Citation: Chengyu Hu, Junyi Cai, Deze Zeng, Xuesong Yan, Wenyin Gong, Ling Wang. Deep reinforcement learning based valve scheduling for pollution isolation in water distribution network[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 105-121. doi: 10.3934/mbe.2020006
[1] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[2] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[3] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[4] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[5] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[6] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[7] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[8] | Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002 |
[9] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[10] | Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087 |
For a convex function σ:I⊆R→R on I with ν1,ν2∈I and ν1<ν2, the Hermite-Hadamard inequality is defined by [1]:
σ(ν1+ν22)≤1ν2−ν1∫ν2ν1σ(η)dη≤σ(ν1)+σ(ν2)2. | (1.1) |
The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4] are focused on extending and generalizing the convexity and Hermite-Hadamard inequality.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [5,6,7].
Now, we recall the definitions of Riemann-Liouville fractional integrals.
Definition 1.1 ([5,6,7]). Let σ∈L1[ν1,ν2]. The Riemann-Liouville integrals Jϑν1+σ and Jϑν2−σ of order ϑ>0 with ν1≥0 are defined by
Jϑν1+σ(x)=1Γ(ϑ)∫xν1(x−η)ϑ−1σ(η)dη, ν1<x | (1.2) |
and
Jϑν2−σ(x)=1Γ(ϑ)∫ν2x(η−x)ϑ−1σ(η)dη, x<ν2, | (1.3) |
respectively. Here Γ(ϑ) is the well-known Gamma function and J0ν1+σ(x)=J0ν2−σ(x)=σ(x).
With a huge application of fractional integration and Hermite-Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite-Hadamard inequality, including fractional integration rather than ordinary integration; for example see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].
In this paper, we consider the integral inequality of Hermite-Hadamard-Mercer type that relies on the Hermite-Hadamard and Jensen-Mercer inequalities. For this purpose, we recall the Jensen-Mercer inequality: Let 0<x1≤x2≤⋯≤xn and μ=(μ1,μ2,…,μn) nonnegative weights such that ∑ni=1μi=1. Then, the Jensen inequality [22,23] is as follows, for a convex function σ on the interval [ν1,ν2], we have
σ(n∑i=1μixi)≤n∑i=1μiσ(xi), | (1.4) |
where for all xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n).
Theorem 1.1 ([2,23]). If σ is convex function on [ν1,ν2], then
σ(ν1+ν2−n∑i=1μixi)≤σ(ν1)+σ(ν2)−n∑i=1μiσ(xi), | (1.5) |
for each xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n) with ∑ni=1μi=1. For some results related with Jensen-Mercer inequality, see [24,25,26].
In view of above indices, we establish new integral inequalities of Hermite-Hadamard-Mercer type for convex functions via the Riemann-Liouville fractional integrals in the current project. Particularly, we see that our results can cover the previous researches.
Theorem 2.1. For a convex function σ:[ν1,ν2]⊆R→R with x,y∈[ν1,ν2], we have:
σ(ν1+ν2−x+y2)≤2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]≤σ(ν1)+σ(ν2)−σ(x)+σ(y)2. | (2.1) |
Proof. By using the convexity of σ, we have
σ(ν1+ν2−u+v2)≤12[σ(ν1+ν2−u)+σ(ν1+ν2−v)], | (2.2) |
and above with u=1−η2x+1+η2y, v=1+η2x+1−η2y, where x,y∈[ν1,ν2] and η∈[0,1], leads to
σ(ν1+ν2−x+y2)≤12[σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))]. | (2.3) |
Multiplying both sides of (2.3) by ηϑ−1 and then integrating with respect to η over [0,1], we get
1ϑσ(ν1+ν2−x+y2)≤12[∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη]=12[2ϑ(y−x)ϑ∫ν1+ν2−x+y2ν1+ν2−y((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw+2ϑ(y−x)ϑ∫ν1+ν2−xν1+ν2−x+y2(w−(ν1+ν2−x+y2))ϑ−1σ(w)dw]=2ϑ−1Γ(ϑ)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)], |
and thus the proof of first inequality in (2.1) is completed.
