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Abstract: Public water supply facilities are vulnerable to intentional intrusion. In particular, Water
Distribution Network (WDN) has become one of the most important public facilities that are prone
to be attacked because of its wide coverage and constant open operation. In recent years, water con-
tamination incidents happen frequently, causing serious losses and impacts to the society. Various
measures have been taken to tackle this issue. Pollution or contamination isolation by localizing the
contamination via sensors and scheduling certain valves have been regarded as one of the most promis-
ing solutions. The main challenge is how to schedule water valves to effectively isolate contamination
and reduce the residual concentration of contaminants in WDN. In this paper, we are motivated to pro-
pose a reinforcement learning based method for valve real time scheduling by treating the sensing data
from the sensors as state, and the valve scheduling as action, thus we can learn scheduling policy from
uncertain contamination events without precise characterization of contamination source. Simulation
results show that our proposed algorithm can effectively isolate the contamination and reduce the risk
exclosure to the customers.

Keywords: reinforcement learning; scheduling problem; water distribution network; water
contamination incident

1. Introduction

Since the terrorist attacks in the United States at September 11, 2001, great efforts have been made
worldwide to improve the safety of public health and people’s awareness of security threats. Many
countries are increasingly concerned about water security, especially the threat of malicious terrorist
attacks on water supplies. Water Distribution Network (WDN) has become one of the most important
public facilities that are prone to accidents or deliberate pollution invasion due to its wide coverage and
continuous open state [1]. Several large scale incidents of sudden drinking water pollution in recent
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years have warned us that these contamination incidents may lead to social health problems and have
adverse political effects [2]. Therefore, drinking water early warning system is necessary to reduce the
impact of sudden pollution incident.

In a typical drinking water warning system, a large number of water quality monitoring sensors
are deployed to detect contaminant [3, 4, 5]. Based on the sensing data, it is essential to identify the
contaminant source, i.e., contaminant source identification [6, 7, 8]. Last, and also the most important,
it is significant to take some actions to isolate the contaminant according to the emergency response
policy [9].

Upon the water pollution, one intuitive way to ensure the safety of people is to cut the supply of
water in the whole WDN. However, this will lead to serious social and economic losses, or may even
cause social panic. An alternative way is to well schedule the valves and hydrants in the WDN to
ensure the contaminants are isolated, without incurring too much negative impact. By scheduling the
valves, the contaminant water can be controlled within certain range; Furthermore, by scheduling the
hydrants, it is able to discharge the contaminant in the WDN so as to recover the normal water supply
as soon as possible. In this case, the problem is on how to schedule the valves and hydrants based on
the water quality monitoring sensing data.

For example, a simple typical water distribution network is shown in Figure 1. When contamination
event occurs, there will be serious contamination diffusion if the valve is not timely and reasonably
scheduled, as shown in the Figure 1 (a). However, when a reasonable scheduling is performed, the
contamination situation can be controlled as shown in Figure 1 (b).
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Figure 1. (a) Contaminant spreads without any response action; (b) Contaminant spreads
with response actions.

The scheduling of valves and hydrants for contaminant isolation actually has been widely studied.
Various optimization algorithms have been applied [10, 11], such as genetic algorithm [12] and ant
colony algorithm [13]. These heuristic algorithms have the advantages of easy implementation, but
they suffer from complex parameter adjustment, hindering their practical adoption. Most importantly,
these heuristic algorithms require precise contamination source information for subsequent scheduling
computation, which means that the timeliness of the scheduling is ignored due to the calculation of
precise location of contamination source. Fortunately, we notice that the success of AlphaGo [14] has
raised many interests in both academic and industry. The core of AlphaGo is deep reinforcement learn-
ing, which has been widely applied in vast domains, e.g., intelligent transportation control, computer
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game, robotics control, etc [15, 16]. By studying these applications, we find that deep reinforcement
learning is quite appropriate to be applied for the real time scheduling of valves and hydrants for con-
taminant isolation in WDN. Therefore, we are motivated to investigate this issue in this paper.

The main contributions of this paper are as follows:
We accurately model the valve and hydrant scheduling problem to fit the reinforcement learning

framework. In particular, we treat the sensing data in the WDN as the state, and the valve and hy-
drant scheduling as the action. Compared with traditional optimization algorithm, our method can
model various uncertain contamination scenarios without accurately characterizing the contamination
sources, which obey the timeliness principle of emergency scheduling task. By training the scheduling
agent offline and deploying them online, real time scheduling can be achieved. To our best knowledge,
this is the first work that applies reinforcement learning in valve and hydrant scheduling.

