245 (2021), 106632. https://doi.org/10.1016/j.agwat.2020.106632 doi: 10.1016/j.agwat.2020.106632 |
[20] | L. Liu, L. Gudmundsson, M. Hauser, D. Qin, S. Li, S. I. Seneviratne, Soil moisture dominates dryness stress on ecosystem production globally, Nat. Commun., 11 (2020), 4892. https://doi.org/10.1038/s41467-020-18631-1 doi: 10.1038/s41467-020-18631-1 |
[21] | R. Moazenzadeh, B. Mohammadi, M. J. S. Safari, K.-W. Chau, Soil moisture estimation using novel bio-inspired soft computing approaches, Eng. Appl. Comput. Fluid Mechan., 16 (2022), 826–840. https://doi.org/10.1080/19942060.2022.2037467 doi: 10.1080/19942060.2022.2037467 |
[22] | S. Verma, M. K. Nema, Development of an empirical model for sub-surface soil moisture estimation and variability assessment in a lesser Himalayan watershed, Model. Earth Syst. Environ., 8 (2022), 3487–3505. https://doi.org/10.1007/s40808-021-01316-z doi: 10.1007/s40808-021-01316-z |
[23] | B. Panigrahi, S. N. Panda, Field test of a soil water balance simulation model, Agr. Water Manag., 58 (2003), 223–240. https://doi.org/10.1016/S0378-3774(02)00082-3 doi: 10.1016/S0378-3774(02)00082-3 |
[24] | J. Dari, P. Quintana-Seguí, R. Morbidelli, C. Saltalippi, A. Flammini, E. Giugliarelli, et al., Irrigation estimates from space: Implementation of different approaches to model the evapotranspiration contribution within a soil-moisture-based inversion algorithm, Agr. Water Manag., 265 (2022), 107537. https://doi.org/10.1016/j.agwat.2022.107537 doi: 10.1016/j.agwat.2022.107537 |
[25] | D. R. Legates, K. T. Junghenn, Evaluation of a simple, point-scale hydrologic model in simulating soil moisture using the Delaware environmental observing system, Theor. Appl. Climatol., 132 (2018), 1–13. https://doi.org/10.1007/s00704-017-2041-9 doi: 10.1007/s00704-017-2041-9 |
[26] | J. L. Knopp, A minimal soil moisture model fit to environmental data from multiple pasture locations in Taranaki, New Zealand, IFAC-PapersOnLine, 53 (2020), 16703–16708. https://doi.org/10.1016/j.ifacol.2020.12.1109 |
[27] | J. Huang, H. M. van den Dool, K. P. Georgarakos, Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts, J. Climate, 9 (1996), 1350–1362. https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2 doi: 10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2 |
[28] | J. Fidal, T. R. Kjeldsen, Accounting for soil moisture in rainfall-runoff modelling of urban areas, J. Hydrol., 589 (2020), 125122. https://doi.org/10.1016/j.jhydrol.2020.125122 doi: 10.1016/j.jhydrol.2020.125122 |
[29] | G. Pignotti, M. Crawford, E. Han, M. R. Williams, I. Chaubey, SMAP soil moisture data assimilation impacts on water quality and crop yield predictions in watershed modeling, J. Hydrol., 617 (2023), 129122. https://doi.org/10.1016/j.jhydrol.2023.129122 doi: 10.1016/j.jhydrol.2023.129122 |
[30] | J.-F. Mahfouf, B. Jacquemin, A study of rainfall interception using a 1And surface parameterization for mesoscale meteorological models, J. Meteorol. Climatol., 28 (1989), 1282–1302. https://doi.org/10.1175/1520-0450(1989)028<1282:ASORIU>2.0.CO;2 doi: 10.1175/1520-0450(1989)028<1282:ASORIU>2.0.CO;2 |
[31] | D. E. Carlyle-Moses, J. H. C. Gash, Rainfall Interception Loss by Forest Canopies, in Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions (eds. D. F. Levia, D. Carlyle-Moses, T. Tanaka), (2011), 407–423. https://doi.org/10.1007/978-94-007-1363-5_20 |
