Research article Special Issues

A numerical approach to approximate the solution of a quasilinear singularly perturbed parabolic convection diffusion problem having a non-smooth source term

  • The objective of the present paper is to solve a one-dimensional quasilinear parabolic singularly perturbed problem with a discontinuous source term. Due to the presence of such a discontinuity, an interior layer exists at the location of the discontinuity. The problem is solved by discretizing the spatial variable on a piecewise uniform Shishkin mesh using the standard upwind approach, while the backward Euler scheme is employed on a uniform mesh to discretize the time variable. The method is ε-uniformly convergent, providing first-order convergence in the time domain and almost first-order convergence in the spatial variable. To validate the theoretical findings, the scheme was tested by numerically solving two examples.

    Citation: Ruby, Vembu Shanthi, Higinio Ramos. A numerical approach to approximate the solution of a quasilinear singularly perturbed parabolic convection diffusion problem having a non-smooth source term[J]. AIMS Mathematics, 2025, 10(3): 6827-6852. doi: 10.3934/math.2025313

    Related Papers:

    [1] M. Chandru, T. Prabha, V. Shanthi, H. Ramos . An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term. AIMS Mathematics, 2024, 9(9): 24998-25027. doi: 10.3934/math.20241219
    [2] Şuayip Toprakseven, Seza Dinibutun . Error estimations of a weak Galerkin finite element method for a linear system of $ \ell\geq 2 $ coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms. AIMS Mathematics, 2023, 8(7): 15427-15465. doi: 10.3934/math.2023788
    [3] Essam R. El-Zahar, Ghaliah F. Al-Boqami, Haifa S. Al-Juaydi . Piecewise approximate analytical solutions of high-order reaction-diffusion singular perturbation problems with boundary and interior layers. AIMS Mathematics, 2024, 9(6): 15671-15698. doi: 10.3934/math.2024756
    [4] V. Raja, E. Sekar, S. Shanmuga Priya, B. Unyong . Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition. AIMS Mathematics, 2023, 8(7): 16691-16707. doi: 10.3934/math.2023853
    [5] Ram Shiromani, Carmelo Clavero . An efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, part Ⅱ. AIMS Mathematics, 2024, 9(12): 35570-35598. doi: 10.3934/math.20241688
    [6] Nien-Tsu Hu, Sekar Elango, Chin-Sheng Chen, Murugesan Manigandan . Computational methods for singularly perturbed differential equations with advanced argument of convection-diffusion type. AIMS Mathematics, 2024, 9(8): 22547-22564. doi: 10.3934/math.20241097
    [7] Jagbir Kaur, Vivek Sangwan . Stability estimates for singularly perturbed Fisher's equation using element-free Galerkin algorithm. AIMS Mathematics, 2022, 7(10): 19105-19125. doi: 10.3934/math.20221049
    [8] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
    [9] Cagnur Corekli . The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375
    [10] Rubayyi T. Alqahtani, Jean C. Ntonga, Eric Ngondiep . Stability analysis and convergence rate of a two-step predictor-corrector approach for shallow water equations with source terms. AIMS Mathematics, 2023, 8(4): 9265-9289. doi: 10.3934/math.2023465
  • The objective of the present paper is to solve a one-dimensional quasilinear parabolic singularly perturbed problem with a discontinuous source term. Due to the presence of such a discontinuity, an interior layer exists at the location of the discontinuity. The problem is solved by discretizing the spatial variable on a piecewise uniform Shishkin mesh using the standard upwind approach, while the backward Euler scheme is employed on a uniform mesh to discretize the time variable. The method is ε-uniformly convergent, providing first-order convergence in the time domain and almost first-order convergence in the spatial variable. To validate the theoretical findings, the scheme was tested by numerically solving two examples.



    This work focuses on a quasilinear singularly perturbed convection diffusion parabolic initial-boundary value problem, where the source term exhibits a spatial discontinuity. The nonlinear convection coefficient, which characterizes the problem as quasilinear, is the novel aspect of the paper. Here, the source term has a jump discontinuity in space resulting in a weak interior layer appearing near the discontinuity, in addition to the presence of a boundary layer. The aim of this study is to propose a robust ε-uniform method, achieved by discretizing the spatial variable using the standard upwind scheme on a piecewise Shishkin mesh and the temporal variable using the backward Euler scheme on a uniform mesh. The choice of the standard upwind scheme is motivated by its computational efficiency and simplicity, making it a suitable baseline solution for future comparisons with more advanced techniques. Problems of this type can be found in [1]. For studies on singular perturbation, one can refer to [2,3,4,5], in which various numerical and asymptotic methods are discussed. Regarding singularly perturbed problems with discontinuous terms, among all existing studies in the literature, we will refer only to a few related to our problem. The problem in [6] is time independent and has a strong interior layer because of the discontinuity in the source term and the convection coefficient. The problem was solved using the standard upwind scheme. In [7], a quasilinear convection-diffusion problem with discontinuous data resulting in strong interior layers was considered. Recently, a semilinear reaction-diffusion parabolic system with a discontinuous source term was studied in [8], while a system of quasilinear convection-diffusion problems with discontinuities in both the source term and the convection coefficient was investigated in [9]. Singularly perturbed problems occur in numerous scientific and engineering fields, including fluid dynamics [10,11], chemical kinetics, population dynamics, control theory [12], and semiconductor modeling [13,14].

    Model problem

    Let us first introduce some important notations:

    Ds=(0,1),ˉDs=[0,1],ζDs,Ds=(0,ζ),D+s=(ζ,1),Dt=(0,T],D=Ds×Dt,ˉD=ˉDs×Dt,D=Ds×Dt,D+=D+s×Dt,D=ˉDD.

    A function u(s,t) is said to be Hölder continuous of order λ on Ω,withλ(0,1], if and only if uC0(Ω) and

    sup(s1,t1),(s2,t2)Ω|u(s1,t1)u(s2,t2)|((s1s2)2+|t1t2|)λ/2

    is finite. This is denoted as uCλ(Ω) (for more details, one can refer to [15]). For every integer n0,

    uCn+λ(Ω)ifk+musktmCλ(Ω),0k+2m+n.

    Now, consider the following quasilinear singularly perturbed parabolic initial-boundary value problem where zC1+λ(D)C2+λ(DD+):

    Lzε2zs2(s,t)+p(s,z(s,t))zs(s,t)q(s)z(s,t)r(s)zt(s,t)=f(s,t),(s,t)DD+, (1.1)

    subject to the boundary and initial conditions

    z(0,t)=zl(t),tDt, (1.2)
    z(1,t)=zr(t),tDt, (1.3)
    z(s,0)=z0(s),sDs. (1.4)

    It is assumed that the source term f(s,t)C2+λ(DD+), the convection coefficient p(s,z)C2+λ(ˉD), and the coefficients q(s), r(s)C4+λˉDs are smooth functions in their respective domains. The perturbation parameter is assumed to be sufficiently small, such that 0<ε<<1. Furthermore, it is assumed that

    {p(s,z)α>0,onˉD,q(s)β>0,r(s)>0onˉDs,|[f](ζ,t)|C, (1.5)

    where s=ζ is the line of discontinuity, and the source term has a jump discontinuity along s=ζ. A weak interior layer appears on the right side of the discontinuity, and there is a boundary layer at s=0. The initial and boundary conditions are assumed to be sufficiently smooth on ˉD and fulfill the compatibility conditions at the two corner points (0,0),(1,0) as follows:

    {z0(0)=zl(0),z0(1)=zr(0), (1.6)

    and

    {ε2z0(0)s2+p(0,z0(0))z0(0)sq(0)z0(0)f(0,0)=r(0)zl(0)t,ε2z0(1)s2+p(1,z0(1))z0(1)sq(1)z0(1)f(1,0)=r(1)zr(0)t. (1.7)

    Similarly, compatibility conditions are assumed to be fulfilled at the transition point (ζ,0). Under these conditions, problem (1.1)–(1.5) has a unique solution zC(1+λ)(D)C(2+λ)(DD+), as explained in [15,16,17].