We use open source simulator EPANET to evaluate the efficiency of our algorithm. Extensive
simulation results show that our reinforcement learning based method can well schedule the valve and
hydrant to effectively isolate the contaminant.

The rest of this paper is structured as follows. Section 2 presents some related work on the schedul-
ing of valves and hydrants in WDN, as well as some preliminaries on reinforcement learning and its
applications. Then, Section 3 elaborates and formulates the valves and hydrants scheduling problem.
Section 4 gives our reinforcement learning based scheduling algorithm and Section 5 shows simulation
based performance evaluation results. Finally, Section 6 concludes the paper.

2. Related work

2.1. Sensor deployment and contaminant source identification

The scientific community has devoted a great deal of effort to developing sensor-based contaminant
warning systems (CWS) that deploy water quality monitoring sensors in WDN to identify contaminant
sources [4, 17]. Most of the previous studies focused on improving the ability of CWS to quickly iden-
tify the contaminant source and to increase the reliability of the monitoring system. For example, some
new forms of sensors are invented and applied in the WDN [18], especially the mobile sensors, which
can flow in the water pipes and move very close to leakage point. As a result, it is reported that the
detection accuracy is higher than the traditional static sensors [19]. Once the water quality monitoring
sensors detect contamination, we shall identify the contaminant source to derive where, when and how
much the contaminant are inject into the WDN. Afterwards, emergency response mechanisms will give
a series operations on valves and hydrants to evacuate the contaminated water [20]. Once an effective
response policy is adopted, the impact of pollution can be minimized and the water supply system can
be recovered to normal running status [21].

2.2. Optimization for valve and hydrant scheduling

By literature survey, we notice that many studies formulate the contaminant source identification
and scheduling problems as single objective or multi-objective optimization problems. Regarding the
emergency response problem to contamination events in WDNs, the basic optimization goal is to min-
imize the impact resulting from the contamination. For example, Poulin et al. [22] proposed an emer-
gency response strategy to ensure drinking water safety in which the operational sequence of valves
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and hydrants was determined with the objective of minimizing the amount of contaminated water con-
sumed. Later on, they further [23] considered the combination of valves and hydrants, and proposed
a new operation policy of unidirectional flushing for the contaminated water. In 2012, Gavanelli et al.
[24] optimized the scheduling of a set of tasks by genetic algorithm so that the consumed volume of the
contaminated water is minimized. In addition to considering the operation of valves and hydrants, there
are also some other actions that can be used to minimize the impact on public health. For example, the
use of dye injection can act as an alert mechanism, which can discourage the public consumption of
potentially contaminated water [25].

Although much of the research in this field considered the scheduling of valves and hydrants as a
single objective optimization problem, it inherently involves multiple objectives such as system design
costs, operation costs, water quality, and others. Accordingly, some multi-objective optimization algo-
rithms have been proposed in some recent studies [9, 12]. Rasekh et al. [26] proposed a simulation
framework via social risk assessment to simulate the dynamics of pollution events by assuming relaxed
static, homologous and static responses in traditional engineering methods. They established a multi-
objective model and used genetic algorithm approach to trade off the consequences and the probability
of occurrence. Afshar et al. [13] propose an ant colony optimization based algorithm, coupled with the
WDN simulator EPANET, to minimize the maximum regret and the total regret by selecting the best
combination of hydrants and valves. Rasekh et al. [27] propose a contaminant response mechanism
where the disposals are optimized using evolutionary algorithms to achieve public health protection
with minimum service interruption.

We notice that the optimization algorithms can achieve good performance under deterministic en-
vironment. Otherwise, it is hard to achieve better results in dynamic or uncertain environment. For
example, it challenges to design optimization algorithm to schedule valves and hydrants when water
demand varies which thus leads to the change of flow speed and direction. In some extreme cases,
we even cannot identify the location of contaminant source by little sensor data. In these situations,
reinforcement learning can be used to schedule the valves and hydrants by reading the information
from the sensors.