On the other hand, we have by using the Jensen-Mercer inequality:
σ(ν1+ν2−(1−η2x+1+η2y))≤σ(ν1)+σ(ν2)−(1−η2σ(x)+1+η2σ(y)) | (2.4) |
σ(ν1+ν2−(1+η2x+1−η2y))≤σ(ν1)+σ(ν2)−(1+η2σ(x)+1−η2σ(y)). | (2.5) |
Adding inequalities (2.4) and (2.5) to get
σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))≤2[σ(ν1)+σ(ν2)]−[σ(x)+σ(y)]. | (2.6) |
Multiplying both sides of (2.6) by ηϑ−1 and then integrating with respect to η over [0,1] to obtain
∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη≤2ϑ[σ(ν1)+σ(ν2)]−1ϑ[σ(x)+σ(y)]. |
By making use of change of variables and then multiplying by ϑ2, we get the second inequality in (2.1).
Remark 2.1. If we choose ϑ=1, x=ν1 and y=ν2 in Theorem 2.1, then the inequality (2.1) reduces to (1.1).
Corollary 2.1. Theorem 2.1 with
● ϑ=1 becomes [24, Theorem 2.1].
● x=ν1 and y=ν2 becomes:
σ(ν1+ν22)≤2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]≤σ(ν1)+σ(ν2)2, |
which is obtained by Mohammed and Brevik in [10].
The following Lemma linked with the left inequality of (2.1) is useful to obtain our next results.
Lemma 2.1. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and σ′∈L[ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)=(y−x)4∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. | (2.7) |
Proof. From right hand side of (2.7), we set
ϖ1−ϖ2:=∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη=∫10ηϑσ′(ν1+ν2−(1−η2x+1+η2y))dη−∫10ηϑσ′(ν1+ν2−(1+η2x+1−η2y))dη. | (2.8) |
By integrating by parts with w=ν1+ν2−(1−η2x+1+η2y), we can deduce:
ϖ1=−2(y−x)σ(ν1+ν2−y)+2ϑ(y−x)∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη=−2(y−x)σ(ν1+ν2−y)+2ϑ+1ϑ(y−x)ϑ+1∫ν1+ν2−x+y2ν1+ν2−yσ((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw=−2(y−x)σ(ν1+ν2−y)+2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2). |
Similarly, we can deduce:
ϖ2=2y−xσ(ν1+ν2−x)−2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2). |
By substituting ϖ1 and ϖ2 in (2.8) and then multiplying by (y−x)4, we obtain required identity (2.7).
Corollary 2.2. Lemma 2.1 with
● ϑ=1 becomes:
1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)=(y−x)4∫10η[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. |
● ϑ=1, x=ν1 and y=ν2 becomes:
1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)=(ν2−ν1)4∫10η[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
● x=ν1 and y=ν2 becomes:
2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)=(ν2−ν1)4∫10ηϑ[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
Theorem 2.2. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′| is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. | (2.9) |
Proof. By taking modulus of identity (2.7), we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|dη+∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|dη]. |
Then, by applying the convexity of |σ′| and the Jensen-Mercer inequality on above inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1+η2|σ′(x)|+1−η2)|σ′(y)|]dη+∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1−η2|σ′(x)|+1+η2)|σ′(y)|]dη]=(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2], |
which completes the proof of Theorem 2.2.
Corollary 2.3. Theorem 2.2 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. |
● ϑ=1, x=ν1 and y=ν2 becomes [27, Theorem 2.2].
● x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)4[|σ′(ν1)|+|σ′(ν2)|2]. |
Theorem 2.3. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q>1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], | (2.10) |
where 1p+1q=1.
