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Abstract: The objective of the present paper is to solve a one-dimensional quasilinear parabolic
singularly perturbed problem with a discontinuous source term. Due to the presence of such a
discontinuity, an interior layer exists at the location of the discontinuity. The problem is solved by
discretizing the spatial variable on a piecewise uniform Shishkin mesh using the standard upwind
approach, while the backward Euler scheme is employed on a uniform mesh to discretize the time
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1. Introduction

This work focuses on a quasilinear singularly perturbed convection diffusion parabolic initial-
boundary value problem, where the source term exhibits a spatial discontinuity. The nonlinear
convection coefficient, which characterizes the problem as quasilinear, is the novel aspect of the paper.
Here, the source term has a jump discontinuity in space resulting in a weak interior layer appearing near
the discontinuity, in addition to the presence of a boundary layer. The aim of this study is to propose
a robust ε-uniform method, achieved by discretizing the spatial variable using the standard upwind
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scheme on a piecewise Shishkin mesh and the temporal variable using the backward Euler scheme
on a uniform mesh. The choice of the standard upwind scheme is motivated by its computational
efficiency and simplicity, making it a suitable baseline solution for future comparisons with more
advanced techniques. Problems of this type can be found in [1]. For studies on singular perturbation,
one can refer to [2–5], in which various numerical and asymptotic methods are discussed. Regarding
singularly perturbed problems with discontinuous terms, among all existing studies in the literature,
we will refer only to a few related to our problem. The problem in [6] is time independent and has a
strong interior layer because of the discontinuity in the source term and the convection coefficient. The
problem was solved using the standard upwind scheme. In [7], a quasilinear convection-diffusion
problem with discontinuous data resulting in strong interior layers was considered. Recently, a
semilinear reaction-diffusion parabolic system with a discontinuous source term was studied in [8],
while a system of quasilinear convection-diffusion problems with discontinuities in both the source
term and the convection coefficient was investigated in [9]. Singularly perturbed problems occur
in numerous scientific and engineering fields, including fluid dynamics [10, 11], chemical kinetics,
population dynamics, control theory [12], and semiconductor modeling [13, 14].

Model problem

Let us first introduce some important notations:

Ds = (0, 1), D̄s = [0, 1], ζ ∈ Ds, D
−
s = (0, ζ), D+s = (ζ, 1), Dt = (0,T ], D = Ds × Dt,

D̄ = D̄s × Dt, D
− = D−s × Dt, D

+ = D+s × Dt, ∂D = D̄\D.

A function u(s, t) is said to be Hölder continuous of order λ on Ω, with λ ∈ (0, 1], if and only if
u ∈ C0(Ω) and

sup
(s1,t1),(s2,t2)∈Ω

|u(s1, t1) − u(s2, t2)|
((s1 − s2)2 + |t1 − t2|)λ/2

is finite. This is denoted as u ∈ Cλ(Ω) (for more details, one can refer to [15]). For every integer n ≥ 0,

u ∈ Cn+λ(Ω) i f
∂k+mu
∂sk∂tm ∈ Cλ(Ω), 0 ≤ k + 2m+ ≤ n.

Now, consider the following quasilinear singularly perturbed parabolic initial-boundary value
problem where z ∈ C1+λ(D) ∩C2+λ(D− ∪ D+):

Lz ≡ ε
∂2z
∂s2 (s, t) + p(s, z(s, t))

∂z
∂s

(s, t) − q(s)z(s, t) − r(s)
∂z
∂t

(s, t) = f (s, t), (s, t) ∈ D− ∪ D+, (1.1)

subject to the boundary and initial conditions

z(0, t) = zl(t), ∀ t ∈ Dt, (1.2)
z(1, t) = zr(t), ∀ t ∈ Dt, (1.3)
z(s, 0) = z0(s), ∀ s ∈ Ds. (1.4)

It is assumed that the source term f (s, t) ∈ C2+λ(D−∪D+), the convection coefficient p(s, z) ∈ C2+λ(D̄),
and the coefficients q(s), r(s) ∈ C4+λD̄s are smooth functions in their respective domains. The

AIMS Mathematics Volume 10, Issue 3, 6827–6852.



6829

perturbation parameter is assumed to be sufficiently small, such that 0 < ε << 1. Furthermore, it
is assumed that  p(s, z) ≥ α > 0, on D̄, q(s) ≥ β > 0, r(s) > 0 on D̄s,

|[ f ](ζ, t)| ≤ C,
(1.5)

where s = ζ is the line of discontinuity, and the source term has a jump discontinuity along s = ζ.

A weak interior layer appears on the right side of the discontinuity, and there is a boundary layer at
s = 0. The initial and boundary conditions are assumed to be sufficiently smooth on D̄ and fulfill the
compatibility conditions at the two corner points (0, 0), (1, 0) as follows: z0(0) = zl(0),

z0(1) = zr(0),
(1.6)

and 
ε
∂2z0(0)
∂s2 + p(0, z0(0))

∂z0(0)
∂s

− q(0)z0(0) − f (0, 0) = r(0)
∂zl(0)
∂t

,

ε
∂2z0(1)
∂s2 + p(1, z0(1))

∂z0(1)
∂s

− q(1)z0(1) − f (1, 0) = r(1)
∂zr(0)
∂t

.

(1.7)

Similarly, compatibility conditions are assumed to be fulfilled at the transition point (ζ, 0). Under these
conditions, problem (1.1)–(1.5) has a unique solution z ∈ C(1+λ)(D) ∩ C(2+λ)(D− ∩ D+), as explained
in [15–17].

This paper is organized as follows: In section 2, some analytical results are presented.
Discretizations of the mesh and the solution are given in Section 3. Section 4 deals with error analysis,
and in Section 5, two numerical examples are given to illustrate the performance of the proposed
method. Finally, a conclusion of the paper is given in Section 6.

Throughout the paper, C denotes a generic constant that is independent of ε and the mesh parameters
N , M. The maximum pointwise norm is used, denoted as ∥w∥D = max(s,t)∈D |w(s, t)|. When D = D̄,
we will simply write ∥w∥, avoiding the subscript.

2. Analytical results

In this section, some theoretical results are presented. Although the proofs of the following results
are well known in the literature, we include them here for the sake of clarity and completeness.

Theorem 2.1. (Minimum principle): Let w ∈ C0(D̄) ∩C2(D− ∪ D+) satisfy

w(s, t) ≤ 0 on ∂D,
[
∂w
∂s

]
(ζ, t) ≥ 0 t ∈ Dt,

Lw(s, t) ≥ 0 for (s, t) ∈ D− ∪ D+.

Then, w(s, t) ≤ 0 for all (s, t) ∈ D̄.
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Proof. Consider a function ν, such that

w(s, t) =

 exp(−(α1(s − ζ))/2ε)ν(s, t), s < ζ,

exp(−(α2(s − ζ))/2ε)ν(s, t), s ≥ ζ,

where α ≥ α1 ≥ α2. Let (s∗, t∗) be any point at which ν attains its maximum value in D. If ν(s∗, t∗) ≤ 0,
then there is nothing to prove. Now, we proceed by contradiction. Consider that ν(s∗, t∗) > 0, then
either (s∗, t∗) ∈ (D− ∪ D+) or (s∗, t∗) = (ζ, t∗). If (s∗, t∗) ∈ (D− ∪ D+), then

νs = νt = 0, νss < 0.

Hence,

Lw ≡

 exp(−(α1(s − ζ))/2ε)
(
ενss + (p − α1)νs −

(
α1
2ε (p − α1

2 ) + q
)
ν − rνt

)
< 0, s∗ ≤ ζ,

exp(−(α2(s − ζ))/2ε)
(
ενss + (p − α2)νs −

(
α2
2ε (p − α2

2 ) + q
)
ν − rνt

)
< 0, s∗ ≥ ζ,

which is a contradiction.
If (s∗, t∗) = (ζ, t∗), then [ws](ζ, t∗) = [νs](ζ, t∗) +

α1 − α2

2ε
ν(ζ, t) ≤ 0, which is also a contradiction.