2.3. Reinforcement learning in scheduling problem

Reinforcement learning has been widely applied to scheduling problems in many other disciplines.
For example, Knowles et al [28] use reinforcement learning to improve long term reward for a mul-
tistage decision based on feedback given either during or at the end of a sequence of actions. Yau et
al [29] present an extensive review on the application of the traditional and enhanced reinforcement
learning to various types of scheduling schemes, namely packet, sleep-wake and task schedulers, in
wireless networks, as well as the advantages and performance enhancements brought about by rein-
forcement learning. In order to overcome the challenges of implementing dynamic pricing and energy
consumption scheduling, Kim et al. [15] propose a reinforcement learning algorithm that allows each
of the service provider and the customers to learn its strategy without a priori information about the
micro-grid in electricity grid. Moghadam et al. [16] propose a two-phase reinforcement learning-based
algorithm for data-intensive tasks scheduling in cluster-based data grids. These aforementioned studies
show that reinforcement learning is an effective alternative for solving scheduling problem. Although
with great success in different domains, none of existing studies applies reinforcement learning to
solve the contaminant isolation problem via the scheduling of valves and hydrants. We are motivated
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to address this issue in this paper.

3. System architecture and formulation

3.1. System architecture

To ensure the safety of consumers, it is crucial to monitor water quality and operate the valves or
the hydrants. In recent years, the SCADA (Supervisory Control And Data Acquisition) system has
been widely deployed for water distribution to facilitate water management. Smart water management
mainly includes two functions, one is to monitor portable water, the other is aiming to monitor the
water supply distribution, which includes control water flow, speed, rate and tubes conditions.

In a smart water distribution management system, the components includes pipes, valves, reservoirs
and clean water pumping stations. The sensors are deployed at any nodes to collect monitoring data
of these component. Figure 2 shows a general water distribution architecture , which consists of three
layers which are WSN (Wireless Sensor Network) layer, IoT Layer and Cloud layer.

PLC

Raw water intake

treatment

Valve

PLC

Valve

User
Hydrant Sensor

Base Station

GPRS

GPRS

WSN Layer

IOT Layer

Cloud Layer

User applications

Figure 2. A typical architecture of Water distribution management.

In the WSN layer, sensors are deployed to measure the contaminant concentration and flow data.
These continuous level sensors transmit data through a wireless network to a base station. Then, the
base station sends the data to the cloud by the Ethernet connection. Programable Logical Controller
(PLC) is used to open or close electric valves, thus change the flow direction in WDS.
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IoT layer mainly provides WDS with the connectivity which allow sensors and valves to connect
to cloud layer. As a bridge between WSN Layer and Cloud Layer, the IoT layer permits the control
between valves and PLC, also send the data captured by sensors to cloud layers.

In the cloud layer, user can be aware of water quality and avoid accidental contamination. The
authority can make a good decision directly by intelligence computation when sudden water incidents
happen.

3.2. System formulation

Water distribution systems, which consist of thousands of pipes, junctions and hydro-valves, may
be of loop or branch network topologies, or a combination of both. They are often modelled as a graph
G = (V, E), where vertices in V represent junctions, tanks, hydrants or other sources, and edges in E
represent pipes and valves. The flow of drinking water depends on demand and pumping capacity, both
of which may vary frequently.

There are H hydrants, N valves and M sensors in WDS. Once any contaminant event occurs, sensors
may take an alarm when the contaminated water pass by. We need to give an optimal scheduling policy
π of hydrants and valves at a period T , thus to maximize disposal of contaminated water as soon as
possible, so the performance index can be formulated as Eq (3.1):

F = max
T∑

t=1

H∑
h=1

Dh(π(st)). (3.1)

Here, Dh(π) is the disposal of h-th hydrant under policy π and π(st) is the scheduling policy of hydrants
and valves for state s at time t. The disposal D can be simulated by a open source software named
EPANET [30]. st is a state tensor of sensor readings which can be represented by

{e1, e2, . . . , eM} (3.2)

Here, em is a continuous value acquired from sensor m, because real value reading sensors which can
get more information of contamination event is used in our algorithm rather than discrete value reading
sensors.

Policy π is a function of state s, and its value is an action a for a certain state st that can be defined
as a tensor:

a = {v1, v2, . . . , vN , h1, h2, . . . , hH} (3.3)

where v, h ∈ {0, 1} is the operation for valve and hydrant respectively in WDN. The action a for state s
chosen from scheduling policy π is executed to open or close valves and hydrants.