Proof. By taking modulus of identity (2.7) and using Hölder's inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
Then, by applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q))1q+(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q))1q}=(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], |
which completes the proof of Theorem 2.3.
Corollary 2.4. Theorem 2.3 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4p√p+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)22p(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤2ϑ−1−2qν2−ν1(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
Theorem 2.4. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q≥1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q]. | (2.11) |
Proof. By taking modulus of identity (2.7) with the well-known power mean inequality, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
By applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q)])1q+(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q)])1q}=(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q], |
which completes the proof of Theorem 2.4.
Corollary 5. Theorem 2.4 with
● q=1 becomes Theorem 2.2.
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)8[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+5|σ′(y)|q6))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(5|σ′(x)|q+|σ′(y)|q6))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(y−x)8[(5|σ′(ν1)|q+|σ′(ν2)|q6)1q+(|σ′(ν1)|q+5|σ′(ν2)|q6)1q]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤(ν2−ν1)4(ϑ+1)[((2ϑ+3)|σ′(ν1)|q+|σ′(ν2)|q2(ϑ+2))1q+(|σ′(ν1)|q+(2ϑ+3)|σ′(ν2)|q2(ϑ+2))1q]. |
Here, we consider the following special means:
● The arithmetic mean:
A(ν1,ν2)=ν1+ν22,ν1,ν2≥0. |
● The harmonic mean:
H(ν1,ν2)=2ν1ν2ν1+ν2,ν1,ν2>0. |
● The logarithmic mean:
L(ν1,ν2)={ν2−ν1lnν2−lnν1,ifν1≠ν2,ν1,ifν1=ν2,ν1,ν2>0. |
● The generalized logarithmic mean:
Ln(ν1,ν2)={[νn+12−νn+11(n+1)(ν2−ν1)]1n,ifν1≠ν2ν1,ifν1=ν2,ν1,ν2>0;n∈Z∖{−1,0}. |
Proposition 3.1. Let 0<ν1<ν2 and n∈N, n≥2. Then, for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4[2A(νn−11,νn−12)−A(xn−1,yn−1)]. | (3.1) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.2. Let 0<ν1<ν2. Then, for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤(y−x)4[2H−1(ν21,ν22)−H−1(x2,y2)]. | (3.2) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.3. Let 0<ν1<ν2 and n∈N, n≥2. Then, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4[A(νn−11,νn−12)], | (3.3) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤(ν2−ν1)4H−1(ν21,ν22). | (3.4) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.1 and Proposition 3.2, one can obtain the Proposition 3.3.
Proposition 3.4. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(xq(n−1),3yq(n−1))]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3xq(n−1),yq(n−1))]1q}. | (3.5) |
Proof. By applying Corollary 2.4 (first item) for convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.5. Let 0<ν1<ν2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤q√2(y−x)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(x2q,3y2q)]1q+[H−1(ν2q1,ν2q2)−34H−1(3x2q,y2q)]1q}. | (3.6) |
Proof. By applying Corollary 2.4 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.6. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1 and 1p+1q=1, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(νq(n−1)1,3νq(n−1)2)]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3νq(n−1)1,νq(n−1)2)]1q}, | (3.7) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤q√2(ν2−ν1)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(ν2q1,3ν2q2)]1q+[H−1(ν2q1,ν2q2)−34H−1(3ν2q1,ν2q2)]1q}. | (3.8) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.4 and Proposition 3.5, one can obtain the Proposition 3.6.
As we emphasized in the introduction, integral inequality is the most important field of mathematical analysis and fractional calculus. By using the well-known Jensen-Mercer and power mean inequalities, we have proved new inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. In the last section, we have considered some propositions in the context of special functions; these confirm the efficiency of our results.
We would like to express our special thanks to the editor and referees. Also, the first author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
The authors declare no conflict of interest.