This completes the proof. □

Theorem 2.2. Let z be the solution of (1.1)–(1.5). Then, it holds:

∥z∥D̄ ≤
∥ f ∥D\(ζ,t)

α
+max

∂D
|z(s, t)|,

and

∥z(κ)∥D\(ζ,t) ≤ Cε−κ, 1 ≤ κ ≤ 3,

where the suffix (κ) denote the κth derivative of z with respect to s.

Proof. Consider the following barrier functions

Ψ±(s, t) = −
(1 − s)∥ f ∥

α
−max

∂D
|z(s, t)| ± z(s, t).

We note that Ψ± ∈ C0(D̄) ∩C2(D− ∪ D+), and

Ψ±(s, t) ≤ 0, on ∂D,
[
∂Ψ±

∂s

]
(ζ, t) ≥ 0, t > 0,

LΨ±(s, t) ≥ 0, for (s, t) ∈ D− ∪ D+.

Consequently, with the help of Theorem 2.1, the required result can be proved. By following a similar
procedure as in [3], the bounds of the derivatives can be obtained. □
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Decomposition of the solution

We decompose the solution as the sum of a regular component x and a singular component y as:

z(s, t) = x(s, t) + y(s, t),

where the regular component x ∈ C0(D) satisfies the following problem

Lx = f (s, t), (s, t) ∈ D− ∪ D+,
x(s, 0) = z(s, 0), x(0, t) = z(0, t), x(1, t) = z(1, t),

(2.1)

and the singular component y ∈ C0(D) satisfies

Ly = 0, (s, t) ∈ D− ∪ D+,
y(s, 0) = 0, y(0, t) = z(0, t) − x(0, t), y(1, t) = 0.

(2.2)

Furthermore, the regular and singular components satisfy the conditions

[y](ζ, t) = −[x](ζ, t),
[
∂y
∂s

]
(ζ, t) = −

[
∂x
∂s

]
(ζ, t). (2.3)

The regular component x can be further decomposed as

x = x0 + εx1 + ε
2x2, (2.4)

where x0, x1, x2 ∈ C0(D) and satisfy the following problems, respectively,

p(s, x0)
∂x0

∂s
+ q(s)x0 − r(s)

∂x0

∂t
= f (s, t), (s, t) ∈ D− ∪ D+,

x0(1, t) = z(1, t), x0(s, 0) = z(s, 0), (2.5)

ε
∂2x0

∂s2 + p(s, x0 + εx1)
∂(x0 + εx1)

∂s
− q(x0 + εx1) − r(s)

∂(x0 + εx1)
∂t

= f (s, t), s , ζ, (2.6)

x1(ζ, t) = x1(1, t) = x1(s, 0) = 0,

ε
∂2

∂s2 (x0 + εx1 + ε
2x2) + p(s, x0 + εx1 + ε

2x2)
∂

∂s
(x0 + εx1 + ε

2x2) − q(s)(x0 + εx1 + ε
2x2)

− r(s)
∂

∂t
(x0 + εx1 + ε

2x2) = f (s, t),

(2.7)

x2(0, t) = x2(ζ, t) = x2(1, t) = x2(s, 0) = 0.

The singular component can be further decomposed as y = y1 + y2, where y1 ∈ C2(D) is the boundary
layer function satisfying

Ly1 = 0, (s, t) ∈ D,
y1(0, t) = z(0, t) − x(0, t), y1(1, t) = 0, y1(s, 0) = 0,

(2.8)
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and y2 ∈ C0(D) is the weak interior layer function, which is the solution of

Ly2 = 0, (s, t) ∈ D− ∪ D+,
y2(0, t) = 0, y2(1, t) = 0, y2(s, 0) = 0,[

∂y2

∂s

]
(ζ, t) = −

[
∂x
∂s

]
(ζ, t).

(2.9)

The method of upper and lower solutions will be useful to prove the existence and uniqueness of
the regular component. By reversing all the inequalities, we can obtain the corresponding definition
of lower solutions. In what follows, the upper and lower solutions will be denoted by Φ and ϕ,
respectively.

Definition 2.3. A function Φ is an upper solution of problem (2.1) if

LΦ ≤ f (s, t), (s, t) ∈ D− ∪ D+, (2.10)
Φ(0, t) ≥ z(0, t), Φ(1, t) ≥ z(1, t), Φ(s, 0) ≥ z(s, 0). (2.11)

The solution of (2.1) satisfies Nagumo’s condition on D− ∪ D+ relative to the pair Ψ(s, t) = ∥ f ∥ +
γs, γ := supϕ≤z≤Φ |p(s, z(s, t))|. Thus, by using the result from [18, Thm 1.5.1], the existence of the
regular component can be ensured by constructing lower and upper solutions. These components
satisfy the bounds established in the following results.

Lemma 2.4. For any integers κ,m satisfying 0 ≤ κ+m ≤ 2, the solution x of (2.1) satisfies the following
bounds:

∥x∥ ≤ C, (s, t) ∈ D− ∪ D+,∣∣∣∣∣ ∂κ+mx
∂sκ∂tm (s, t)

∣∣∣∣∣ ≤ C(1 + ε2−κ), (s, t) ∈ D− ∪ D+.

Proof. Note that x0 and its derivatives are independent of ε, and

ε
∂2x0

∂s2 + p(s, x0 + εx1)
∂(x0 + εx1)

∂s
− q(s)(x0 + εx1) − r(s)

∂(x0 + εx1)
∂t

= f (s, t)

= p(s, x0)
∂x0

∂s
+ q(s)x0 − r(s)

∂x0

∂t
,

x1(0, t) = x1(ζ, t) = x1(1, t) = 0,

which gives

ε
∂2x0

∂s2 + εp(s, x0 + εx1)
∂x1

∂s
+ (p(s, x0 + εx1) − p(s, x0))

∂x0

∂s
− εq(s)x1 − εr(s)

∂x1

∂t
= 0,

ε
(
∂2x0

∂s2 + p(s, x0 + εx1)
∂x1

∂s
+
∂x0

∂s
∂p(s, x̂)
∂x

x1 − q(s)x1 − r(s)
∂x1

∂t

)
= 0,

where x̂(s, t) is such that

p(s, x0 + εx1) − p(s, x0) = ε
∂p(s, x̂)
∂x

x1.
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Thus, the function x1 satisfies the following problem

p(s, x0 + εx1)
∂x1

∂s
+
∂x0

∂s
∂p(s, x̂)
∂x

x1 − q(s)x1 − r(s)
∂x1

∂t
= −

∂2x0

∂s2 ,

x1(1, t) = x0(s, 0) = 0.

Hence, |x1| ≤ C and
∣∣∣∣∣∂x1

∂s

∣∣∣∣∣ ≤ C. Differentiating the above equation, we can also get the remaining

bounds. Now, from Eqs (2.6) and (2.7), we obtain

ε
∂2

∂s2 (x0 + εx1 + ε
2x2) + p(s, x0 + εx1 + ε

2x2)
∂

∂s
(x0 + εx1 + ε

2x2)

− q(s)(x0 + εx1 + ε
2x2) − r(s)

∂

∂t
(x0 + εx1 + ε

2x2)

= f (s, t) = ε
∂2x0

∂s2 + p(s, x0 + εx1)
∂(x0 + εx1)

∂s
− q(s)(x0 + εx1) − r(s)

∂(x0 + εx1)
∂t

.

Hence, we get

ε
∂2x2

∂s2 + p(s, x0 + εx1 + ε
2x2)

∂x2

∂s
+ ε−2(p(s, x0 + εx1 + ε

2x2)

−p(s, x0 + εx1))
∂(x0 + εx1)

∂s
− q(s)x2 − r(s)

∂x2

∂t
= −

∂2x1

∂s2 ,

which gives

ε
∂2x2

∂s2 + p(s, x0 + εx1 + ε
2x2)

∂x2

∂s
+

(
∂(x0 + εx1)

∂s
∂p(s, x̃)
∂x

− q(s)
)

x2 − r(s)
∂x2

∂t
= −

∂2x1

∂s2 ,

x2(0, t) = x2(ζ, t) = x2(1, t) = x2(s, 0) = 0.

where x̃ is given by

p(s, x0 + εx1 + ε
2x2) − p(s, x0 + εx1) = ε2∂p(s, x̃)

∂x
x2.