We can know from Eq (3.3) that there are 2N+H possible actions. If we assume that the step between
two actions in scheduling period T is stp, the time complexity of enumeration method to exhaust the
optimal solution of policy π is O(2(N+H)∗T/stp). It’s challenging to search the optimal solution in a large
WDN with many valves and hydrant.

For the ease of reading, Table 1 summarizes the abbreviations of above technical terms.
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Table 1. Notations.

G A graph is modeled by a WDN
V V represents junctions, tanks, hydrants or other sources
E E represents pipes and valves
H Number of hydrant
N Number of valve
M Number of sensor
π Scheduling policy function
T Scheduling period
s State acquired from sensors in WDN
D Disposal of contaminant
a Action, a tensor composed of valve operations and hy-

drant operations

4. Deep reinforcement learning based valve and hydrant scheduling algorithm

4.1. Framework of scheduling algorithm

When a water quality sensor rise an alarm, the control center need to develop an optimal scheduling
of valves and hydrants to minimize the impact on the consumers in WDN. Scheduling of hydrant and
valve can be carried out according to the monitoring data which collected from sensors. By scheduling
valves in an appropriate sequence, we intend to isolate and evacuate contaminated water. Valve can be
closed or open, resulting in drinking water-break partly, or limiting movement of contaminated water in
WDN. Open hydrant is able to flush contaminants out of WDN. The aim of reducing the concentration
of contaminants in WDN can be achieved by scheduling the valves to lead the contaminated water
body to the open hydrant. The framework of scheduling algorithm is shown in the Figure 3.

Real-time monitoring 

of contamination 

concentration

No

Yes

Scheduling of

Valves & Hydrants

Water Distribution 

Network
A Trained Scheduling 

Control Center

Figure 3. Diagram of scheduling problem.

Control center chooses an action from optimal scheduling policy which is pre-trained by deep learn-
ing algorithm proposed in this paper according to the real-time monitoring data collected by water
quality sensors in WDN, and applies action to hydrants and valves. Control center will repeat the
operation until the reading of water quality sensor shows that it is at the safe level.
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4.2. Markov decision processes

Reinforcement learning, distinguishing from supervised learning and unsupervised learning, fo-
cuses on the interaction between the reinforcement learning agent and the environment. Agent, as the
core of reinforcement learning, obtains the optimal policy by keep learning through trial and error like
humans in the different environments to pursue the optimal action, rather than directly be told what
action should be done [31]. The principle of reinforcement learning is to learn how to maximize the
long-term rewards through a sequence of trial actions. The challenging problem is that any action for
a state not only affects the reward of the current state, but also the next state and the states thereafter in
the long run. Therefore, it is essential to carefully choose the action for one state with the consideration
of future possible states and rewards. Considering that the reading of the sensor is continuous value,
we apply deep reinforcement learning [32] to give an optimal scheduling policy.

We first represent the problem of scheduling valves and hydrants as a Markov Decision Processes
(MDP), which is defined as a tuple (s, a, p, r). In the valves and hydrants scheduling problem, states s,
actions a, transition probabilities p and rewards r are defined as follows:

• s: a tensor which is made up of sensor readings.
• a: a tensor which is made up of the operation of valves and hydrants.
• p: a set of state transition probabilities. In this scheduling problem, the transition probability of

the next state after an action is executed is unknown, so it is a model-free problem.
• r: a reward function: r(s, a) is a real-valued immediate reward for taking action a in state s. The

goal of reinforcement learning is to enable the agent to continuously interact with the environment
to learn an optimal policy, so as to obtain the maximum cumulative reward. We define the mass
of contaminant disposal within the time step after each action taken as the reward value, which
can be obtained by simulator EPANET.

A MDP unfolds over a series of steps. At each step, the agent observes the current state, s, chooses
an action, a, and then receives an immediate reward r(s, a) that depends on the state and action. The
agent begins in the initial state s0, which is assumed to be known. The states transit according to the
distribution p, which is hard to directly obtained, especially when the state dimension is large or the
state value is continuous. Therefore, we rely on deep reinforcement learning to solve the model-free
scheduling problem.