[1] | S. E. Hrudey, Safe drinking water: lessons from recent outbreaks in affluent nations, 2005. |
[2] | D. J. Kroll, Securing our water supply: protecting a vulnerable resource. PennWell Books, 2006. |
[3] | S. Rathi and R. Gupta, A simple sensor placement approach for regular monitoring and contamination detection in water distribution networks, KSCE J. Civ. Eng., 20 (2016), 597-608. |
[4] | C. Hu, G. Ren, C. Liu, et al., A spark-based genetic algorithm for sensor placement in large scale drinking water distribution systems, Cluster Comput., 20 (2017), 1089-1099. |
[5] | X. Yan, K. Yang, C. Hu, et al., Pollution source positioning in a water supply network based on expensive optimization, Desalin Water Treat, 110 (2018), 308-318. |
[6] | H. Wang and K. W. Harrison, Improving efficiency of the bayesian approach to water distribution contaminant source characterization with support vector regression, J. Water Res. Pl., 140 (2012), 3-11. |
[7] | X. Yan, J. Zhao, C. Hu, et al., Multimodal optimization problem in contamination source determination of water supply networks, Swarm Evol. Comput., 2017. |
[8] | W. Gong, Y. Wang, Z. Cai, et al., Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution, IEEE T. Syst. Man Cy., (2018), 1-15. |
[9] | A. Afshar and M. A. Marino, Multiobjective consequent management of a contaminated network under pressure-deficient conditions, J. Am. Water Works. Ass., 106 2014. |
[10] | T. Ren, S. Li, X. Zhang, et al., Maximum and minimum solutions for a nonlocal p-laplacian fractional differential system from eco-economical processes, Bound Value Probl., 2017 (2017), 118. |
[11] | T. Ren, X. H. Lu, Z. Z. Bao, et al., The iterative scheme and the convergence analysis of unique solution for a singular fractional differential equation from the eco-economic complex system's co-evolution process, Complexity, 2019. |
[12] | A. Preis and A. Ostfeld, Multiobjective contaminant response modeling for water distribution systems security, J. Hydroinform., 10 (2008), 267-274. |
[13] | A. Afshar and E. Najafi, Consequence management of chemical intrusion in water distribution networks under inexact scenarios, J. Hydroinform., 16 (2014), 178-188. |
[14] | D. Silver, A. Huang, C. J. Maddison, et al., Mastering the game of go with deep neural networks and tree search, Nature, 529 (2016), 484. |
[15] | B. G. Kim, Y. Zhang, M. van der Schaar, et al., Dynamic pricing and energy consumption scheduling with reinforcement learning, IEEE T. Smart Grid, 7 (2016), 2187-2198. |
[16] | M. H. Moghadam and S. M. Babamir, Makespan reduction for dynamic workloads in cluster-based data grids using reinforcement-learning based scheduling, J. Comput. Sci-neth., 2017. |
[17] | S. Rathi and R. Gupta, A critical review of sensor location methods for contamination detection in water distribution networks, Water Qual. Res. J. Can., 50 (2015), 95-108. |
[18] | T. P. Lambrou, C. C. Anastasiou, C. G. Panayiotou, et al., A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems, IEEE Sens. J., 14 (2014), 2765-2772. |
[19] | D. Zeng, L. Gu, L. Lian, et al., On cost-efficient sensor placement for contaminant detection in water distribution systems, IEEE T. Ind. Inform., (2016), 1-1. |
[20] | L. Perelman and A. Ostfeld, Operation of remote mobile sensors for security of drinking water distribution systems, Water Res., 47 (2013), 4217-4226. |
[21] | M. R. Bazargan-Lari, An evidential reasoning approach to optimal monitoring of drinking water distribution systems for detecting deliberate contamination events, J. Clean Prod., 78 (2014), 1-14. |
[22] | A. Poulin, A. Mailhot, P. Grondin, et al., Optimization of operational response to contamination in water networks, in WDSA 2006, (2008), 1-15. |
[23] | A. Poulin, A. Mailhot, N. Periche, et al., "Planning unidirectional flushing operations as a response to drinking water distribution system contamination," J. Water Res Pl., 136 (2010), 647-657. |
[24] | M. Gavanelli, M. Nonato, A. Peano, et al., Genetic algorithms for scheduling devices operation in a water distribution system in response to contamination events, 7245 (2012), 124-135. |
[25] | A. Rasekh and K. Brumbelow, Water as warning medium: Food-grade dye injection for drinking water contamination emergency response, J. Water Res. Pl., 140 (2014), 12-21. |
[26] | A. Rasekh, M. E. Shafiee, E. Zechman, et al., Sociotechnical risk assessment for water distribution system contamination threats, J. Hydroinform, 16 (2014), 531-549. |
[27] | A. Rasekh and K. Brumbelow, Drinking water distribution systems contamination management to reduce public health impacts and system service interruptions, Environ. Model Softw., 51 (2014), 12-25. |
[28] | M. Knowles, D. Baglee and S. Wermter, Reinforcement learning for scheduling of maintenance, in Research and Development in Intelligent Systems XXVII. Springer, (2011), 409-422. |
[29] | K. L. A. Yau, K. H. Kwong and C. Shen, Reinforcement learning models for scheduling in wireless networks, Front Comput. Sci-Chi., 7 (2013), 754-766. |
[30] | L. A. Rossman et al., Epanet 2: users manual, 2000. |
[31] | R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, in Neural Information Processing Systems, 1999. |
[32] | V. Mnih, K. Kavukcuoglu, D. Silver, et al., Playing atari with deep reinforcement learning, ArXiv, abs/1312.5602, 2013. |
[33] | Y. Xuesong, S. Jie, and H. Chengyu, Research on contaminant sources identification of uncertainty water demand using genetic algorithm, Cluster Comput., 20, (2017), 1007-1016. |
1. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830 | |
2. | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad, (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates, 2021, 6, 2473-6988, 4677, 10.3934/math.2021275 | |
3. | Ifra Bashir Sial, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, Thanin Sitthiwirattham, On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions, 2022, 11, 2075-1680, 132, 10.3390/axioms11030132 | |
4. | Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709 | |
5. | Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019 | |
6. | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392 | |
7. | Churong Chen, Discrete Caputo Delta Fractional Economic Cobweb Models, 2023, 22, 1575-5460, 10.1007/s12346-022-00708-5 | |
8. | Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836 | |
9. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953 | |
10. | Loredana Ciurdariu, Eugenia Grecu, Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions, 2024, 13, 2075-1680, 413, 10.3390/axioms13060413 | |
11. | Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis, Asma Hanif, Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications, 2024, 13, 2075-1680, 114, 10.3390/axioms13020114 | |
12. | Muhammad Aamir Ali, Christopher S. Goodrich, On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus, 2024, 44, 0174-4747, 35, 10.1515/anly-2023-0019 | |
13. | Thanin Sitthiwirattham, Ifra Sial, Muhammad Ali, Hüseyin Budak, Jiraporn Reunsumrit, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, 2023, 37, 0354-5180, 5553, 10.2298/FIL2317553S | |
14. | Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331 | |
15. | Bahtiyar Bayraktar, Péter Kórus, Juan Eduardo Nápoles Valdés, Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators, 2023, 12, 2075-1680, 517, 10.3390/axioms12060517 | |
16. | THANIN SITTHIWIRATTHAM, MIGUEL VIVAS-CORTEZ, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, İBRAHIM AVCI, A STUDY OF FRACTIONAL HERMITE–HADAMARD–MERCER INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS, 2024, 32, 0218-348X, 10.1142/S0218348X24400164 | |
17. | Muhammad Ali, Hüseyin Budak, Elisabeth Köbis, Some new and general versions of q-Hermite-Hadamard-Mercer inequalities, 2023, 37, 0354-5180, 4531, 10.2298/FIL2314531A |