    This paper is organized as follows: In section 2, some analytical results are presented. Discretizations of the mesh and the solution are given in Section 3. Section 4 deals with error analysis, and in Section 5, two numerical examples are given to illustrate the performance of the proposed method. Finally, a conclusion of the paper is given in Section 6.

    Throughout the paper, C denotes a generic constant that is independent of ε and the mesh parameters N,M. The maximum pointwise norm is used, denoted as wD=max(s,t)D|w(s,t)|. When D=ˉD, we will simply write w, avoiding the subscript.

    In this section, some theoretical results are presented. Although the proofs of the following results are well known in the literature, we include them here for the sake of clarity and completeness.

    Theorem 2.1. (Minimum principle): Let wC0(ˉD)C2(DD+) satisfy

    w(s,t)0onD,[ws](ζ,t)0tDt,Lw(s,t)0for(s,t)DD+.

    Then, w(s,t)0for all(s,t)ˉD.

    Proof. Consider a function ν, such that

    w(s,t)={exp((α1(sζ))/2ε)ν(s,t),s<ζ,exp((α2(sζ))/2ε)ν(s,t),sζ,

    where αα1α2. Let (s,t) be any point at which ν attains its maximum value in D. If ν(s,t)0, then there is nothing to prove. Now, we proceed by contradiction. Consider that ν(s,t)>0, then either (s,t)(DD+) or (s,t)=(ζ,t). If (s,t)(DD+), then

    νs=νt=0,νss<0.

    Hence,

    Lw{exp((α1(sζ))/2ε)(ενss+(pα1)νs(α12ε(pα12)+q)νrνt)<0,sζ,exp((α2(sζ))/2ε)(ενss+(pα2)νs(α22ε(pα22)+q)νrνt)<0,sζ,

    which is a contradiction.

    If (s,t)=(ζ,t), then [ws](ζ,t)=[νs](ζ,t)+α1α22εν(ζ,t)0, which is also a contradiction. This completes the proof.

    Theorem 2.2. Let z be the solution of (1.1)(1.5). Then, it holds:

    zˉDfD(ζ,t)α+maxD|z(s,t)|,

    and

    z(κ)D(ζ,t)Cεκ,1κ3,

    where the suffix (κ) denote the κth derivative of z with respect to s.

    Proof. Consider the following barrier functions

    Ψ±(s,t)=(1s)fαmaxD|z(s,t)|±z(s,t).

    We note that Ψ±C0(ˉD)C2(DD+), and

    Ψ±(s,t)0,onD,[Ψ±s](ζ,t)0,t>0,LΨ±(s,t)0,for(s,t)DD+.

    Consequently, with the help of Theorem 2.1, the required result can be proved. By following a similar procedure as in [3], the bounds of the derivatives can be obtained.

    Decomposition of the solution

    We decompose the solution as the sum of a regular component x and a singular component y as:

    z(s,t)=x(s,t)+y(s,t),

    where the regular component xC0(D) satisfies the following problem

    Lx=f(s,t),(s,t)DD+,x(s,0)=z(s,0),x(0,t)=z(0,t),x(1,t)=z(1,t), (2.1)

    and the singular component yC0(D) satisfies

    Ly=0,(s,t)DD+,y(s,0)=0,y(0,t)=z(0,t)x(0,t),y(1,t)=0. (2.2)

    Furthermore, the regular and singular components satisfy the conditions

    [y](ζ,t)=[x](ζ,t),[ys](ζ,t)=[xs](ζ,t). (2.3)

    The regular component x can be further decomposed as

    x=x0+εx1+ε2x2, (2.4)

    where x0,x1,x2C0(D) and satisfy the following problems, respectively,

    p(s,x0)x0s+q(s)x0r(s)x0t=f(s,t),(s,t)DD+,x0(1,t)=z(1,t),x0(s,0)=z(s,0), (2.5)
    ε2x0s2+p(s,x0+εx1)(x0+εx1)sq(x0+εx1)r(s)(x0+εx1)t=f(s,t),sζ,x1(ζ,t)=x1(1,t)=x1(s,0)=0, (2.6)
    ε2s2(x0+εx1+ε2x2)+p(s,x0+εx1+ε2x2)s(x0+εx1+ε2x2)q(s)(x0+εx1+ε2x2)r(s)t(x0+εx1+ε2x2)=f(s,t), (2.7)
    x2(0,t)=x2(ζ,t)=x2(1,t)=x2(s,0)=0.

    The singular component can be further decomposed as y=y1+y2, where y1C2(D) is the boundary layer function satisfying

    Ly1=0,(s,t)D,y1(0,t)=z(0,t)x(0,t),y1(1,t)=0,y1(s,0)=0, (2.8)

    and y2C0(D) is the weak interior layer function, which is the solution of

    Ly2=0,(s,t)DD+,y2(0,t)=0,y2(1,t)=0,y2(s,0)=0,[y2s](ζ,t)=[xs](ζ,t). (2.9)

    The method of upper and lower solutions will be useful to prove the existence and uniqueness of the regular component. By reversing all the inequalities, we can obtain the corresponding definition of lower solutions. In what follows, the upper and lower solutions will be denoted by Φ and ϕ, respectively.

    Definition 2.3. A function Φ is an upper solution of problem (2.1) if

    LΦf(s,t),(s,t)DD+, (2.10)
    Φ(0,t)z(0,t),Φ(1,t)z(1,t),Φ(s,0)z(s,0). (2.11)

    The solution of (2.1) satisfies Nagumo's condition on DD+ relative to the pair Ψ(s,t)=f+γs,γ:=supϕzΦ|p(s,z(s,t))|. Thus, by using the result from [18, Thm 1.5.1], the existence of the regular component can be ensured by constructing lower and upper solutions. These components satisfy the bounds established in the following results.

    Lemma 2.4. For any integers κ,m satisfying 0κ+m2, the solution x of (2.1) satisfies the following bounds:

    xC,(s,t)DD+,|κ+mxsκtm(s,t)|C(1+ε2κ),(s,t)DD+.

    Proof. Note that x0 and its derivatives are independent of ε, and

    ε2x0s2+p(s,x0+εx1)(x0+εx1)sq(s)(x0+εx1)r(s)(x0+εx1)t=f(s,t)=p(s,x0)x0s+q(s)x0r(s)x0t,x1(0,t)=x1(ζ,t)=x1(1,t)=0,

    which gives

    ε2x0s2+εp(s,x0+εx1)x1s+(p(s,x0+εx1)p(s,x0))x0sεq(s)x1εr(s)x1t=0,ε(2x0s2+p(s,x0+εx1)x1s+x0sp(s,ˆx)xx1q(s)x1r(s)x1t)=0,

    where ˆx(s,t) is such that

    p(s,x0+εx1)p(s,x0)=εp(s,ˆx)xx1.