4.3. A customized deep reinforcement learning

We regard the control center in scheduling problem as an agent. The goal of the agent is to interact
with the emulator (EPANET) by selecting actions in a way that maximises the future rewards (mass of
contaminant disposal). We make the standard assumption that future rewards are discounted by a factor
of γ per time-step, and define the future discounted return at time t as Rt =

∑T
t′=t γ

t′−trt′ , where T is
the scheduling period. We define the optimal action-value function Q∗(s, a) as the maximum expected
return achievable by following any strategy, after seeing some sequence s and then taking some action
a, Q∗(s, a) = maxπ E[Rt|st = s, at = a, π], where π is a policy mapping sequences to actions (or
distributions over actions). The optimal action-value function obeys an important identity known as
the Bellman equation. This is based on the following intuition: if the optimal value Q∗(s′, a′) of the
sequence s′ at the next time-step is known for all possible actions a′, then the optimal strategy is to
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select the action a′ maximising the expected value of r + γQ∗(s′, a′),

Q∗(s, a) = Es′∼ε[r + γmax
a′

Q∗(s′, a′)|s, a] (4.1)

It is common to use a function approximator to estimate the action-value function, Q(s,a;θ) ≈ Q∗(s, a).
Here we refer to a neural network function approximator with weights θ as a Q-network. A Q-network
can be trained by minimising a sequence of loss functions Li(θi) that changes at each iteration i,

Li(θi) = Es,a∼ρ(·)[(yi − Q(s, a; θi))2], (4.2)

where yi = Es′∼ε[r + γmaxa′ Q(s′, a′; θi−1)|s, a] is the target for iteration i and ρ(s, a) is a probability
distribution over sequences s and actions a that is generated by an ε-greedy strategy.

We utilize a technique known as experience replay where we store the experiences of agent at each
time-step, et = (st, at, rt, st+1) in a data-set D = {e1, . . . , eN}, pooled over many episodes into a replay
memory. During the inner loop of the algorithm, we apply Q-learning updates, or mini-batch updates,
to samples of experience, e ∼ D, drawn at random from the pool of stored samples. After performing
experience replay, the agent selects and executes an action according to an ε-greedy policy. It should be
noticed that the experience with contamination source not detected is useless, which means we should
not store the experience when the all the readings of sensors below safe threshold. In this case, we
execute nothing as default if none contamination was detected by sensors within scheduling period T .
The customized deep Q-learning algorithm (CDQA), which is used to train a intelligent agent (control
center), is presented in Algorithm 1.

Algorithm 1 The customized deep Q-learning algorithm.
Initialize replay memory D to capacity N;
Initialize action-value function Q network with random weights;
for episode ∈ [1, L] do

Sample a random junction from WDN as a contamination source and generate a contamination
event e;
Observe the initial state s1 according to the event e;
for t ∈ [1,T ] do

With probability ε select a random action at, otherwise select at = maxa Q∗(st, a; θ);
Execute action at in simulator and observe reward rt and next state st+1;
if contaminant concentration in st is not less than safe threshold φ then

Store transition (st, at, rt, st+1) in D;
Sample random mini-batch of transition (s j, a j, r j, s j+1) from D;
Set y j = r j + γmaxa′ Q(s j+1, a′; θ) for non-terminal s j+1, or y j = r j for terminal s j+1;
Perform a gradient descent step on (y j − Q(s j, a j; θ))2;

end if
end for

end for

In practice, our algorithm only stores the last N experience tuples in the replay memory, and samples
uniformly at random from D when performing updates. Our goal is to train an effective and general
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model which is independent of adjustment of the parameters for minimizing the impact of contaminant
event in WDN. In Algorithm 1, the reason why we sample random contamination events from WDN is
to train a general agent which is able to work well in most real contamination events. In other words,
our agents may perform well without having to locate the source of the contamination, which takes a lot
of online time of computation. There are two loops in CDQA, so the time complexity of our algorithm
is O(L ∗T ), where T is scheduling period and L is iterations. As the iterations L increases, the policy π
given by agents trained by CDQA can approach the optimal solution. The performance of CDQA may
depend on a very large L, but our CDQA requires less time complexity than the enumeration method
mentioned in Section 3. Considering the cost of online training is extremely expensive because of
severity the of real contamination events, we train agent offline and test it in water quality simulator
(EPANET).

5. Result and discussion

In order to demonstrate the ability of the agent trained by CDQA, two experiments with different
number of contaminant scenario are performed. A real-world WDN [6, 33] as depicted in Figure 4 are
used to simulate in our experiments. The WDN includes 97 nodes, 3 of which are hydrants and 4 of
which are sensors, 119 pipes, 3 of which are valves. Assuming that the maximum scheduling period
T is 24 hours; Scheduling step is 30 minutes. The water demand of each hydrant is 400 gallons per
minute. For each contamination event, contaminant is continuously injected into the node of WDN at
the first hour. Noted valves (blue triangle) and hydrants (black square) are located in the pipelines and
nodes respectively, and sensors (red triangle) are deployed at the nodes.