Hence, we have
∥x(κ)

2 ∥ ≤ Cε−κ.

Thus, by combining the bound of x0, x1, and x2, the proof is completed. □

Lemma 2.5. For any integers κ,m, the solutions y1 and y2 of problems (2.8) and (2.9), respectively,
satisfy the following bounds:∣∣∣∣∣∂κ+my1

∂sκ∂tm (s, t)
∣∣∣∣∣ ≤ Cε−κ exp(−αs/ε), (s, t) ∈ D, 0 ≤ κ + m ≤ 3,

|y2(s, t)| ≤ Cε, (s, t) ∈ D− ∪ D+,∣∣∣∣∣∂κ+my2

∂sκ∂tm (s, t)
∣∣∣∣∣ ≤

Cε1−κ exp(−αs/ε), (s, t) ∈ D−,
Cε1−κ exp(−α(s − ζ)/ε), (s, t) ∈ D+.

1 ≤ κ + m ≤ 3.
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Proof. To find the bounds of y1, choose C sufficiently large so that

|y1(s, t)| ≤ C exp(−αs/ε), for (s, t) ∈ ∂D.

Since Ly1 = 0, and

L(C exp(−αs/ε)) = C exp(−αs/ε)[α2ε−1 − αp(s, u)ε−1 − q(s)]
≤ −Cβ exp(−αs/ε)

≤ −Ly1,

then by the minimum principle [4], we get

|y1(s, t)| ≤ C exp(−αs/ε).

Now, taking the stretching variable s̃ = s/ε and following a procedure similar to that in [19], we can
easily obtain bounds for the derivatives of y1.

To find the bounds for y2, we choose suitable barrier functions Ψ(s, t) = −ψ(s, t) ± y2(s, t), where

ψ(s, t) = C
ε

α


1, (s, t) ∈ D−,

exp(−(s − ζ)α/ε), (s, t) ∈ D+.

Clearly, Ψ(0, t) = −ψ(0, t) ≤ 0, Ψ(1, t) = −ψ(1, t) ≤ 0, Ψ(s, 0) = −ψ(s, 0) ≤ 0. Also,

LΨ(s, t) =


Cq(s) ≥ 0, (s, t) ∈ D−,

C exp(−(s − ζ)α/ε)
(
−α + p(s, ψ) +

ε

α
q
)
≥ 0, (s, t) ∈ D+,

and
[
∂Ψ

∂s

]
(ζ, t) = −

[
∂ψ

∂s

]
(ζ, t) ±

[
∂y2

∂s

]
(ζ, t) ≥ 0. Hence, Theorem 2.1 implies Ψ(s, t) ≤ 0, for all

(s, t) ∈ D̄, that is,

−ψ(s, t) ± y2(s, t) ≤ 0 =⇒ |y2(s, t)| ≤ ψ(s, t) ≤ Cε for (s, t) ∈ D̄.

Hence, with the help of Theorem 2.1, we arrive at the required result.
Now, to get the derivative bounds, we follow a similar procedure as in [20]. The result is proven

for D− and a similar procedure can be adopted for D+. Take η = (s − ζ)/ε and set D̃ = (0, ζε−1) ×
(0, 1]. Additionally, let ỹ2(η, t) = y2(s, t), and similarly define the transformed coefficients p̃, q̃, r̃. Then,
Eq (2.9) becomes

(ỹ2)ηη + p̃(η, ỹ2)(ỹ2)η − εq̃(η)ỹ2 − εr̃(η)(ỹ2)t = 0, on D̃. (2.12)

For each η ∈ (0, ζε−1) and each µ > 0, let Rη,µ denote the rectangle

((η − µ, η + µ) × (0,T ]) ∩ D̃,

and let R̄η,µ denote the closure of Rη,µ in the (η, t)−plane.
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Now, since ỹ2 satisfies (2.9) and (2.12), by [15], for 0 ≤ κ + 2m ≤ 4,

max
R̄η,1
|Dκ

ηD
m
t ỹ2| ≤ C max

R̄η,2
|ỹ2|. (2.13)

Using bounds for y2, we have
|Dκ

ηD
m
t ỹ2(η, µ)| ≤ Cε exp{−αη}.

Changing variables, this becomes

|Dκ
sD

m
t y2(s, t)| ≤ Cε1−κ exp(−αs/ε).

□

3. Discretization of the problem

3.1. Mesh discretization

Let us subdivide the domain D̄s into

[0, θ1] ∪ [θ1, ζ] ∪ [ζ, ζ + θ2] ∪ [ζ + θ2, 1], (3.1)

where the transition points are defined as

θ1 = min
{ζ
2
,

2ε
α

lnN
}
, θ2 = min

{1 − ζ
2

,
2ε
α

lnN
}
. (3.2)

We will divide each of the four intervals in N/4 subintervals. The mesh points are denoted by

DNs = D
N−
s ∪ D

N+
s = {si : 1 ≤ i ≤ N/2 − 1} ∪ {si : N/2 + 1 ≤ i ≤ N − 1}.

Clearly, D̄Ns = {si}
N
i=0 where s0 = 0, sN/2 = ζ and sN = 1. The mesh width will be

hi =



Hl =
4θ1

N
, i = 1, 2, ...,N/4,

hl =
4(ζ − θ1)
N

, i = N/4 + 1,N/4 + 2, ...,N/2,

Hr =
4θ2

N
, i = N/2 + 1,N/2 + 2, ..., 3N/4,

hr =
4(1 − ζ − θ2)

N
, i = 3N/4 + 1, 3N/4 + 2, ...,N .

Additionally, define Hi =
hi + hi+1

2
.

The time variable is discretized using a uniform mesh:

DMt =
{
t j = j

T
M

}
, j = 0, 1, 2, ...,M.

The piecewise uniform mesh is DN ,M = DNs × D
M
t . Let us also define some useful discrete domains

D̄N ,M = D̄Ns × D
M
t , ∂D

N ,M = D̄N ,M\DN ,M, DN ,M− = DN−s × D
M
t , D

N ,M+ = DN+s × D
M
t .
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3.2. Discretization of the problem

The forward difference D+s and backward difference D−s operators in space and the backward
difference operator D−t in time are given by

D+s Z j
i =

Z j
i+1 − Z j

i

hi+1
, D−s Z j

i =
Z j

i − Z j
i−1

hi
,

D−t Z j
i =

Z j
i − Z j−1

i

k
.

A difference operator of second order in space is described as:

δ2
sZ

j
i =

D+s Z j
i − D−s Z j

i

Hi
.

Using these operators, we obtain a discretization of problem (1.1)–(1.4) as:

Z0
i = z0(si), for i = 1, ...,N .
LM
N

Z j
i ≡ εδ

2
sZ

j
i + p j

i D
+
s Z j

i − qiZ
j
i − riD−t Z j

i = f j
i , si ∈ D

N
s ,

D+s Z j
N/2 = D−s Z j

N/2,

Z j
0 = zl(t j), Z j

N
= zr(t j),

(3.3)

for j = 1, 2, ...,M,

where Z j
i denotes an approximate value of z(si, t j), p j

i = p(si,Z
j
i ), qi = q(si), ri = r(si), f j

i = f (si, t j).
The finite difference operator LM

N
satisfies the following discrete minimum principle:

Theorem 3.1. (Discrete minimum principle) Let W be a mesh function defined on the discretized
domain D̄N ,M. If W ≤ 0 on ∂DN ,M, LM

N
W j

i ≥ 0 on DN ,s and D+s W j
N/2−D−s W j

N/2 ≥ 0, for j = 1, 2, ...,M,

then W j
i ≤ 0 for all (si, t j) ∈ D̄N ,M.