    Thus, the function x1 satisfies the following problem

    p(s,x0+εx1)x1s+x0sp(s,ˆx)xx1q(s)x1r(s)x1t=2x0s2,x1(1,t)=x0(s,0)=0.

    Hence, |x1|C and |x1s|C. Differentiating the above equation, we can also get the remaining bounds. Now, from Eqs (2.6) and (2.7), we obtain

    ε2s2(x0+εx1+ε2x2)+p(s,x0+εx1+ε2x2)s(x0+εx1+ε2x2)q(s)(x0+εx1+ε2x2)r(s)t(x0+εx1+ε2x2)=f(s,t)=ε2x0s2+p(s,x0+εx1)(x0+εx1)sq(s)(x0+εx1)r(s)(x0+εx1)t.

    Hence, we get

    ε2x2s2+p(s,x0+εx1+ε2x2)x2s+ε2(p(s,x0+εx1+ε2x2)p(s,x0+εx1))(x0+εx1)sq(s)x2r(s)x2t=2x1s2,

    which gives

    ε2x2s2+p(s,x0+εx1+ε2x2)x2s+((x0+εx1)sp(s,˜x)xq(s))x2r(s)x2t=2x1s2,x2(0,t)=x2(ζ,t)=x2(1,t)=x2(s,0)=0.

    where ˜x is given by

    p(s,x0+εx1+ε2x2)p(s,x0+εx1)=ε2p(s,˜x)xx2.

    Hence, we have

    x(κ)2Cεκ.

    Thus, by combining the bound of x0,x1, and x2, the proof is completed.

    Lemma 2.5. For any integers κ,m, the solutions y1 and y2 of problems (2.8) and (2.9), respectively, satisfy the following bounds:

    |κ+my1sκtm(s,t)|Cεκexp(αs/ε),(s,t)D,0κ+m3,|y2(s,t)|Cε,(s,t)DD+,|κ+my2sκtm(s,t)|{Cε1κexp(αs/ε),(s,t)D,Cε1κexp(α(sζ)/ε),(s,t)D+.1κ+m3.

    Proof. To find the bounds of y1, choose C sufficiently large so that

    |y1(s,t)|Cexp(αs/ε),for(s,t)D.

    Since Ly1=0, and

    L(Cexp(αs/ε))=Cexp(αs/ε)[α2ε1αp(s,u)ε1q(s)]Cβexp(αs/ε)Ly1,

    then by the minimum principle [4], we get

    |y1(s,t)|Cexp(αs/ε).

    Now, taking the stretching variable ˜s=s/ε and following a procedure similar to that in [19], we can easily obtain bounds for the derivatives of y1.

    To find the bounds for y2, we choose suitable barrier functions Ψ(s,t)=ψ(s,t)±y2(s,t), where

    ψ(s,t)=Cεα{1,(s,t)D,exp((sζ)α/ε),(s,t)D+.

    Clearly, Ψ(0,t)=ψ(0,t)0,Ψ(1,t)=ψ(1,t)0,Ψ(s,0)=ψ(s,0)0. Also,

    LΨ(s,t)={Cq(s)0,(s,t)D,Cexp((sζ)α/ε)(α+p(s,ψ)+εαq)0,(s,t)D+,

    and [Ψs](ζ,t)=[ψs](ζ,t)±[y2s](ζ,t)0. Hence, Theorem 2.1 implies Ψ(s,t)0, for all (s,t)ˉD, that is,

    ψ(s,t)±y2(s,t)0|y2(s,t)|ψ(s,t)Cεfor(s,t)ˉD.

    Hence, with the help of Theorem 2.1, we arrive at the required result.

    Now, to get the derivative bounds, we follow a similar procedure as in [20]. The result is proven for D and a similar procedure can be adopted for D+. Take η=(sζ)/ε and set ˜D=(0,ζε1)×(0,1]. Additionally, let ˜y2(η,t)=y2(s,t), and similarly define the transformed coefficients ˜p,˜q,˜r. Then, Eq (2.9) becomes

    (˜y2)ηη+˜p(η,˜y2)(˜y2)ηε˜q(η)˜y2ε˜r(η)(˜y2)t=0,on˜D. (2.12)

    For each η(0,ζε1) and each μ>0, let Rη,μ denote the rectangle

    ((ημ,η+μ)×(0,T])˜D,

    and let ˉRη,μ denote the closure of Rη,μ in the (η,t)plane.

    Now, since ˜y2 satisfies (2.9) and (2.12), by [15], for 0κ+2m4,

    maxˉRη,1|DκηDmt˜y2|CmaxˉRη,2|˜y2|. (2.13)

    Using bounds for y2, we have

    |DκηDmt˜y2(η,μ)|Cεexpαη.

    Changing variables, this becomes

    |DκsDmty2(s,t)|Cε1κexp(αs/ε).

    Let us subdivide the domain ˉDs into

    [0,θ1][θ1,ζ][ζ,ζ+θ2][ζ+θ2,1], (3.1)

    where the transition points are defined as

    θ1=min{ζ2,2εαlnN},θ2=min{1ζ2,2εαlnN}. (3.2)

    We will divide each of the four intervals in N/4 subintervals. The mesh points are denoted by

    DNs=DNsDN+s={si:1iN/21}{si:N/2+1iN1}.

    Clearly, ˉDNs={si}Ni=0 where s0=0,sN/2=ζ and sN=1. The mesh width will be

    hi={Hl=4θ1N,i=1,2,...,N/4,hl=4(ζθ1)N,i=N/4+1,N/4+2,...,N/2,Hr=4θ2N,i=N/2+1,N/2+2,...,3N/4,hr=4(1ζθ2)N,i=3N/4+1,3N/4+2,...,N.

    Additionally, define Hi=hi+hi+12.

    The time variable is discretized using a uniform mesh:

    DMt={tj=jTM},j=0,1,2,...,M.

    The piecewise uniform mesh is DN,M=DNs×DMt. Let us also define some useful discrete domains ˉDN,M=ˉDNs×DMt,DN,M =ˉDN,MDN,M,DN,M =DNs×DMt,DN,M+=DN+s×DMt.

    The forward difference D+s and backward difference Ds operators in space and the backward difference operator Dt in time are given by

    D+sZji=Zji+1Zjihi+1,DsZji=ZjiZji1hi,DtZji=ZjiZj1ik.

    A difference operator of second order in space is described as:

    δ2sZji=D+sZjiDsZjiHi.

    Using these operators, we obtain a discretization of problem (1.1)–(1.4) as:

    Z0i=z0(si),fori=1,...,N.{LMNZjiεδ2sZji+pjiD+sZjiqiZjiriDtZji=fji,siDNs,D+sZjN/2=DsZjN/2,Zj0=zl(tj),ZjN=zr(tj),forj=1,2,...,M, (3.3)

    where Zji denotes an approximate value of z(si,tj), pji=p(si,Zji),qi=q(si),ri=r(si),fji=f(si,tj).

    The finite difference operator LMN satisfies the following discrete minimum principle:

    Theorem 3.1. (Discrete minimum principle) Let W be a mesh function defined on the discretized domain ˉDN,M. If W0 on DN,M,LMNWji0 on DN,s and D+sWjN/2DsWjN/20,forj=1,2,...,M, then Wji0 for all (si,tj)ˉDN,M.