LAKE

RIVER

SENSOR4

HYDRANT3

VALVE3

HYDRANT2

HYDRANT1

VALVE2

VALVE1
SENSOR1

SENSOR3

SENSOR2

Figure 4. Four sensors (red triangle), three valves (blue triangle), and three hydrants (black
square) are deployed in the WDN of 97 nodes.
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In the following experiments, initial discount factor γ is set to 0.5 and we use the Adam algorithm
with mini-batches of size 32 to train the Q network. The behavior policy during training was ε-greedy
with ε annealed linearly from 1 to 0.1 over the half of training process and 0.1 over the other training
process. We set episode iterations L to 5000 and capacity N of replay memory to 1000. Safe concen-
tration φ is set to 0.2 mg/L. The structure of Q network shown in Table 2 is a classical fully-connected
network where there are 3 hidden layers, 1 input layer and 1 output layer. The input tensor is concate-
nation of action tensor a shown in Eq 3.3 and sensor reading tensor shown in Eq 3.2. The output is
prediction of Q value.Gavanelli2012.

Table 2. Structure of Q network.

Layer Units Activation Function
fully connected 15 ReLU
fully connected 6 ReLU
fully connected 6 ReLU
fully connected 1 Linear

In order to show the performance of agents in each episode, we apply EPANET to simulate two
cases, one is that all the valves and hydrants are open, the other is that all the valves are closed and all
the hydrants are open, then we can compute the mass of contamination disposal VOHO and VCHO,
respectively.

5.1. Single contaminant event happens in WDS

In this experiment, we test three single contaminant events which occur at the node SOURCE1,
SOURCE2 and SOURCE3, respectively. The locations of contamination sources are marked with blue
arrow in Figure 5. It is should be noticed that these test contaminant events are all chosen without
deliberation. Each contamination events is evaluated in every episode of the algorithm.

Figure 6 shows how the mass of contaminants disposal evolves during training on the contamination
events SOURCE1, SOURCE2 and SOURCE3. From the Figure 6, we can see that plots are not stable,
but the algorithm tends to converge at the later stage of training. The most important thing is that the
performance of our CDQA are much better than VOHO and VCHO performed on these three plots.

5.2. Multiple contaminant events happen in WDS

We set the three contamination events used in the last experiment (SOURCE1, SOURCE2, and
SOURCE3) to happen simultaneously as a test. Two new contamination events SOURCE4 and
SOURCE5 are added as another test. Both tests are evaluated in every episode of the algorithm. The
locations of the five contamination sources are marked with arrow in Figure 7.

Figure 8 shows how the mass of contaminants disposal evolves during training on the contamina-
tion events where SOURCE1, SOURCE2 and SOURCE3 occur simultaneously and SOURCE4 and
SOURCE5 occur simultaneously. As shown in the figure, the CDQA still has advantages over VOHO
and VCHO because most of the points on the CDQA are above VOHO and VCHO.

In order to further explore the final performance of the agent trained by CDQA, we recorded the state
within a scheduling period at the last episode of training process of CDQA, which is shown in Table 3.
In this table, the mass of contaminant disposal is 23648 gram and the contamination event is that three
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Figure 5. Locations of contaminant event at the node SOURCE1, SOURCE2 and
SOURCE3.
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Figure 6. Plot (a), (b) and (c) show how the mass of contaminants disposal evolves during
training on the contamination events SOURCE1, SOURCE2 and SOURCE3, respectively.

contamination sources SOURCE1, SOURCE2 and SOURCE3 occur simultaneously. The locations of
sensors, valves and hydrants were shown in Figure 4. The reading of Sensor2 is 264.842 at time 1
and readings of all the sensors are below safe concentration after time 33, which determine that the
scheduling period with scheduling step 30 minutes of this contamination event is 16 hours. Scheduled
by our agent, the contaminant concentration drops from 264.842 (reading of Sensor2) to 0.201 (reading
of Sensor4). Table 3 has shown that hydrants are open in most situations that the readings of sensors
are greater than the safe concentration threshold, which is consistent with common sense, because we
always expect to discharge as much contaminants as possible, which indirectly shows that our method
is feasible and effective.