Proof. By following the mehodology in [21], we proceed by contradiction. Let us assume that (sn, tm)
is a point where W attains its maximum. If Wm

n ≤ 0, then there is nothing to prove. Now, suppose that
Wm

n > 0. Clearly, n , 0,N , and hence, either sn ∈ D
N ,−
s ∪ DN ,+s or n = N/2. First consider the case

sn ∈ D
N ,−
s ∪ DN ,+s . Then, Wm

n −Wm
n−1 ≥ 0, Wm

n+1 −Wm
n ≤ 0 and Wm

n −Wm−1
n ≥ 0. Hence,

LM
N

Wm
n = εδ

2
sW

m
n + pm−1

n D+s Wm
n − qnWm

n − rnD−t Wm
n

=
ε

Hn

(
Wm

n+1 −Wm
n

hn+1
−

Wm
n −Wm

n−1

hn

)
+ pm−1

n

Wm
n+1 −Wm

n

hn+1
− qnWm

n − rn
Wm

n −Wm−1
n

k
≤ 0,

which is a contradiction. Now, the only possibility is n = N/2, and we have

D+s Wm
N/2 − D−s Wm

N/2 =
Wm
N/2+1 −Wm

N/2

hN/2+1
−

Wm
N/2 −Wm

N/2−1

hN/2
≤ 0,

which is again a contradiction. Hence, the proof is completed. □
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4. Error estimate

To get a bound of the nodal error |(Z − z)(si, t j)|, we will proceed as follows. First, we define the
regular component X and the singular component Y of the discretized solution Z. Later, the nodal
errors are considered outside and within the layer using these mesh functions. We assumeM = CN
throughout the rest of the paper.

Define the discrete regular component X to be the solution of the following system:

LM
N

X = f j
i , for i, j ∈ DN ,M,

X(0, t j) = x(0, t j), X(ζ, t j) = x(ζ, t j), X(1, t j) = x(1, t j), X(si, 0) = x(si, 0).
(4.1)

Define the discrete singular components Y to be the solution of the following system:

LM
N

Y = 0, for (si, t j) ∈ DN ,M, Y(si, 0) = 0,
Y(0, t j) = y(0, t j), Y(1, t j) = y(1, t j),

[DsY(ζ, t j)] = −[DsX(ζ, t j)], t j ∈ D
M,

(4.2)

where for any mesh function W, the jump discontinuity along the line s = ζ is represented by:

[DsW(ζ, t j)] = D+s W(ζ, t j) − D−s W(ζ, t j).

The singular component can be further decomposed as Y = Y1 + Y2 where Y1 is the boundary layer
function satisfying

LM
N

Y1 = 0, (si, t j) ∈ DN ,M,
Y1(0, t j) = y(0, t j) − x(0, t j), Y1(1, t j) = 0, Y1(si, 0) = 0,

(4.3)

and Y2 is the weak interior layer function, which solves the problem

LM
N

Y2 = 0, (si, t j) ∈ DN ,M,
Y2(0, t j) = 0, Y2(1, t j) = 0, Y2(si, 0) = 0,

[DsY2(ζ, t j)] = −[DsX(ζ, t j)] − [DsY1(ζ, t j)].
(4.4)

So, the discretized solution can be expressed as

Z = X + Y = X + Y1 + Y2.

Lemma 4.1. The regular component X of the discrete solution satisfies the following ε-uniform error
estimate:

|X(si, t j) − x(si, t j)| ≤

CN−1(ζ − si), si ≤ ζ,

CN−1(1 − si), si ≥ ζ,
where t j ∈ D

M
t .

Proof. Let us first consider the case si ≤ ζ, we have

{εδ2
s + p(si, X)D+s − qi − riD−t }(X − x)

= ε
∂2x
∂s2 + p(si, x)

∂x
∂s
− q(si)x − r(si)

∂x
∂t
− {εδ2

s + p(si, X)D+s − qi − riD−t }(x)
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= ε
(
∂2x
∂s2 − δ

2
s x

)
+ p(si, X)

(
∂x
∂s
− D+s x

)
+

(
p(si, x) − p(si, X)

)∂x
∂s
− r(si)

(
∂x
∂t
− D−t (x)

)
= ε

(
∂2x
∂s2 − δ

2
s x

)
+ p(si, X)

(
∂x
∂s
− D+s x

)
+ pz(si, ξ

j
i )(x − X)

∂x
∂s
− r(si)

(
∂x
∂t
− D−t (x)

)
.

Introduce the linear difference operator

LN ,Mx W := (εδ2
s + p(si, X)D+s + pz(s, ξ j

i )
∂x
∂s
− r(si)D−t )W,

where ξ j
i is defined implicitly by

p(si, x) − p(si, X) ≡ pz(si, ξ
j
i )(x − X).

Note that ∥pz(s, ξ j
i )∂x
∂s∥ ≤ C. Now,

LN ,Mx (X − x) = ε
(
δ2

s x −
∂x2

∂2s

)
+ p(si, X)

(
D+s x −

∂x
∂s

)
+ pz(si, ξ

j
i )
∂x
∂s

(X − x) − r(si)D−t (X − x).

Then by using standard local truncation error estimates and by Lemma 2.4, we have

|LN ,Mx (X − x)|(si, t j) ≤
ε

3
(si+1 − si−1)

∥∥∥∥∥∥∂x3

∂3s

∥∥∥∥∥∥ + p(si, X)
2

(si+1 − si)

∥∥∥∥∥∥∂x2

∂2s

∥∥∥∥∥∥ ≤ CN−1.

Using the barrier functions ψ±(s, t) = −CN−1(ζ − si) ± (X − x)(si, t j) and the discrete minimum
principle, the proof can be completed in the usual way. A similar procedure can be used for si ≥ ζ,
using a suitable barrier function and Theorem 3.1. □

Lemma 4.2. For (si, t j) ∈ DN ,M, the boundary layer function Y1 satisfies

|Y1 − y1| ≤ CN−1 lnN . (4.5)

Additionally, for si ≥ θ1, it holds that |Y1| ≤ CN−1.

Proof. Let us first consider the case s ≤ ζ. In the case when θ1 ≤ 1/4 for the region away from the
layer [θ1, ζ], using Lemma 2.5, we have

|y1(s, t)| ≤ C exp(−αs/ε) ≤ C exp(− lnN) = CN−1.

Now, consider the following transformation

Y1 = Λ(si, t j)Ŷ1,

where |Λ(si, t j)| ≤ C so that, for sufficiently largeN ≥ N0 (N0 is independent of ε) and for sufficiently
small ε ≤ ε0 (ε0 is independent N)

L̂M
N

Ŷ1 =
{
εδ2

s + p̂D−s − q̂ − r̂D−t
}

Ŷ1, p̂ ≥ α, q̂ ≥ β, r̂ > 0,
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and Ŷ1(0, t) = |y1(0, t)|, Ŷ1(ζ, t) = 0. Now, we take

Λ(si, t j) =


∏i

k=1(1 + ξ1ε
−1N−1hk)−1, k < N/4,

(1 + ξ1ε
−1N−1hk)−N/2

∏N/2
k=N/4(1 + ξ2hk)−1, N/4 ≤ k ≤ N/2,

where ξ2 > ξ1 > 0 are suitably chosen constants. Let Ỹ1 be the solution of

{εδ2
s + αD+s − qi − riD−t }Ỹ1 = 0,

Ỹ1(0, t) = |y1(0, t)|, Ỹ1(ζ, t) = 0.

Then, using the discrete comparison principle, we have

|Ŷ1| ≤ Ỹ1 ≤ CN−1.

Hence,
|Y1(si, t j) − y1(si, t j)| ≤ CN−1.

Now, for the layer region [0, θ1], we have

LM
N

(Y1 − y1) = LM
N

y1 − Ly1

= ε(δ2
sy1 − (y1)ss) + p(s,Z)D+s y1 − p(s, z)(y1)s − q(s)(Y1 − y1) − r(s)(D−t y1 − (y1)t)

= ε(δ2
sy1 − (y1)ss) + (p(s,Z) − p(s, z))(y1)s + p(s,Z)(D+s y1 − (y1)s) − r(s)(D−t y1 − (y1)t)

= ε(δ2
sy1 − (y1)ss) + (p(s, ξ j

i )(Z − z))(y1)s + p(s,Z)(D+s y1 − y1)s) − r(s)(D−t y1 − (y1)t).