    Proof. By following the mehodology in [21], we proceed by contradiction. Let us assume that (sn,tm) is a point where W attains its maximum. If Wmn0, then there is nothing to prove. Now, suppose that Wmn>0. Clearly, n0,N, and hence, either snDN,sDN,+s or n=N/2. First consider the case snDN,sDN,+s. Then, WmnWmn10,Wmn+1Wmn0 and WmnWm1n0. Hence,

    LMNWmn=εδ2sWmn+pm1nD+sWmnqnWmnrnDtWmn=εHn(Wmn+1Wmnhn+1WmnWmn1hn)+pm1nWmn+1Wmnhn+1qnWmnrnWmnWm1nk0,

    which is a contradiction. Now, the only possibility is n=N/2, and we have

    D+sWmN/2DsWmN/2=WmN/2+1WmN/2hN/2+1WmN/2WmN/21hN/20,

    which is again a contradiction. Hence, the proof is completed.

    To get a bound of the nodal error |(Zz)(si,tj)|, we will proceed as follows. First, we define the regular component X and the singular component Y of the discretized solution Z. Later, the nodal errors are considered outside and within the layer using these mesh functions. We assume M=CN throughout the rest of the paper.

    Define the discrete regular component X to be the solution of the following system:

    LMNX=fji,fori,jDN,M,X(0,tj)=x(0,tj),X(ζ,tj)=x(ζ,tj),X(1,tj)=x(1,tj),X(si,0)=x(si,0). (4.1)

    Define the discrete singular components Y to be the solution of the following system:

    LMNY=0,for(si,tj)DN,M,Y(si,0)=0,Y(0,tj)=y(0,tj),Y(1,tj)=y(1,tj),[DsY(ζ,tj)]=[DsX(ζ,tj)],tjDM, (4.2)

    where for any mesh function W, the jump discontinuity along the line s=ζ is represented by:

    [DsW(ζ,tj)]=D+sW(ζ,tj)DsW(ζ,tj).

    The singular component can be further decomposed as Y=Y1+Y2 where Y1 is the boundary layer function satisfying

    LMNY1=0,(si,tj)DN,M,Y1(0,tj)=y(0,tj)x(0,tj),Y1(1,tj)=0,Y1(si,0)=0, (4.3)

    and Y2 is the weak interior layer function, which solves the problem

    LMNY2=0,(si,tj)DN,M,Y2(0,tj)=0,Y2(1,tj)=0,Y2(si,0)=0,[DsY2(ζ,tj)]=[DsX(ζ,tj)][DsY1(ζ,tj)]. (4.4)

    So, the discretized solution can be expressed as

    Z=X+Y=X+Y1+Y2.

    Lemma 4.1. The regular component X of the discrete solution satisfies the following ε-uniform error estimate:

    |X(si,tj)x(si,tj)|{CN1(ζsi),siζ,CN1(1si),siζ,wheretjDMt.

    Proof. Let us first consider the case siζ, we have

    {εδ2s+p(si,X)D+sqiriDt}(Xx)=ε2xs2+p(si,x)xsq(si)xr(si)xt{εδ2s+p(si,X)D+sqiriDt}(x)=ε(2xs2δ2sx)+p(si,X)(xsD+sx)+(p(si,x)p(si,X))xsr(si)(xtDt(x))=ε(2xs2δ2sx)+p(si,X)(xsD+sx)+pz(si,ξji)(xX)xsr(si)(xtDt(x)).

    Introduce the linear difference operator

    LN,MxW:=(εδ2s+p(si,X)D+s+pz(s,ξji)xsr(si)Dt)W,

    where ξji is defined implicitly by

    p(si,x)p(si,X)pz(si,ξji)(xX).

    Note that pz(s,ξji)xsC. Now,

    LN,Mx(Xx)=ε(δ2sxx22s)+p(si,X)(D+sxxs)+pz(si,ξji)xs(Xx)r(si)Dt(Xx).

    Then by using standard local truncation error estimates and by Lemma 2.4, we have

    |LN,Mx(Xx)|(si,tj)ε3(si+1si1)x33s+p(si,X)2(si+1si)x22sCN1.

    Using the barrier functions ψ±(s,t)=CN1(ζsi)±(Xx)(si,tj) and the discrete minimum principle, the proof can be completed in the usual way. A similar procedure can be used for siζ, using a suitable barrier function and Theorem 3.1.

    Lemma 4.2. For (si,tj)DN,M, the boundary layer function Y1 satisfies

    |Y1y1|CN1lnN. (4.5)

    Additionally, for siθ1, it holds that |Y1|CN1.

    Proof. Let us first consider the case sζ. In the case when θ11/4 for the region away from the layer [θ1,ζ], using Lemma 2.5, we have

    |y1(s,t)|Cexp(αs/ε)Cexp(lnN)=CN1.

    Now, consider the following transformation

    Y1=Λ(si,tj)^Y1,

    where |Λ(si,tj)|C so that, for sufficiently large NN0 (N0 is independent of ε) and for sufficiently small εε0 (ε0 is independent N)

    ˆLMNˆY1={εδ2s+ˆpDsˆqˆrDt}ˆY1,ˆpα,ˆqβ,ˆr>0,

    and ^Y1(0,t)=|y1(0,t)|,^Y1(ζ,t)=0. Now, we take

    Λ(si,tj)={ik=1(1+ξ1ε1N1hk)1,k<N/4,(1+ξ1ε1N1hk)N/2N/2k=N/4(1+ξ2hk)1,N/4kN/2,

    where ξ2>ξ1>0 are suitably chosen constants. Let ˜Y1 be the solution of

    {εδ2s+αD+sqiriDt}˜Y1=0,˜Y1(0,t)=|y1(0,t)|,˜Y1(ζ,t)=0.

    Then, using the discrete comparison principle, we have

    |ˆY1|˜Y1CN1.

    Hence,

    |Y1(si,tj)y1(si,tj)|CN1.

    Now, for the layer region [0,θ1], we have

    LMN(Y1y1)=LMNy1Ly1=ε(δ2sy1(y1)ss)+p(s,Z)D+sy1p(s,z)(y1)sq(s)(Y1y1)r(s)(Dty1(y1)t)=ε(δ2sy1(y1)ss)+(p(s,Z)p(s,z))(y1)s+p(s,Z)(D+sy1(y1)s)r(s)(Dty1(y1)t)=ε(δ2sy1(y1)ss)+(p(s,ξji)(Zz))(y1)s+p(s,Z)(D+sy1y1)s)r(s)(Dty1(y1)t).

    Let us define the linear discrete operator

    LN,My1W(εδ2s+p(s,ξi)(y1)s+p(s,Z)D+sr(s)Dt)W,

    where ξji is given implicitly by ps(s,ξji)(Y1y1)p(s,Y1)p(s,y1). Proving that

    p(s,Z)4ε(ps(s,ξji)(y1)s)>0,

    this linear discrete operator satisfies the maximum principle.

    Now, adopting the methodology as in [3], using a suitable barrier function ˉY1, which is the solution of the problem:

    (εδ2s+p(s,ξi)(y1)s+p(s,Z)D+sr(s)Dt)ˉY1=0,(si,tj)D,ˉY1(0,tj)=1,ˉY1(ζ,tj)=0,ˉY1(si,0)=0,

    and a discrete comparison principle, the proof is complete. Similarly, bounds for the case s>ζ can be proved easily.

    Lemma 4.3. The following ε-uniform bound holds:

    |[DsY2(ζ,tj)]|C(1+ε1N1).