[32] | A. Jaramillo-Robledo, B. Cháves-Córdoba, Aspectos hidrológicos en un bosque y en plantaciones de café (Coffea arabica L.) al sol y bajo sombra, Cenicafé, 50 (1999), 97–105. |
[33] | F. Pan, C. D. Peters-Lidard, M. J. Sale, An analytical method for predicting surface soil moisture from rainfall observations, Water Resour. Res., 39 (2003), 1314. https://doi.org/10.1029/2003wr002142 doi: 10.1029/2003wr002142 |
[34] | M. Ruichen, S. Jinxi, T. Bin, X. Wenjin, K. Feihe, S. Haotian, et al., Vegetation variation regulates soil moisture sensitivity to climate change on the Loess Plateau, J. Hydrol., 617 (2023), 128763. https://doi.org/10.1016/j.jhydrol.2022.128763 doi: 10.1016/j.jhydrol.2022.128763 |
[35] | L. Li, D. Wu, T. Wang, Y. Wang, Effect of topography on spatiotemporal patterns of soil moisture in a mountainous region of Northwest China, Geoderma Regional, 28 (2022), e00456. https://doi.org/10.1016/j.geodrs.2021.e00456 doi: 10.1016/j.geodrs.2021.e00456 |
[36] | V. Y. Chandrappa, B. Ray, N. Ashwatha, P. Shrestha, Spatiotemporal modeling to predict soil moisture for sustainable smart irrigation, Internet Things, 21 (2023), 100671. https://doi.org/10.1016/j.iot.2022.100671 doi: 10.1016/j.iot.2022.100671 |
[37] | K. Djaman, A. B. Balde, A. Sow, B. Muller, S. Irmak, M. K. N'Diaye, et al., Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley, J. Hydrol. Regional Studies, 3 (2015), 139–159. https://doi.org/10.1016/j.ejrh.2015.02.002 doi: 10.1016/j.ejrh.2015.02.002 |
[38] | D. Dlouhá, V. Dubovský, L. Pospíšil, Optimal calibration of evaporation models against Penman–Monteith equation, Water, 13 (2021), 1484. https://doi.org/10.3390/w13111484 doi: 10.3390/w13111484 |
[39] | R. Hadria, T. Benabdelouhab, H. Lionboui, A. Salhi, Comparative assessment of different reference evapotranspiration models towards a fit calibration for arid and semi-arid areas, J. Arid Environ., 184 (2021), 104318. https://doi.org/10.1016/j.jaridenv.2020.104318 doi: 10.1016/j.jaridenv.2020.104318 |
[40] | V. Sheikh, S. Visser, L. Stroosnijder, A simple model to predict soil moisture: Bridging Event and Continuous Hydrological (BEACH) modelling, Environ. Model.Software, 24 (2009), 542–556. https://doi.org/10.1016/j.envsoft.2008.10.005 doi: 10.1016/j.envsoft.2008.10.005 |
[41] | P. Bogawski, E. Bednorz, Comparison and validation of selected evapotranspiration models for conditions in Poland (Central Europe), Water Resour. Manag., 28 (2014), 5021–5038. https://doi.org/10.1007/s11269-014-0787-8 doi: 10.1007/s11269-014-0787-8 |
[42] | R. G. Allen, L. S. Pereira, D. Raes, M. Smith, Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Food Agr. Organiz. United Nations, FAO Irrigation and drainage, (1998), 56. |
[43] | S. V. Franco, A. J. Robledo, Redistribution of rainfall in different vegetation covers of the central coffee zone of Colombia, Cenicafé, 60 (2009), 148–160. |
[44] | V. H. Ramírez-Builes, Á. Jaramillo-Robledo, J. Arcila-Pulgarín, E. C. Montoya-Restrepo, Estimation of Soil Moisture in Coffee Plantations with Free Sun Exposure, Cenicafé, 61 (2010), 251–259. |