Let us define the linear discrete operator

LN ,My1
W ≡ (εδ2

s + p(s, ξi)(y1)s + p(s,Z)D+s − r(s)D−t )W,

where ξ j
i is given implicitly by ps(s, ξ j

i )(Y1 − y1) ≡ p(s,Y1) − p(s, y1). Proving that

p(s,Z) − 4ε(ps(s, ξ j
i )(y1)s) > 0,

this linear discrete operator satisfies the maximum principle.
Now, adopting the methodology as in [3], using a suitable barrier function Ȳ1, which is the solution

of the problem:

(εδ2
s + p(s, ξi)(y1)s + p(s,Z)D+s − r(s)D−t )Ȳ1 = 0, (si, t j) ∈ D−,

Ȳ1(0, t j) = 1, Ȳ1(ζ, t j) = 0, Ȳ1(si, 0) = 0,

and a discrete comparison principle, the proof is complete. Similarly, bounds for the case s > ζ can be
proved easily. □

Lemma 4.3. The following ε-uniform bound holds:

|[DsY2(ζ, t j)]| ≤ C(1 + ε−1N−1).
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Proof. Since

[DsY2(ζ, t j)] = −[DsX(ζ, t j)] − [DsY1(ζ, t j)] = −(D+s X(ζ, t j) − D−s X(ζ, t j)) − (D+s Y1(ζ, t j) − D−s Y1(ζ, t j)),

it is enough to prove the bounds for each term in the right side of the equation. Now,

D−s X(ζ, t j) = D−s (X − x)(ζ, t j) + D−s x(ζ, t j)

and
∥∥∥∥∥∂x
∂s

∥∥∥∥∥
D−
≤ C, which implies |D−s x(ζ, t j)| ≤ C and |D−s (X − x)(ζ, t j)| = |(X − x)(ζ − hl, t j)/hl| ≤ CN−1

by Lemma 4.1. Hence,
[D−s X(ζ, t j)] ≤ C. (4.6)

Now, when si ≥ ζ,
D+s X(si, t j) = D+s (X − x)(si, t j) + D+s x(si, t j),

and
∥∥∥∥∥∂x
∂s

∥∥∥∥∥
D+
≤ C.

Also by applying Lemma 3.14 of [3], for si ≥ ζ, we get

ε|D+s (X − x)(si, t j)| ≤ CN−1, (4.7)

which gives

D+s X(si, t j) ≤ CN−1/ε +C = C
(
1 + ε−1N−1

)
. (4.8)

Now, to get the bounds for Y1, note that Y1(si, t j) ≤ CN−1, si ≥ θ1, and hence

|D−s Y1(ζ, t j)| ≤ C. (4.9)

Finally,

D+s Y1(ζ, t j) = D+s (Y1 − y1)(ζ, t j) + D+s y1(ζ, t j), and
∥∥∥∥∥∂y1

∂s

∥∥∥∥∥
D+
≤ Cε−1 exp(−αζ/ε) ≤ C.

Now, by following the arguments of Lemma 3.14 from [3] and using the bounds of the derivatives of
y1, one can get

D+s (Y1 − y1)(si, t j) ≤ C, si ≥ ζ. (4.10)

Hence,

D+s Y1(ζ, t j) ≤ C. (4.11)

Now, by combining the Eqs (4.6), (4.8), (4.9), and (4.11), the proof is complete. □

Concerning the interior layer function, the same bounds can be obtained, as stated in the following
result.

Lemma 4.4. For (si, t j) ∈ DN ,M, the interior layer function Y2 satisfies

|Y2 − y2| ≤ CN−1 lnN . (4.12)
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Proof. Let us first get the error estimates at the line of discontinuity s = ζ. Recalling that [xs(ζ, t)] +
[(y2)s(ζ, t)] = 0, we obtain

[Ds(Y2 − y2)(ζ, t)] = [DsY2(ζ, t)] − [Dsy2(ζ, t)] = [xs(ζ, t)] + [(y2)s(ζ, t)] + [DsY2(ζ, t)] − [Dsy2(ζ, t)]
= [xs(ζ, t)] + [(y2)s(ζ, t)] − [DsX(ζ, t j)] − [DsY1(ζ, t j)] − [Dsy2(ζ, t)]
= ([xs(ζ, t)] − [DsX(ζ, t j)]) + ([(y2)s(ζ, t)] − [Dsy2(ζ, t)]) − [DsY1(ζ, t j)]. (4.13)

Using [Lemma 3.14, [3]], we have

[xs(ζ, t)] − [DsX(ζ, t j)] = xs(ζ+, t) − D+s X(ζ, t j + xs(ζ−, t) − D−s X(ζ, t j) = [Ds(x − X)(ζ, t)] ≤ C(εN)−1.

(4.14)

Also, it is

[(y2)s(ζ, t)] − [Dsy2(ζ, t)] = (y2)s(ζ+, t) − D+s Y2(ζ, t j + (y2)s(ζ−, t) − D−s Y2(ζ, t j), (4.15)

which implies

|[(y2)s(ζ, t)] − [Dsy2(ζ, t)]| ≤ CHr

∥∥∥∥∥∥∂y2
2

∂2s

∥∥∥∥∥∥
[ζ,ζ+Hr]

+Chl

∥∥∥∥∥∥∂y2
2

∂2s

∥∥∥∥∥∥
[ζ−hl,ζ]

≤ C
Hr

ε
+C

Hr

ε
exp(−α/ε(ζ − Hr))

≤ CHr/ε +Chl ≤ CN−1 ln N. (4.16)

Finally,

|Dsy1(ζ, t)| ≤ (hl + Hr)|(y1)ss(ζ − hl)| ≤ C
hl + Hr

ε2 exp((−α/ε)(ζ − hl)) ≤ CN−1.

Using inequalities (4.14)–(4.16) and Lemma 3.16 [3], we obtain from (4.13)

|[Ds(y2 − Y2)(ζ, t j)]| ≤ C(εN)−1 lnN .

Consider the following transformation for the outer region [θ1, ζ],

Y2(si, t j) = ω(si, t j)Ŷ2(si, t j),

where |ω(si, t j)| ≤ C so that forN ≥ N0 and ε ≤ ε0 (whereN0 is independent of ε and ε0 is independent
of N),

L̂M
N

Ŷ2 =
{
εδ2

s + p̂D+s − q̂ − r̂D−t
}
Ŷ2(si, t j) = 0, p̂ ≥ α, q̂ ≥ 0, r̂ ≥ 0,

Ŷ2(0, t j) = |Y2(0, t j)|, Ŷ2(1, t j) = 0, [DsŶ2(ζ, t j)] = −[DsX(ζ, t j)] − [DsY1(ζ, t j)], Ŷ2(si, 0) = 0.

By choosing a suitable barrier function ω(si, t j) given by

ω(si, t) =


∏i

k=1(1 + ξ̂1ε
−1N−1hk)−1, k < N/4,

(1 + ξ̂1ε
−1N−1hk)−N/2

∏N/2
k=N/4(1 + ξ̂2hk)−1, N/4 ≤ k ≤ N/2,
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with ξ̂2 > ξ̂1 > 0 appropriate constants, the operator satisfies a comparison principle and we can get
that

|Ŷ2| ≤ Ỹ2 ≤ CN−1,

where Ỹ2(si, t j) is the solution of the following problem{
εδ2

s + αD+s − q − rD−t
}
Ỹ2(si, t j) = 0,

Ỹ2(0, t j) = |y2(0, , t j)|, Ỹ2(1, t j) = 0, [DsỸ2(ζ, t j)] = −[DsX(ζ, t j)] − [DsY1(ζ, t j)], Ỹ2(si, 0) = 0.

Hence,
|Y2(si, t j) − y2(si, t j)| ≤ CN−1.