    Proof. Since

    [DsY2(ζ,tj)]=[DsX(ζ,tj)][DsY1(ζ,tj)]=(D+sX(ζ,tj)DsX(ζ,tj))(D+sY1(ζ,tj)DsY1(ζ,tj)),

    it is enough to prove the bounds for each term in the right side of the equation. Now,

    DsX(ζ,tj)=Ds(Xx)(ζ,tj)+Dsx(ζ,tj)

    and xsDC, which implies |Dsx(ζ,tj)|C and |Ds(Xx)(ζ,tj)|=|(Xx)(ζhl,tj)/hl|CN1 by Lemma 4.1. Hence,

    [DsX(ζ,tj)]C. (4.6)

    Now, when siζ,

    D+sX(si,tj)=D+s(Xx)(si,tj)+D+sx(si,tj),

    and xsD+C.

    Also by applying Lemma 3.14 of [3], for siζ, we get

    ε|D+s(Xx)(si,tj)|CN1, (4.7)

    which gives

    D+sX(si,tj)CN1/ε+C=C(1+ε1N1). (4.8)

    Now, to get the bounds for Y1, note that Y1(si,tj)CN1,siθ1, and hence

    |DsY1(ζ,tj)|C. (4.9)

    Finally,

    D+sY1(ζ,tj)=D+s(Y1y1)(ζ,tj)+D+sy1(ζ,tj),andy1sD+Cε1exp(αζ/ε)C.

    Now, by following the arguments of Lemma 3.14 from [3] and using the bounds of the derivatives of y1, one can get

    D+s(Y1y1)(si,tj)C,siζ. (4.10)

    Hence,

    D+sY1(ζ,tj)C. (4.11)

    Now, by combining the Eqs (4.6), (4.8), (4.9), and (4.11), the proof is complete.

    Concerning the interior layer function, the same bounds can be obtained, as stated in the following result.

    Lemma 4.4. For (si,tj)DN,M, the interior layer function Y2 satisfies

    |Y2y2|CN1lnN. (4.12)

    Proof. Let us first get the error estimates at the line of discontinuity s=ζ. Recalling that [xs(ζ,t)]+[(y2)s(ζ,t)]=0, we obtain

    [Ds(Y2y2)(ζ,t)]=[DsY2(ζ,t)][Dsy2(ζ,t)]=[xs(ζ,t)]+[(y2)s(ζ,t)]+[DsY2(ζ,t)][Dsy2(ζ,t)]=[xs(ζ,t)]+[(y2)s(ζ,t)][DsX(ζ,tj)][DsY1(ζ,tj)][Dsy2(ζ,t)]=([xs(ζ,t)][DsX(ζ,tj)])+([(y2)s(ζ,t)][Dsy2(ζ,t)])[DsY1(ζ,tj)]. (4.13)

    Using [Lemma 3.14, [3]], we have

    [xs(ζ,t)][DsX(ζ,tj)]=xs(ζ+,t)D+sX(ζ,tj+xs(ζ,t)DsX(ζ,tj)=[Ds(xX)(ζ,t)]C(εN)1. (4.14)

    Also, it is

    [(y2)s(ζ,t)][Dsy2(ζ,t)]=(y2)s(ζ+,t)D+sY2(ζ,tj+(y2)s(ζ,t)DsY2(ζ,tj), (4.15)

    which implies

    |[(y2)s(ζ,t)][Dsy2(ζ,t)]|CHry222s[ζ,ζ+Hr]+Chly222s[ζhl,ζ]CHrε+CHrεexp(α/ε(ζHr))CHr/ε+ChlCN1lnN. (4.16)

    Finally,

    |Dsy1(ζ,t)|(hl+Hr)|(y1)ss(ζhl)|Chl+Hrε2exp((α/ε)(ζhl))CN1.

    Using inequalities (4.14)–(4.16) and Lemma 3.16 [3], we obtain from (4.13)

    |[Ds(y2Y2)(ζ,tj)]|C(εN)1lnN.

    Consider the following transformation for the outer region [θ1,ζ],

    Y2(si,tj)=ω(si,tj)^Y2(si,tj),

    where |ω(si,tj)|C so that for NN0 and εε0 (where N0 is independent of ε and ε0 is independent of N),

    ˆLMNˆY2={εδ2s+ˆpD+sˆqˆrDt}ˆY2(si,tj)=0,ˆpα,ˆq0,ˆr0,ˆY2(0,tj)=|Y2(0,tj)|,ˆY2(1,tj)=0,[DsˆY2(ζ,tj)]=[DsX(ζ,tj)][DsY1(ζ,tj)],ˆY2(si,0)=0.

    By choosing a suitable barrier function ω(si,tj) given by

    ω(si,t)={ik=1(1+ˆξ1ε1N1hk)1,k<N/4,(1+ˆξ1ε1N1hk)N/2N/2k=N/4(1+ˆξ2hk)1,N/4kN/2,

    with ˆξ2>ˆξ1>0 appropriate constants, the operator satisfies a comparison principle and we can get that

    |ˆY2|˜Y2CN1,

    where ˜Y2(si,tj) is the solution of the following problem

    {εδ2s+αD+sqrDt}˜Y2(si,tj)=0,˜Y2(0,tj)=|y2(0,,tj)|,˜Y2(1,tj)=0,[Ds˜Y2(ζ,tj)]=[DsX(ζ,tj)][DsY1(ζ,tj)],˜Y2(si,0)=0.

    Hence,

    |Y2(si,tj)y2(si,tj)|CN1.

    Now, let us consider the truncation error in the layer regions:

    LMN(Y2y2)=Ly2LMNy2=ε(2y2s2δ2sy2)+p(si,y2)y2sp(si,Y2)D+sy2r(y2tDt(y2))=ε(2y2s2δ2sy2)+(p(si,y2)p(si,Y2))y2s+(p(s,Y2)(y2sD+sy2)r(y2tDt(y2))=ε(2y2s2δ2sy2)+pz(si,ˉξji)(y2Y2)y2s+(p(s,Y2)(y2sD+sy2)r)(y2tDt(y2)),

    where ˉξji is defined implicitly by

    p(si,y2)p(si,Y2)pz(si,ˉξji)(y2Y2).

    Note that pz(s,ξji)xsC. Now, we define the linear discrete operator

    LN,My2W(εδ2s+pz(si,ˉξji)y2s+p(si,Y2)D+sr(si)Dt)W.

    The operator satisfies a discrete comparison principle, providing that the inequality

    p2(si,Y2)4ε(pz(si,ˉξji)y2s)>0

    holds. Now, the operator LN,My2 follows the linear case as in [22]. With the help of a comparison principle and a suitable barrier function B±i,j=CN1+CN1lnN±(Y2y2)(si,tj), we get the required result, as usually.

    Now, we will state the main theoretical result of this paper.

    Theorem 4.5. Let z be the solution of problem (1.1) and Z be the numerical solution of (3.3). Then, the following error estimates hold:

    ZzˉDCN1(lnN),

    and

    εD+sZzsˉDCN1lnN.

    Proof. Combining Lemmas 4.1, 4.2, and 4.4, the proof is completed.

    To derive the error bound for approximations to the scaled derivative, by applying the arguments from [3, Section 3.5], separately on each subdomain [0,ζ]×(0,T] and [ζ,1]×(0,T], we get

    εD+szzsˉDCN1lnN,εD+sXxsˉDCN1lnN,εD+sY1y1sDCN1lnN

    and from the proof of Lemma 4.3, we obtain

    εD+sY1y1sD+CN1lnN.

    Now, again by applying the arguments from [3, Section 3.5], for siζ, we can get the following bounds

    εD+sY2y2sD+CN1lnN.