In each episode of CDQA of training process, we use contamination scenes of a single source, but
the experiment show that we can also get a desired result in multiple source scenes, which indicates that
agent trained by CDQA algorithm have certain generalization for other contamination scenes without
sampled in algorithm. In other words, we obtain a general agent which can solve the scheduling
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Table 3. State within a scheduling period at the last episode of training process of CDQA. 0
or 1 means open or closed for a valve respectively, while 0 or 1 means closed or open for a
hydrant respectively.

Time Sensor1 Sensor2 Sensor3 Sensor4 Valve1 Valve2 Valve3 Hydrant1 Hydrant2 Hydrant3

1 0 264.842 0 0 0 0 0 0 0 0

2 0 64.093 0 0 0 0 1 0 1 0

3 0 21.283 0 0 1 0 0 1 1 0

4 0 197.593 73.643 0 1 0 0 1 1 0

5 0 57.586 2.113 0 0 0 1 1 1 1

6 0 99.784 129.751 3.506 1 0 0 1 1 0

7 0 13.664 1.488 2.045 0 0 1 1 0 0

8 0 0 190.991 92.851 1 0 0 1 1 1

9 0 0 83.131 131.996 1 0 0 1 1 1

10 0 0 2.717 83.362 0 0 1 1 0 0

11 0 0 0 90.745 0 1 0 1 0 1

12 0 27.993 0 90.888 0 1 0 1 0 0

13 0 47.11 0 69.01 0 0 1 1 0 1

14 0 7.576 0 60.77 0 0 0 0 1 1

15 0 56.247 0 53.248 1 0 0 0 0 1

16 0.251 4.562 36.005 13.280 1 0 0 1 1 1

17 0 22.855 36.492 7.804 1 0 0 1 1 1

18 0 19.992 37.552 1.577 1 0 0 1 1 1

19 0 0 38.871 0 1 0 0 1 1 1

20 0 9.321 18.865 21.84 1 0 0 1 1 1

21 0 15.722 25.558 43.041 1 0 0 1 1 1

22 0 12.69 1.896 22.235 0 0 0 1 0 0

23 0 5.269 13.398 27.858 1 1 1 1 0 1

24 0 0 10.096 5.447 1 1 0 1 1 1

25 0 0 15.722 4.598 1 1 0 1 1 1

26 0 0 5.653 3.12 1 1 0 1 1 1

27 0 0 0 0.234 1 1 0 1 1 1

28 0 0 0 0.234 1 1 0 1 1 1

29 0 0 0 0.219 1 1 0 1 1 1

30 0 0 0 0.216 1 1 0 1 1 1

31 0 0 0 0.212 1 1 0 1 1 1

32 0 0 0 0.208 1 1 0 1 1 1

33 0 0 0 0.201 1 1 0 1 1 1
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Figure 7. The locations of contamination sources SOURCE1, SOURCE2, and SOURCE3
in the first test are marked with blue arrow and SOURCE4 and SOURCE5 in the second test
are marked with red arrow.
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Figure 8. The plot (a) shows the variation of the mass of contaminants disposal during
training process when contamination events SOURCE1, SOURCE2 and SOURCE3 occur
simultaneously. The plot (b) shows the variation of the mass of contaminants disposal when
SOURCE4 and SOURCE5 occur simultaneously.

problem of uncertain contaminant event. Moreover, the trained agent receive the real time state and
give a action instantly for scheduling of valves and hydrants, which saves lots of expensive computing
time after contaminant event occurs.

6. Conclusion

In this paper, we investigate the problem of valve and hydrant scheduling for contaminant water
evacuation and water supply recovery in WDNs. We first give a comprehensive survey on existing
solutions to this problem and notice that all previous studies need to precisely locate the contamination
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source before scheduling and then cost some time to search scheduling strategy. We therefore are
motivated to propose a customized deep Q-learning based algorithm, with well design of the state,
action and reward, to address this issue. This is the first time that deep reinforcement learning has
been used to solve such problems as a real time scheduling problem. To evaluate the performance
of our algorithm, we adopt EPANET to simulate various contaminant injection incidents in a typical
WDN. The experiment results show that our algorithm can not only achieve good experimental results
in single contamination source events, but also perform well in multiple contamination source events.
Our work proves the feasibility and efficiency of applying deep reinforcement learning for valve and
hydrant scheduling for contaminant water evacuation in WDNs.
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