Now, let us consider the truncation error in the layer regions:

LM
N

(Y2 − y2) = Ly2 − LM
N

y2

= ε
(
∂2y2

∂s2 − δ
2
sy2

)
+ p(si, y2)

∂y2

∂s
− p(si,Y2)D+s y2 − r

(
∂y2

∂t
− D−t (y2)

)
= ε

(
∂2y2

∂s2 − δ
2
sy2

)
+

(
p(si, y2) − p(si,Y2)

)∂y2

∂s
+ (p(s,Y2)

(
∂y2

∂s
− D+s y2

)
− r

(
∂y2

∂t
− D−t (y2)

)
= ε

(
∂2y2

∂s2 − δ
2
sy2

)
+ pz(si, ξ̄

j
i )(y2 − Y2)

∂y2

∂s
+ (p(s,Y2)

(
∂y2

∂s
− D+s y2

)
− r)

(
∂y2

∂t
− D−t (y2)

)
,

where ξ̄ j
i is defined implicitly by

p(si, y2) − p(si,Y2) ≡ pz(si, ξ̄
j
i )(y2 − Y2).

Note that ∥pz(s, ξ j
i )∂x
∂s∥ ≤ C. Now, we define the linear discrete operator

LN ,My2
W ≡

(
εδ2

s + pz(si, ξ̄
j
i )
∂y2

∂s
+ p(si,Y2)D+s − r(si)D−t

)
W.

The operator satisfies a discrete comparison principle, providing that the inequality

p2(si,Y2) − 4ε
(
pz(si, ξ̄

j
i )
∂y2

∂s

)
> 0

holds. Now, the operator LN ,My2 follows the linear case as in [22]. With the help of a comparison
principle and a suitable barrier function B±i, j = CN−1+CN−1 lnN ± (Y2−y2)(si, t j), we get the required
result, as usually. □

Now, we will state the main theoretical result of this paper.

Theorem 4.5. Let z be the solution of problem (1.1) and Z be the numerical solution of (3.3). Then,
the following error estimates hold:

∥Z − z∥D̄ ≤ CN−1(lnN),

and
ε

∥∥∥∥∥D+s Z −
∂z
∂s

∥∥∥∥∥
D̄

≤ CN−1 lnN .
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Proof. Combining Lemmas 4.1, 4.2, and 4.4, the proof is completed.
To derive the error bound for approximations to the scaled derivative, by applying the arguments

from [3, Section 3.5], separately on each subdomain [0, ζ] × (0,T ] and [ζ, 1] × (0,T ], we get

ε

∥∥∥∥∥D+s z −
∂z
∂s

∥∥∥∥∥
D̄

≤ CN−1 lnN ,

ε

∥∥∥∥∥D+s X −
∂x
∂s

∥∥∥∥∥
D̄

≤ CN−1 lnN ,

ε

∥∥∥∥∥D+s Y1 −
∂y1

∂s

∥∥∥∥∥
D−
≤ CN−1 lnN

and from the proof of Lemma 4.3, we obtain

ε

∥∥∥∥∥D+s Y1 −
∂y1

∂s

∥∥∥∥∥
D+
≤ CN−1 lnN .

Now, again by applying the arguments from [3, Section 3.5], for si ≥ ζ, we can get the following
bounds

ε

∥∥∥∥∥D+s Y2 −
∂y2

∂s

∥∥∥∥∥
D+
≤ CN−1 lnN .

For, si < ζ, define Ỹ2(si, t j) = Y2(si, t j) − Y2(ζ, t j) with

LM
N

Ỹ2 = 0. for (si, t j) ∈ DN ,M,
Ỹ2(0, t j) = −Y2(ζ, t j), Ỹ2(ζ, t j) = 0, Ỹ2(1, t j) = −Y2(ζ, t j).

Then, for si < ζ,

D+s (Y2 − y2)(si, t j) = D+s (Y2 − y2)(ζ, t j) + D+s (Ỹ2 − ỹ2)(si, t j) (4.17)

where ỹ2 is defined analogously to Ỹ2. Now, by adopting the methodology from [3], we can bound the
second term D+s (Ỹ2 − ỹ2)(si, t j) on the right side of Eq (4.17), whereas the first term D+s (Y2 − y2)(ζ, t j)
of Eq (4.17) is already bounded. □

5. Numerical results

To validate the theoretical results obtained in the previous sections, the proposed scheme has been
employed for solving two test problems. In order to get numerical solutions, we have linearized
system (3.3) and consider the following system

Z0
i = z0(si), for i = 1, ...,N .
LM
N
Z

j
i ≡ εδ

2
sZ

j
i + p j−1

i D+sZ
j
i − qiZ

j
i − riD−t Z

j
i = f j

i , si ∈ Ds,

D+sZ
j
N/2 = D−sZ

j
N/2

Z
j
0 = zl(t j), Z

j
N
= zr(t j),

(5.1)

for j = 1, 2, ...,M,
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where we used a linearization technique as the one described in [23, 24]. The above system can be
expressed in matrix form as

A Z j = Z j−1, j = 1, 2, ...,M,

where A is the coefficient matrix, which is an M-matrix of order (N − 1) × (N − 1), and Z j =

{Z0
1,Z

j
2, ...,Z

j
N−1}, j = 1, 2, ...,M.

Using Z0 = {Z0
1,Z

0
2, ...,Z

0
N−1} = {z0(s1), z0(s2), ..., z0(sN−1)}, Z j

0 = zl(t j), Z
j
N = zr(t j), j =

1, 2, ...,M, the above system can be solved for Z j.

The double mesh principle [3] is applied to approximate the errors in the maximum norm. For
simplicity, we takeM = CN . The errors are obtained through

EN ,Mε = max
(s,t)∈D

|Z
2N ,2M
2i,2 j −Z

N ,M
i, j |,

where ZN ,M and Z2N ,2M represent the numerical solutions to problem (1.1) on two meshes with N
and 2N number of subintervals, respectively. The finer mesh has the mesh points of the coarse mesh
along with their midpoints. The maximum pointwise error norm is determined by

EN ,M = max
ε

EN ,Mε .

Furthermore, the approximate orders of convergence are calculated using the standard formula:

QN ,M = log2

(
EN ,M

E2N ,2M

)
.

The errors and orders of convergence associated with time and space are calculated separately by
fixing N andM, respectively. The errors EN , EM and the maximum pointwise error norms EN , EM

are obtained as
ENε = max

(s,t)∈D
|Z2N ,M −ZN ,M|, EN = max

ε
ENε .

EMε = max
(s,t)∈D

|ZN ,2M −ZN ,M|, EM = max
ε

EMε .

The estimate of orders of convergence for space and time are calculated, respectively, by

QN = log2

(
EN

E2N

)
, QM = log2

(
EM

E2M

)
.

Example 5.1. Consider problem (1.1) with the following data

p(s, z) = sin(z) + 1, q(s) = sin2(s) + 1, r(s) = 1,
z0(s) = s, zl(t) = z0(0) = 0, zr(t) = z0(1) = 1,

f (s, t) =

− sin(s)2
− sin(t), s < ζ,

sin(s)2 + sin(t), s > ζ,
where ζ = 0.5.

Example 5.2. Consider problem (1.1) with the following data

p(s, z) = z + 1, q(s) = log(s + 2), r(s) = 1,
z0(s) = log(s + 2), zl(t) = z0(0) = log(2), zr(t) = z0(1) = log(3),

f (s, t) =

−(log(s + 2) + t)3, s < ζ,

(log(s + 2) + t)3, s > ζ,
where ζ = 0.7.
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For ε = 2−7 and N = 32, solution graphs are given for both problems. From Figures 1 and 2,
one can clearly observe that apart from a boundary layer at s = 0, a weak interior layer exists at the
right side of the line of discontinuity. For ε = 2−6, ..., 2−25, N = 25, ..., 210, Tables 1 and 2 provide the
pointwise errors and convergence rates for Examples 5.1 and 5.2 with N =M. To analyse the rate of
convergence in the space and time variable, Tables 3 and 4 are presented withN = 256, M = 25, ..., 210

and Tables 5 and 6 are presented withM = 128, N = 25, ..., 210. These tables demonstrate an almost
first-order convergence in space and a first-order convergence in time. The numerical results presented
in these tables corroborate the theoretical findings and confirm that the method achieves nearly first-
order convergence.