    For, si<ζ, define ˜Y2(si,tj)=Y2(si,tj)Y2(ζ,tj) with

    LMN˜Y2=0.for (si,tj)DN,M,˜Y2(0,tj)=Y2(ζ,tj),˜Y2(ζ,tj)=0,˜Y2(1,tj)=Y2(ζ,tj).

    Then, for si<ζ,

    D+s(Y2y2)(si,tj)=D+s(Y2y2)(ζ,tj)+D+s(˜Y2˜y2)(si,tj) (4.17)

    where ˜y2 is defined analogously to ˜Y2. Now, by adopting the methodology from [3], we can bound the second term D+s(˜Y2˜y2)(si,tj) on the right side of Eq (4.17), whereas the first term D+s(Y2y2)(ζ,tj) of Eq (4.17) is already bounded.

    To validate the theoretical results obtained in the previous sections, the proposed scheme has been employed for solving two test problems. In order to get numerical solutions, we have linearized system (3.3) and consider the following system

    Z0i=z0(si),fori=1,...,N.{LMNZjiεδ2sZji+pj1iD+sZjiqiZjiriDtZji=fji,siDs,D+sZjN/2=DsZjN/2Zj0=zl(tj),ZjN=zr(tj),forj=1,2,...,M, (5.1)

    where we used a linearization technique as the one described in [23,24]. The above system can be expressed in matrix form as

    A Zj=Zj1,j=1,2,...,M,

    where A is the coefficient matrix, which is an M-matrix of order (N1)×(N1),andZj={Z01,Zj2,...,ZjN1},j=1,2,...,M.

    Using Z0={Z01,Z02,...,Z0N1}={z0(s1),z0(s2),...,z0(sN1)},Zj0=zl(tj),ZjN=zr(tj),j=1,2,...,M, the above system can be solved for Zj.

    The double mesh principle [3] is applied to approximate the errors in the maximum norm. For simplicity, we take M=CN. The errors are obtained through

    EN,Mε=max(s,t)D|Z2N,2M2i,2jZN,Mi,j|,

    where ZN,M and Z2N,2M represent the numerical solutions to problem (1.1) on two meshes with N and 2N number of subintervals, respectively. The finer mesh has the mesh points of the coarse mesh along with their midpoints. The maximum pointwise error norm is determined by

    EN,M=maxεEN,Mε.

    Furthermore, the approximate orders of convergence are calculated using the standard formula:

    QN,M=log2(EN,ME2N,2M).

    The errors and orders of convergence associated with time and space are calculated separately by fixing N and M, respectively. The errors EN,EM and the maximum pointwise error norms EN,EM are obtained as

    ENε=max(s,t)D|Z2N,MZN,M|,EN=maxεENε.EMε=max(s,t)D|ZN,2MZN,M|,EM=maxεEMε.

    The estimate of orders of convergence for space and time are calculated, respectively, by

    QN=log2(ENE2N),QM=log2(EME2M).

    Example 5.1. Consider problem (1.1) with the following data

    p(s,z)=sin(z)+1,q(s)=sin2(s)+1,r(s)=1,z0(s)=s,zl(t)=z0(0)=0,zr(t)=z0(1)=1,f(s,t)={sin(s)2sin(t),s<ζ,sin(s)2+sin(t),s>ζ,whereζ=0.5.

    Example 5.2. Consider problem (1.1) with the following data

    p(s,z)=z+1,q(s)=log(s+2),r(s)=1,z0(s)=log(s+2),zl(t)=z0(0)=log(2),zr(t)=z0(1)=log(3),f(s,t)={(log(s+2)+t)3,s<ζ,(log(s+2)+t)3,s>ζ,whereζ=0.7.

    For ε=27 and N=32, solution graphs are given for both problems. From Figures 1 and 2, one can clearly observe that apart from a boundary layer at s=0, a weak interior layer exists at the right side of the line of discontinuity. For ε=26,...,225, N=25,...,210, Tables 1 and 2 provide the pointwise errors and convergence rates for Examples 1 and 2 with N=M. To analyse the rate of convergence in the space and time variable, Tables 3 and 4 are presented with N=256,M=25,...,210 and Tables 5 and 6 are presented with M=128,N=25,...,210. These tables demonstrate an almost first-order convergence in space and a first-order convergence in time. The numerical results presented in these tables corroborate the theoretical findings and confirm that the method achieves nearly first-order convergence.

    Figure 1.  Solution graph for the value ε=27 and N=32 for Example 5.1.
    Figure 2.  Solution graph for the value ε=27 and N=32 for Example 5.2.
    Table 1.  Maximum point-wise errors EN,M and orders of convergence QN,M calculated for Example 1 for N=M.
    ε M=32 M=64 M=128 M=256 M=512 M=1024
    N=32 N=64 N=128 N=256 N=512 N=1024
    26 1.858e- 2 1.180e- 2 6.891e- 3 4.092e- 3 2.538e- 3 1.631e- 3
    27 2.013e- 2 1.308e- 2 7.730e- 3 4.550e- 3 2.788e- 3 1.767e- 3
    28 2.102e- 2 1.389e- 2 8.317e- 3 4.900e- 3 3.000e- 3 1.900e- 3
    29 2.149e- 2 1.433e- 2 8.649e- 3 5.108e- 3 3.129e- 3 1.982e- 3
    210 2.173e- 2 1.456e- 2 8.829e- 3 5.219e- 3 3.199e- 3 2.028e- 3
    211 2.185e- 2 1.468e- 2 8.922e- 3 5.276e- 3 3.235e- 3 2.051e- 3
    212 2.190e- 2 1.473e- 2 8.969e- 3 5.305e- 3 3.253e- 3 2.064e- 3
    213 2.193e- 2 1.476e- 2 8.992e- 3 5.319e- 3 3.262e- 3 2.070e- 3
    214 2.195e- 2 1.478e- 2 9.004e- 3 5.327e- 3 3.267e- 3 2.073e- 3
    215 2.196e- 2 1.479e- 2 9.010e- 3 5.330e- 3 3.269e- 3 2.074e- 3
    216 2.196e- 2 1.479e- 2 9.013e- 3 5.332e- 3 3.271e- 3 2.075e- 3
    217 2.196e- 2 1.479e- 2 9.014e- 3 5.333e- 3 3.271e- 3 2.076e- 3
    . . . . . . .
    . . . . . . .
    . . . . . . .
    225 2.196e- 2 1.479e- 2 9.016e- 3 5.334e- 3 3.272e- 3 2.076e- 3
    EN,M 2.196e- 2 1.479e- 2 9.016e- 3 5.334e- 3 3.272e- 3 2.076e- 3
    QN,M 0.5703 0.7143 0.7572 0.7052 0.6563