[45] | K. I. Islam, A. Khan, T. Islam, Correlation between atmospheric temperature and soil temperature: A case study for Dhaka, Bangladesh, Atmosph. Climate Sci., 5 (2015), 200–208. https://doi.org/10.4236/acs.2015.53014 |
[46] | W. C. Forsythe, E. J. Rykiel, R. S. Stahl, H.-I. Wu, R. M. Schoolfield, A model comparison for daylength as a function of latitude and day of year, Ecolog. Model., 80 (1995), 87–95. https://doi.org/10.1016/0304-3800(94)00034-F doi: 10.1016/0304-3800(94)00034-F |
[47] | S. A. Banimahd, D. Khalili, S. Zand-Parsa, A. A. Kamgar-Haghighi, Groundwater potential recharge estimation in bare soil using three soil moisture accounting models: Field evaluation for a semi-arid foothill region, Arabian J. Geosci., 10 (2017), 223. https://doi.org/10.1007/s12517-017-3018-9 doi: 10.1007/s12517-017-3018-9 |
[48] | E.-M. Hong, W.-H. Nam, J.-Y. Choi, Y. A. Pachepsky, Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea, Agr. Water Manag., 165 (2016), 163–180. https://doi.org/10.1016/j.agwat.2015.12.003 doi: 10.1016/j.agwat.2015.12.003 |
[49] | L. N. Bermúdez-Florez, J. R. Cartagena-Valenzuela, V. H. Ramírez-Builes, Soil humidity and evapotranspiration under three coffee (Coffea arabica L.) planting densities at Naranjal experimental station (Chinchiná, Caldas, Colombia), Acta Agronóm., 67 (2018), 402–413. https://doi.org/10.15446/acag.v67n3.67377 |
[50] | F. J. H. Guzmán, Evaluation of agroclimatic methods for the timely estimation of soil surface moisture conditions in agricultural areas of Colombia, Master Thesis, Universidad Nacional de Colombia (2021). |
[51] | M. Littleboy, D. M. Silburn, D. M. Freebairn, D. R. Woodruff, G. L. Hammer, J. K. Leslie, Impact of soil erosion on production in cropping systems I, Development and validation of a simulation model, Soil Res., 30 (1992), 757. https://doi.org/10.1071/sr9920757 |
[52] | D. Liu, C. Liu, Y. Tang, C. Gong, A GA-BP neural network regression model for predicting soil moisture in slope ecological protection, Sustain. Sci. Pract. Pol., 14 (2022), 1386. https://doi.org/10.3390/su14031386 doi: 10.3390/su14031386 |
[53] | J. Elliott, J. Price, Comparison of soil hydraulic properties estimated from steady-state experiments and transient field observations through simulating soil moisture in regenerated Sphagnum moss, J. Hydrol., 582 (2020), 124489. https://doi.org/10.1016/j.jhydrol.2019.124489 doi: 10.1016/j.jhydrol.2019.124489 |
[54] | M. Bassiouni, S. Manzoni, G. Vico, Optimal plant water use strategies explain soil moisture variability, Adv. Water Resour., 173 (2023), 104405. https://doi.org/10.1016/j.advwatres.2023.104405 doi: 10.1016/j.advwatres.2023.104405 |
[55] | V. H. G. Díaz, M. J. Willis, Ethanol production using Zymomonas mobilis: Development of a kinetic model describing glucose and xylose co-fermentation, Biomass Bioenergy, 123 (2019), 41–50. https://doi.org/10.1016/j.biombioe.2019.02.004 doi: 10.1016/j.biombioe.2019.02.004 |
[56] | S. Portet, A primer on model selection using the Akaike Information Criterion, Infect. Disease Modell., 5 (2020), 111–128. https://doi.org/10.1016/j.idm.2019.12.010 doi: 10.1016/j.idm.2019.12.010 |
[57] | K. Dutta, Substrate inhibition growth kinetics for cutinase producing Pseudomonas cepacia using tomato-peel extracted cutin, Chem. Biochem. Eng. Quarterly, 29 (2015), 437–445. https://doi.org/10.15255/cabeq.2014.2022 doi: 10.15255/cabeq.2014.2022 |