Figure 1. Solution graph for the value ε = 2−7 and N = 32 for Example 5.1.

Figure 2. Solution graph for the value ε = 2−7 and N = 32 for Example 5.2.
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Table 1. Maximum point-wise errors EN ,M and orders of convergence QN ,M calculated for
Example 5.1 for N =M.

ε M = 32 M = 64 M = 128 M = 256 M = 512 M = 1024

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2−6 1.858e- 2 1.180e- 2 6.891e- 3 4.092e- 3 2.538e- 3 1.631e- 3

2−7 2.013e- 2 1.308e- 2 7.730e- 3 4.550e- 3 2.788e- 3 1.767e- 3

2−8 2.102e- 2 1.389e- 2 8.317e- 3 4.900e- 3 3.000e- 3 1.900e- 3

2−9 2.149e- 2 1.433e- 2 8.649e- 3 5.108e- 3 3.129e- 3 1.982e- 3

2−10 2.173e- 2 1.456e- 2 8.829e- 3 5.219e- 3 3.199e- 3 2.028e- 3

2−11 2.185e- 2 1.468e- 2 8.922e- 3 5.276e- 3 3.235e- 3 2.051e- 3

2−12 2.190e- 2 1.473e- 2 8.969e- 3 5.305e- 3 3.253e- 3 2.064e- 3

2−13 2.193e- 2 1.476e- 2 8.992e- 3 5.319e- 3 3.262e- 3 2.070e- 3

2−14 2.195e- 2 1.478e- 2 9.004e- 3 5.327e- 3 3.267e- 3 2.073e- 3

2−15 2.196e- 2 1.479e- 2 9.010e- 3 5.330e- 3 3.269e- 3 2.074e- 3

2−16 2.196e- 2 1.479e- 2 9.013e- 3 5.332e- 3 3.271e- 3 2.075e- 3

2−17 2.196e- 2 1.479e- 2 9.014e- 3 5.333e- 3 3.271e- 3 2.076e- 3

. . . . . . .

. . . . . . .

. . . . . . .

2−25 2.196e- 2 1.479e- 2 9.016e- 3 5.334e- 3 3.272e- 3 2.076e- 3

EN ,M 2.196e- 2 1.479e- 2 9.016e- 3 5.334e- 3 3.272e- 3 2.076e- 3

QN ,M 0.5703 0.7143 0.7572 0.7052 0.6563
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Table 2. Maximum point-wise errors EN ,M and orders of convergence QN ,M calculated for
Example 5.2 for N =M.

ε M = 32 M = 64 M = 128 M = 256 M = 512 M = 1024

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2−6 1.049e- 1 7.356e- 2 5.020e- 2 3.117e- 2 1.919e- 2 1.155e- 2

2−7 7.026e- 2 4.641e- 2 3.060e- 2 2.022e- 2 1.330e- 2 8.602e- 3

2−8 7.726e- 2 5.044e- 2 3.149e- 2 1.860e- 2 1.043e- 2 5.525e- 3

2−9 8.332e- 2 5.558e- 2 3.502e- 2 2.130e- 2 1.221e- 2 6.668e- 3

2−10 8.631e- 2 5.812e- 2 3.707e- 2 2.267e- 2 1.315e- 2 7.274e- 3

2−11 8.779e- 2 5.938e- 2 3.8 9e- 2 2.335e- 2 1.362e- 2 7.577e- 3

2−12 8.853e- 2 6.001e- 2 3.860e- 2 2.369e- 2 1.385e- 2 7.728e- 3

2−13 8.890e- 2 6.033e- 2 3.885e- 2 2.386e- 2 1.397e- 2 7.809e- 3

2−14 8.908e- 2 6.049e- 2 3.898e- 2 2.394e- 2 1.4 3e- 2 7.849e- 3

2−15 8.917e- 2 6.056e- 2 3.904e- 2 2.398e- 2 1.406e- 2 7.870e- 3

2−16 8.922e- 2 6.060e- 2 3.908e- 2 2.401e- 2 1.407e- 2 7.880e- 3

2−17 8.924e- 2 6.062e- 2 3.909e- 2 2.402e- 2 1.408e- 2 7.885e- 3

. . . . . . .

. . . . . . .

. . . . . . .

2−25 8.926e- 2 6.064e- 2 3.911e- 2 2.403e- 2 1.409e- 2 7.890e- 3

EN ,M 1.049e- 1 7.356e- 2 5.020e- 2 3.117e- 2 1.919e- 2 1.155e- 2

QN ,M 0.5114 0.5512 0.6876 0.6998 0.7327
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Table 3. Maximum point-wise errors EM and orders of convergence QM calculated for
Example 5.1 with N = 256.

ε M = 32 M = 64 M = 128 M = 256 M = 512 M = 1024
2−6 1.536e-02 1.001e-02 6.071e-03 3.456e-03 1.874e-03 9.829e-04
2−7 1.510e-02 9.732e-03 5.834e-03 3.283e-03 1.762e-03 9.167e-04
2−8 1.492e-02 9.552e-03 5.685e-03 3.179e-03 1.698e-03 8.802e-04
2−9 1.483e-02 9.453e-03 5.604e-03 3.124e-03 1.664e-03 8.617e-04
2−10 1.477e-02 9.401e-03 5.563e-03 3.096e-03 1.648e-03 8.524e-04
2−11 1.475e-02 9.374e-03 5.542e-03 3.082e-03 1.639e-03 8.477e-04
2−12 1.473e-02 9.361e-03 5.531e-03 3.075e-03 1.635e-03 8.454e-04
2−13 1.473e-02 9.354e-03 5.526e-03 3.072e-03 1.633e-03 8.443e-04
2−14 1.472e-02 9.351e-03 5.523e-03 3.070e-03 1.632e-03 8.437e-04
2−15 1.472e-02 9.349e-03 5.522e-03 3.069e-03 1.631e-03 8.434e-04
2−16 1.472e-02 9.349e-03 5.521e-03 3.068e-03 1.631e-03 8.432e-04
2−17 1.472e-02 9.348e-03 5.521e-03 3.068e-03 1.631e-03 8.432e-04

. . . . . . .

. . . . . . .

. . . . . . .
2−25 1.472e-02 9.348e-03 5.521e-03 3.068e-03 1.631e-03 8.431e-04
EM 1.536e-02 1.001e-02 6.071e-03 3.456e-03 1.874e-03 9.829e-04
QM 0.6180 0.7208 0.8127 0.8830 0.9311

Table 4. Maximum point-wise errors EM and orders of convergence QM calculated for
Example 5.2 with N = 256.

ε M = 32 M = 64 M = 128 M = 256 M = 512 M = 1024
2−6 3.218e-02 1.799e-02 9.549e-03 4.925e-03 2.502e-03 1.359e-03
2−7 3.252e-02 1.819e-02 9.660e-03 4.983e-03 2.531e-03 1.295e-03
2−8 3.280e-02 1.835e-02 9.746e-03 5.027e-03 2.554e-03 1.287e-03
2−9 3.296e-02 1.844e-02 9.792e-03 5.051e-03 2.566e-03 1.293e-03
2−10 3.306e-02 1.849e-02 9.818e-03 5.064e-03 2.572e-03 1.296e-03
2−11 3.311e-02 1.852e-02 9.831e-03 5.071e-03 2.576e-03 1.298e-03
2−12 3.313e-02 1.853e-02 9.839e-03 5.074e-03 2.578e-03 1.299e-03
2−13 3.315e-02 1.854e-02 9.843e-03 5.076e-03 2.579e-03 1.300e-03
2−14 3.316e-02 1.854e-02 9.845e-03 5.078e-03 2.579e-03 1.300e-03
2−15 3.316e-02 1.855e-02 9.846e-03 5.078e-03 2.579e-03 1.300e-03
2−16 3.316e-02 1.855e-02 9.847e-03 5.078e-03 2.580e-03 1.300e-03
2−17 3.316e-02 1.855e-02 9.847e-03 5.079e-03 2.580e-03 1.300e-03

. . . . . . .

. . . . . . .

. . . . . . .
2−25 3.316e-02 1.855e-02 9.847e-03 5.079e-03 2.580e-03 1.300e-03
EM 3.316e-02 1.855e-02 9.847e-03 5.079e-03 2.580e-03 1.300e-03
QM 0.8383 0.9135 0.9553 0.97773 0.9885
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Table 5. Maximum point-wise errors EN and orders of convergence QN calculated for
Example 5.1 withM = 128.

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
2−6 1.512e-02 9.353e-03 5.306e-03 2.818e-03 1.413e-03 6.875e-04
2−7 1.716e-02 1.109e-02 6.632e-03 3.690e-03 1.941e-03 9.831e-04
2−8 1.809e-02 1.191e-02 7.272e-03 4.142e-03 2.231e-03 1.155e-03
2−9 1.855e-02 1.230e-02 7.590e-03 4.365e-03 2.376e-03 1.244e-03
2−10 1.877e-02 1.250e-02 7.743e-03 4.474e-03 2.448e-03 1.288e-03
2−11 1.888e-02 1.259e-02 7.821e-03 4.535e-03 2.485e-03 1.309e-03
2−12 1.893e-02 1.263e-02 7.856e-03 4.561e-03 2.503e-03 1.321e-03
2−13 1.896e-02 1.266e-02 7.872e-03 4.573e-03 2.512e-03 1.326e-03
2−14 1.897e-02 1.267e-02 7.881e-03 4.579e-03 2.516e-03 1.328e-03
2−15 1.898e-02 1.268e-02 7.887e-03 4.582e-03 2.518e-03 1.330e-03
2−16 1.898e-02 1.268e-02 7.890e-03 4.583e-03 2.519e-03 1.330e-03
2−17 1.898e-02 1.268e-02 7.891e-03 4.584e-03 2.519e-03 1.331e-03

. . . . . . .

. . . . . . .

. . . . . . .
2−25 1.899e-02 1.269e-02 7.892e-03 4.585e-03 2.520e-03 1.331e-03
EN 1.899e-02 1.269e-02 7.892e-03 4.585e-03 2.520e-03 1.331e-03
QN 0.5817 0.6848 0.7836 0.8636 0.9208

Table 6. Maximum point-wise errors EN and orders of convergence QN calculated for
Example 5.2 withM = 128.

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
2−6 8.007e-02 5.905e-02 4.203e-02 2.649e-02 1.639e-02 9.775e-03
2−7 6.695e-02 4.029e-02 2.331e-02 1.538e-02 1.060e-02 6.991e-03
2−8 7.931e-02 5.062e-02 3.043e-02 1.752e-02 9.537e-03 4.940e-03
2−9 8.530e-02 5.572e-02 3.438e-02 2.021e-02 1.127e-02 6.013e-03
2−10 8.851e-02 5.824e-02 3.641e-02 2.157e-02 1.217e-02 6.577e-03
2−11 9.051e-02 5.949e-02 3.743e-02 2.224e-02 1.264e-02 6.862e-03
2−12 9.151e-02 6.012e-02 3.794e-02 2.258e-02 1.287e-02 7.007e-03
2−13 9.201e-02 6.043e-02 3.819e-02 2.275e-02 1.299e-02 7.082e-03
2−14 9.226e-02 6.059e-02 3.832e-02 2.284e-02 1.305e-02 7.120e-03
2−15 9.239e-02 6.066e-02 3.838e-02 2.288e-02 1.308e-02 7.139e-03
2−16 9.245e-02 6.070e-02 3.841e-02 2.290e-02 1.309e-02 7.148e-03
2−17 9.248e-02 6.072e-02 3.843e-02 2.291e-02 1.310e-02 7.153e-03

. . . . . . .

. . . . . . .

. . . . . . .
2−25 9.251e-02 6.074e-02 3.844e-02 2.292e-02 1.311e-02 7.158e-03
EN 9.251e-02 6.074e-02 3.844e-02 2.292e-02 1.311e-02 7.158e-03
QN 0.6070 0.6600 0.7460 0.8065 0.8726
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6. Conclusions

A quasilinear one-dimensional parabolic convection-reaction-diffusion problem with a
discontinuous source term has been considered. The solution exhibits a boundary layer at s = 0 and
a weak interior layer to the right of the discontinuity. A numerical method is constructed to solve
the problem, yielding an ε-uniform convergent numerical approximation to the solution. The method
employs the standard upwind scheme on the spatial domain and the backward upwind scheme on
the temporal domain. A Shishkin mesh is used to discretize the space while the time is discretized
using a uniform mesh. The scheme achieves nearly first-order convergence in space and first-order
convergence in time. Two numerical examples supporting the theoretical results are presented.
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15. O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasi-linear equations of
parabolic type, In: Translations of mathematical monographs, Vol. 23, American Mathematical
Society, 1968.

16. E. O’Riordan, G. I. Shishkin, Singularly perturbed parabolic problems with non-smooth data, J.
Comput. Appl. Math., 166 (2004), 233–245. https://doi.org/10.1016/j.cam.2003.09.025

AIMS Mathematics Volume 10, Issue 3, 6827–6852.

https://dx.doi.org/https://doi.org/10.1201/9781482285727
https://dx.doi.org/https://doi.org/10.1142/8410
https://dx.doi.org/https://doi.org/10.1007/978-3-540-34467-4
https://dx.doi.org/https://doi.org/10.1016/j.mcm.2005.01.025
https://dx.doi.org/https://doi.org/10.1090/S0025-5718-08-02157-1
https://dx.doi.org/https://doi.org/10.1090/S0025-5718-08-02157-1
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2021.106232
https://dx.doi.org/https://doi.org/10.1016/j.jocs.2024.102475
https://dx.doi.org/https://doi.org/10.1007/978-3-662-52919-5
https://dx.doi.org/https://doi.org/10.1007/978-3-7091-3678-2
https://dx.doi.org/https://doi.org/10.1016/j.cam.2003.09.025


6852

17. K. Mukherjee, S. Natesan, ε-Uniform error estimate of hybrid numerical scheme for singularly
perturbed parabolic problems with interior layers, Numer. Algor., 58 (2011), 103–141.
https://doi.org/10.1007/s11075-011-9449-6

18. S. R. Bernfeld, V. Lakshmikantham, An introduction to nonlinear boundary value problems, New
York: Academic Press, 1974.

19. J. J. H. Miller, E. O’Riordan, G. I. Shishkin, L. P. Shishkina Fitted mesh methods for problems
with parabolic boundary layers, Math. Proc. Royal Irish Acad., 98A (1998), 173–190.

20. M. Stynes, E. O’Riordan, Uniformly convergent difference schemes for singularly perturbed
parabolic diffusion-convection problems without turning points, Numer. Math., 55 (1989), 521–
544. https://doi.org/10.1007/BF01398914

21. P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan, G. I. Shishkin, Singularly perturbed
convection–diffusion problems with boundary and weak interior layers, J. Comput. Appl. Math.,
166 (2004), 133–151. https://doi.org/10.1016/j.cam.2003.09.033

22. H. G Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential
equations: convection-diffusion and flow problems, Springer Berlin, Heidelberg, 1996.
https://doi.org/10.1007/978-3-662-03206-0

23. E. O’Riordan, J. Quinn, A linearised singularly perturbed convection–diffusion problem with an
interior layer, Appl. Numer. Math., 98 (2015), 1–17. https://doi.org/10.1016/j.apnum.2015.08.002

24. J. W. Thomas, Numerical partial differential equations: finite difference methods, Springer Science
& Business Media, 2013.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 6827–6852.

https://dx.doi.org/https://doi.org/10.1007/s11075-011-9449-6
https://dx.doi.org/https://doi.org/10.1007/BF01398914
https://dx.doi.org/https://doi.org/10.1016/j.cam.2003.09.033
https://dx.doi.org/https://doi.org/10.1007/978-3-662-03206-0
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2015.08.002
https://creativecommons.org/licenses/by/4.0

	Introduction
	Analytical results
	Discretization of the problem
	Mesh discretization
	Discretization of the problem

	Error estimate
	Numerical results
	Conclusions