     | Show Table
    DownLoad: CSV
    Table 2.  Maximum point-wise errors EN,M and orders of convergence QN,M calculated for Example 2 for N=M.
    ε M=32 M=64 M=128 M=256 M=512 M=1024
    N=32 N=64 N=128 N=256 N=512 N=1024
    26 1.049e- 1 7.356e- 2 5.020e- 2 3.117e- 2 1.919e- 2 1.155e- 2
    27 7.026e- 2 4.641e- 2 3.060e- 2 2.022e- 2 1.330e- 2 8.602e- 3
    28 7.726e- 2 5.044e- 2 3.149e- 2 1.860e- 2 1.043e- 2 5.525e- 3
    29 8.332e- 2 5.558e- 2 3.502e- 2 2.130e- 2 1.221e- 2 6.668e- 3
    210 8.631e- 2 5.812e- 2 3.707e- 2 2.267e- 2 1.315e- 2 7.274e- 3
    211 8.779e- 2 5.938e- 2 3.8 9e- 2 2.335e- 2 1.362e- 2 7.577e- 3
    212 8.853e- 2 6.001e- 2 3.860e- 2 2.369e- 2 1.385e- 2 7.728e- 3
    213 8.890e- 2 6.033e- 2 3.885e- 2 2.386e- 2 1.397e- 2 7.809e- 3
    214 8.908e- 2 6.049e- 2 3.898e- 2 2.394e- 2 1.4 3e- 2 7.849e- 3
    215 8.917e- 2 6.056e- 2 3.904e- 2 2.398e- 2 1.406e- 2 7.870e- 3
    216 8.922e- 2 6.060e- 2 3.908e- 2 2.401e- 2 1.407e- 2 7.880e- 3
    217 8.924e- 2 6.062e- 2 3.909e- 2 2.402e- 2 1.408e- 2 7.885e- 3
    . . . . . . .
    . . . . . . .
    . . . . . . .
    225 8.926e- 2 6.064e- 2 3.911e- 2 2.403e- 2 1.409e- 2 7.890e- 3
    EN,M 1.049e- 1 7.356e- 2 5.020e- 2 3.117e- 2 1.919e- 2 1.155e- 2
    QN,M 0.5114 0.5512 0.6876 0.6998 0.7327

     | Show Table
    DownLoad: CSV
    Table 3.  Maximum point-wise errors EM and orders of convergence QM calculated for Example 1 with N=256.
    ε M=32 M=64 M=128 M=256 M=512 M=1024
    26 1.536e-02 1.001e-02 6.071e-03 3.456e-03 1.874e-03 9.829e-04
    27 1.510e-02 9.732e-03 5.834e-03 3.283e-03 1.762e-03 9.167e-04
    28 1.492e-02 9.552e-03 5.685e-03 3.179e-03 1.698e-03 8.802e-04
    29 1.483e-02 9.453e-03 5.604e-03 3.124e-03 1.664e-03 8.617e-04
    210 1.477e-02 9.401e-03 5.563e-03 3.096e-03 1.648e-03 8.524e-04
    211 1.475e-02 9.374e-03 5.542e-03 3.082e-03 1.639e-03 8.477e-04
    212 1.473e-02 9.361e-03 5.531e-03 3.075e-03 1.635e-03 8.454e-04
    213 1.473e-02 9.354e-03 5.526e-03 3.072e-03 1.633e-03 8.443e-04
    214 1.472e-02 9.351e-03 5.523e-03 3.070e-03 1.632e-03 8.437e-04
    215 1.472e-02 9.349e-03 5.522e-03 3.069e-03 1.631e-03 8.434e-04
    216 1.472e-02 9.349e-03 5.521e-03 3.068e-03 1.631e-03 8.432e-04
    217 1.472e-02 9.348e-03 5.521e-03 3.068e-03 1.631e-03 8.432e-04
    . . . . . . .
    . . . . . . .
    . . . . . . .
    225 1.472e-02 9.348e-03 5.521e-03 3.068e-03 1.631e-03 8.431e-04
    EM 1.536e-02 1.001e-02 6.071e-03 3.456e-03 1.874e-03 9.829e-04
    QM 0.6180 0.7208 0.8127 0.8830 0.9311

     | Show Table
    DownLoad: CSV
    Table 4.  Maximum point-wise errors EM and orders of convergence QM calculated for Example 2 with N=256.
    ε M=32 M=64 M=128 M=256 M=512 M=1024
    26 3.218e-02 1.799e-02 9.549e-03 4.925e-03 2.502e-03 1.359e-03
    27 3.252e-02 1.819e-02 9.660e-03 4.983e-03 2.531e-03 1.295e-03
    28 3.280e-02 1.835e-02 9.746e-03 5.027e-03 2.554e-03 1.287e-03
    29 3.296e-02 1.844e-02 9.792e-03 5.051e-03 2.566e-03 1.293e-03
    210 3.306e-02 1.849e-02 9.818e-03 5.064e-03 2.572e-03 1.296e-03
    211 3.311e-02 1.852e-02 9.831e-03 5.071e-03 2.576e-03 1.298e-03
    212 3.313e-02 1.853e-02 9.839e-03 5.074e-03 2.578e-03 1.299e-03
    213 3.315e-02 1.854e-02 9.843e-03 5.076e-03 2.579e-03 1.300e-03
    214 3.316e-02 1.854e-02 9.845e-03 5.078e-03 2.579e-03 1.300e-03
    215 3.316e-02 1.855e-02 9.846e-03 5.078e-03 2.579e-03 1.300e-03
    216 3.316e-02 1.855e-02 9.847e-03 5.078e-03 2.580e-03 1.300e-03
    217 3.316e-02 1.855e-02 9.847e-03 5.079e-03 2.580e-03 1.300e-03
    . . . . . . .
    . . . . . . .
    . . . . . . .
    225 3.316e-02 1.855e-02 9.847e-03 5.079e-03 2.580e-03 1.300e-03
    EM 3.316e-02 1.855e-02 9.847e-03 5.079e-03 2.580e-03 1.300e-03
    QM 0.8383 0.9135 0.9553 0.97773 0.9885

     | Show Table
    DownLoad: CSV
    Table 5.  Maximum point-wise errors EN and orders of convergence QN calculated for Example 1 with M=128.
    ε N=32 N=64 N=128 N=256 N=512 N=1024
    26 1.512e-02 9.353e-03 5.306e-03 2.818e-03 1.413e-03 6.875e-04
    27 1.716e-02 1.109e-02 6.632e-03 3.690e-03 1.941e-03 9.831e-04
    28 1.809e-02 1.191e-02 7.272e-03 4.142e-03 2.231e-03 1.155e-03
    29 1.855e-02 1.230e-02 7.590e-03 4.365e-03 2.376e-03 1.244e-03
    210 1.877e-02 1.250e-02 7.743e-03 4.474e-03 2.448e-03 1.288e-03
    211 1.888e-02 1.259e-02 7.821e-03 4.535e-03 2.485e-03 1.309e-03
    212 1.893e-02 1.263e-02 7.856e-03 4.561e-03 2.503e-03 1.321e-03
    213 1.896e-02 1.266e-02 7.872e-03 4.573e-03 2.512e-03 1.326e-03
    214 1.897e-02 1.267e-02 7.881e-03 4.579e-03 2.516e-03 1.328e-03
    215 1.898e-02 1.268e-02 7.887e-03 4.582e-03 2.518e-03 1.330e-03
    216 1.898e-02 1.268e-02 7.890e-03 4.583e-03 2.519e-03 1.330e-03
    217 1.898e-02 1.268e-02 7.891e-03 4.584e-03 2.519e-03 1.331e-03
    . . . . . . .
    . . . . . . .
    . . . . . . .
    225 1.899e-02 1.269e-02 7.892e-03 4.585e-03 2.520e-03 1.331e-03
    EN 1.899e-02 1.269e-02 7.892e-03 4.585e-03 2.520e-03 1.331e-03
    QN 0.5817 0.6848 0.7836 0.8636 0.9208

     | Show Table
    DownLoad: CSV
    Table 6.  Maximum point-wise errors EN and orders of convergence QN calculated for Example 2 with M=128.
    ε N=32 N=64 N=128 N=256 N=512 N=1024
    26 8.007e-02 5.905e-02 4.203e-02 2.649e-02 1.639e-02 9.775e-03
    27 6.695e-02 4.029e-02 2.331e-02 1.538e-02 1.060e-02 6.991e-03
    28 7.931e-02 5.062e-02 3.043e-02 1.752e-02 9.537e-03 4.940e-03
    29 8.530e-02 5.572e-02 3.438e-02 2.021e-02 1.127e-02 6.013e-03
    210 8.851e-02 5.824e-02 3.641e-02 2.157e-02 1.217e-02 6.577e-03
    211 9.051e-02 5.949e-02 3.743e-02 2.224e-02 1.264e-02 6.862e-03
    212 9.151e-02 6.012e-02 3.794e-02 2.258e-02 1.287e-02 7.007e-03
    213 9.201e-02 6.043e-02 3.819e-02 2.275e-02 1.299e-02 7.082e-03
    214 9.226e-02 6.059e-02 3.832e-02 2.284e-02 1.305e-02 7.120e-03
    215 9.239e-02 6.066e-02 3.838e-02 2.288e-02 1.308e-02 7.139e-03
    216 9.245e-02 6.070e-02 3.841e-02 2.290e-02 1.309e-02 7.148e-03
    217 9.248e-02 6.072e-02 3.843e-02 2.291e-02 1.310e-02 7.153e-03
    . . . . . . .
    . . . . . . .
    . . . . . . .
    225 9.251e-02 6.074e-02 3.844e-02 2.292e-02 1.311e-02 7.158e-03
    EN 9.251e-02 6.074e-02 3.844e-02 2.292e-02 1.311e-02 7.158e-03
    QN 0.6070 0.6600 0.7460 0.8065 0.8726

     | Show Table
    DownLoad: CSV

    A quasilinear one-dimensional parabolic convection-reaction-diffusion problem with a discontinuous source term has been considered. The solution exhibits a boundary layer at s=0 and a weak interior layer to the right of the discontinuity. A numerical method is constructed to solve the problem, yielding an ε-uniform convergent numerical approximation to the solution. The method employs the standard upwind scheme on the spatial domain and the backward upwind scheme on the temporal domain. A Shishkin mesh is used to discretize the space while the time is discretized using a uniform mesh. The scheme achieves nearly first-order convergence in space and first-order convergence in time. Two numerical examples supporting the theoretical results are presented.

    Ruby: Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft. Vembu Shanthi: Conceptualization, Formal analysis, Investigation, Methodology, Supervision, Writing – review & editing. Higinio Ramos: Conceptualization, Formal analysis, Investigation, Methodology, Supervision, Writing – review & editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    The first author is grateful for financial support in the form of research fellowship(File no. 09/0895(12534)/2021-EMR-I) the Council of Scientific and Industrial Research (CSIR), India.

    Prof. Higinio Ramos is a Guest Editor of special issue "Numerical Analysis of Differential Equations with Real-world Applications" for AIMS Mathematics. Prof. Higinio Ramos was not involved in the editorial review and the decision to publish this article.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



    [1] P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor equations, Springer Vienna, 2012.
    [2] E. P. Doolan, J. J. H. Miller, W. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, 1980.
    [3] P. A. Farrell, A. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, Chapman and hall/CRC, 2000. https://doi.org/10.1201/9781482285727
    [4] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World scientific, 2012. https://doi.org/10.1142/8410
    [5] H. G. Roos, M. Stynes, L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, Vol. 24, 2 Eds., Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-34467-4
    [6] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Global maximum norm parameter-uniform numerical method for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Math. Comput. Model., 40 (2004), 1375–1392. https://doi.org/10.1016/j.mcm.2005.01.025 doi: 10.1016/j.mcm.2005.01.025
    [7] P. A. Farrell, E. O'Riordan, G. I. Shishkin, A class of singularly perturbed quasilinear differential equations with interior layers, Math. Comp., 78 (2009), 103–127. https://doi.org/10.1090/S0025-5718-08-02157-1 doi: 10.1090/S0025-5718-08-02157-1
    [8] S. C. S. Rao, A. K. Chaturvedi, Analysis and implementation of a computational technique for a coupled system of two singularly perturbed parabolic semilinear reaction–diffusion equations having discontinuous source terms, Commun. Nonlinear Sci. Numer. Simul., 108 (2022), 106232. https://doi.org/10.1016/j.cnsns.2021.106232 doi: 10.1016/j.cnsns.2021.106232
    [9] Ruby, V. Shanthi, H. Ramos, Numerical analysis for a weakly coupled system of singularly perturbed quasilinear problem with non-smooth data, J. Comput. Sci., 85 (2025), 102475. https://doi.org/10.1016/j.jocs.2024.102475 doi: 10.1016/j.jocs.2024.102475
    [10] H. Schlichting, K. Gersten, Boundary-layer theory, 9 Eds., Springer Berlin, Heidelberg, 2017. https://doi.org/10.1007/978-3-662-52919-5
    [11] C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers Ⅰ: asymptotic methods and perturbation theory, Springer Science & Business Media, 2013.
    [12] P. Kokotović, H. K. Khalil, J. O'Reilly, Singular perturbation methods in control: analysis and design, SIAM, 1999.
    [13] P. A. Markowich, The stationary semiconductor device equations, Springer Vienna, 1986. https://doi.org/10.1007/978-3-7091-3678-2
    [14] S. Selberherr, Analysis and simulation of semiconductor devices, Springer Science & Business Media, 2012.
    [15] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, In: Translations of mathematical monographs, Vol. 23, American Mathematical Society, 1968.
    [16] E. O'Riordan, G. I. Shishkin, Singularly perturbed parabolic problems with non-smooth data, J. Comput. Appl. Math., 166 (2004), 233–245. https://doi.org/10.1016/j.cam.2003.09.025 doi: 10.1016/j.cam.2003.09.025
    [17] K. Mukherjee, S. Natesan, ε-Uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers, Numer. Algor., 58 (2011), 103–141. https://doi.org/10.1007/s11075-011-9449-6 doi: 10.1007/s11075-011-9449-6
    [18] S. R. Bernfeld, V. Lakshmikantham, An introduction to nonlinear boundary value problems, New York: Academic Press, 1974.
    [19] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, L. P. Shishkina Fitted mesh methods for problems with parabolic boundary layers, Math. Proc. Royal Irish Acad., 98A (1998), 173–190.
    [20] M. Stynes, E. O'Riordan, Uniformly convergent difference schemes for singularly perturbed parabolic diffusion-convection problems without turning points, Numer. Math., 55 (1989), 521–544. https://doi.org/10.1007/BF01398914 doi: 10.1007/BF01398914
    [21] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Singularly perturbed convection–diffusion problems with boundary and weak interior layers, J. Comput. Appl. Math., 166 (2004), 133–151. https://doi.org/10.1016/j.cam.2003.09.033 doi: 10.1016/j.cam.2003.09.033
    [22] H. G Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations: convection-diffusion and flow problems, Springer Berlin, Heidelberg, 1996. https://doi.org/10.1007/978-3-662-03206-0
    [23] E. O'Riordan, J. Quinn, A linearised singularly perturbed convection–diffusion problem with an interior layer, Appl. Numer. Math., 98 (2015), 1–17. https://doi.org/10.1016/j.apnum.2015.08.002 doi: 10.1016/j.apnum.2015.08.002
    [24] J. W. Thomas, Numerical partial differential equations: finite difference methods, Springer Science & Business Media, 2013.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(147) PDF downloads(33) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog