Research article

A proposed non-parametric triple generally weighted moving average sign chart

  • Received: 11 November 2024 Revised: 01 February 2025 Accepted: 07 February 2025 Published: 18 March 2025
  • MSC : 62P30, 90B25

  • In practical applications of statistical process control (SPC), the distribution in which the sample data follow often remains unknown. Non-parametric control charts are necessary in process monitoring in such cases. A triple generally weighted moving average (TGWMA) sign chart is proposed in this study for monitoring the process when the underlying distribution is unknown. Simulation is used to compare the performance of the TGWMA sign chart with the existing double generally weighted moving average (DGWMA) sign chart, for both steady state (SS) and zero state (ZS) cases. From the comparison, the TGWMA sign chart shows superior sensitivity in identifying small shifts in the process proportion for both ZS and SS cases. Lastly, we demonstrate the application of the TGWMA sign chart through a practical example and compare it to the DGWMA sign chart in detecting process shifts, further showing the effectiveness of using the TGWMA sign chart.

    Citation: Dongmei Cui, Michael B. C. Khoo, Huay Woon You, Sajal Saha, Zhi Lin Chong. A proposed non-parametric triple generally weighted moving average sign chart[J]. AIMS Mathematics, 2025, 10(3): 5928-5959. doi: 10.3934/math.2025271

    Related Papers:

    [1] Showkat Ahmad Lone, Zahid Rasheed, Sadia Anwar, Majid Khan, Syed Masroor Anwar, Sana Shahab . Enhanced fault detection models with real-life applications. AIMS Mathematics, 2023, 8(8): 19595-19636. doi: 10.3934/math.20231000
    [2] Mediha Maqsood, Aamir Sanaullah, Yasar Mahmood, Afrah Yahya Al-Rezami, Manal Z. M. Abdalla . Efficient control chart-based monitoring of scale parameter for a process with heavy-tailed non-normal distribution. AIMS Mathematics, 2023, 8(12): 30075-30101. doi: 10.3934/math.20231538
    [3] Imad Khan, Muhammad Noor-ul-Amin, Narjes Turki Khalifa, Asma Arshad . EWMA control chart using Bayesian approach under paired ranked set sampling schemes: An application to reliability engineering. AIMS Mathematics, 2023, 8(9): 20324-20350. doi: 10.3934/math.20231036
    [4] Khanittha Talordphop, Yupaporn Areepong, Saowanit Sukparungsee . An empirical assessment of Tukey combined extended exponentially weighted moving average control chart. AIMS Mathematics, 2025, 10(2): 3945-3960. doi: 10.3934/math.2025184
    [5] Muhammad Aslam, Khushnoor Khan, Mohammed Albassam, Liaquat Ahmad . Moving average control chart under neutrosophic statistics. AIMS Mathematics, 2023, 8(3): 7083-7096. doi: 10.3934/math.2023357
    [6] Tahir Abbas, Muhammad Riaz, Bushra Javed, Mu'azu Ramat Abujiya . A new scheme of dispersion charts based on neoteric ranked set sampling. AIMS Mathematics, 2023, 8(8): 17996-18020. doi: 10.3934/math.2023915
    [7] Zhongqi Liang, Yanqiu Zhou . Model averaging based on weighted generalized method of moments with missing responses. AIMS Mathematics, 2023, 8(9): 21683-21699. doi: 10.3934/math.20231106
    [8] Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov . Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441
    [9] Anthony Overmars, Lorenzo Ntogramatzidis, Sitalakshmi Venkatraman . A new approach to generate all Pythagorean triples. AIMS Mathematics, 2019, 4(2): 242-253. doi: 10.3934/math.2019.2.242
    [10] Lichao Feng, Mengyuan Dai, Nan Ji, Yingli Zhang, Liping Du . Prescribed-time stabilization of nonlinear systems with uncertainties/disturbances by improved time-varying feedback control. AIMS Mathematics, 2024, 9(9): 23859-23877. doi: 10.3934/math.20241159
  • In practical applications of statistical process control (SPC), the distribution in which the sample data follow often remains unknown. Non-parametric control charts are necessary in process monitoring in such cases. A triple generally weighted moving average (TGWMA) sign chart is proposed in this study for monitoring the process when the underlying distribution is unknown. Simulation is used to compare the performance of the TGWMA sign chart with the existing double generally weighted moving average (DGWMA) sign chart, for both steady state (SS) and zero state (ZS) cases. From the comparison, the TGWMA sign chart shows superior sensitivity in identifying small shifts in the process proportion for both ZS and SS cases. Lastly, we demonstrate the application of the TGWMA sign chart through a practical example and compare it to the DGWMA sign chart in detecting process shifts, further showing the effectiveness of using the TGWMA sign chart.



    In order to satisfy or surpass consumers' expectations, it is imperative for the process performance to be consistent. SPC is a useful approach for improving product quality and enhancing process stability through the reduction of variability. The control chart is the most practical tool in SPC and is frequently employed in process monitoring. Many new types of control charts have been developed since the inception of the Shewhart chart. The cumulative sum (CUSUM), exponentially weighted moving average (EWMA), and generally weighted moving average (GWMA) charts were developed to facilitate the rapid detection of small process shifts as the Shewhart chart is inefficient in this regard. Most of the above-mentioned charts assume that the samples being observed are normally distributed. However, in actual process monitoring situations, the normality assumption is usually violated and practitioners do not have any knowledge about the distribution of the underlying process being monitored. An effective approach to address the aforementioned issue is the use of non-parametric control charts.

    In this paragraph, some non-parametric charts are evaluated. Amin et al. [1] developed non-parametric Shewhart and CUSUM charts to identify fluctuations in the mean or standard deviation of a process by utilizing sign-test statistics computed for each sample. Chakraborti and Eryilmaz [2] utilized the Wilcoxon signed rank statistic and several runs type constraints to develop Shewhart-type non-parametric charts for known in-control median of a continuous distribution. Zhou et al. [3] developed a non-parametric chart that employs the Mann-Whitney statistic to identify changes in the mean, which has been modified for repetitive sequential use. In detecting an increase in process variation, Khilare and Shirke [4] proposed synthetic charts that were non-parametric and side-sensitive for fraction nonconforming. Tapang et al. [5] expanded the application of non-parametric charts in real-world contexts by applying ranked set sampling techniques to several well-known non-parametric tests, while exploring alternative sampling methods. Li et al. [6] utilized a run test to extend non-parametric monitoring in a multivariate context, adapting it to multiple quality characteristics simultaneously. The efficiency of monitoring complex processes was enhanced by Boroomandi and Kharrati-Kopaei [7], who devised four non-parametric variance estimators and three control charts based on partially rank ordered set (PROS) sampling. This further advanced innovative sampling approaches. Lastly, Malela-Majika [8] introduced a precedence chart that employed repetitive sampling, thereby demonstrating an application-oriented perspective on the design of non-parametric control charts and offering practical insights for their implementation.

    The EWMA method is essential in the development of non-parametric control charts. The accuracy and efficiency in process monitoring were improved by Malela-Majika et al. [9], who introduced an EWMA chart that applies the Wilcoxon rank-sum statistic and recurrent sampling technique. Tang et al. [10] proposed a non-parametric adaptive EWMA chart that is based on the sign statistic, which offers improved flexibility in adapting to process changes over time. Alevizakos et al. [11] advanced the use of the EWMA chart by proposing a triple EWMA chart that tracks the location parameter of an unknown continuous distribution using the sign statistic. Furthermore, an EWMA sign chart with dynamic probability control limits that can accommodate both fixed and variable sample sizes was presented by Haq [12].

    The EWMA approach has been significantly improved by researchers in recent years to handle real-world process monitoring issues. Ng et al. [13] suggested an EWMA t chart with variable sampling intervals and auxiliary information that reduces the impact of estimation error. By developing a non-parametric adaptive EWMA chart for monitoring multivariate time-between-events and amplitude data, Xue et al. [14] extended the EWMA approach and showed its increasing usefulness in intricate processes. Sheu and Lin [15] showed that the EWMA chart may be viewed as a particular instance of the GWMA chart when the latter employs a parameter value of γ=1. Likewise, the double EWMA (DEWMA) and triple EWMA (TEWMA) charts are special cases of the DGWMA and TGWMA charts when the last two charts adopt the parameter values α=β=1 and α=β=γ=1, respectively [16]. Details about the adjustable parameters α, β, and γ will be explained in Sections 2 and 3. The GWMA chart and its extended counterparts enhance the sensitivity of the EWMA charts in detecting small shifts as a result of having more adjustable parameters.

    Several existing GWMA-type charts have been reviewed in the literature, each of which has contributed to the development of non-parametric methods. Lu [17] developed a non-parametric GWMA sign chart for an enhanced detection of small process shifts. Chakraborty et al. [18] extended this concept by proposing a non-parametric GWMA chart that employs the Wilcoxon signed-rank statistic, thereby providing increased sensitivity in detecting process shifts. A non-parametric DGWMA sign chart was introduced by Lu [19] which further enhanced the GWMA sign chart's ability to detect small shifts. In addition, Alevizakos et al. [20] provided a non-parametric DGWMA chart that utilizes the signed-rank statistic to monitor location parameters, thereby presenting an alternative method in process monitoring. Mabude et al. [21] further contributed to the field by developing a non-parametric Phase-II composite Shewhart-GWMA chart that employs the Mann-Whitney statistic. In the interim, Godase and Mahadik [22] introduced non-parametric combined Shewhart-CUSUM charts that incorporate the sign statistic to enhance process monitoring. In addition, Mabude et al. [23] developed two non-parametric mixed charts by combining the GWMA and CUSUM charts, which are useful in real-world applications.

    Although the current EWMA type, GWMA type, and their hybrid charts have made substantial progress in detecting small shifts, these charts continue to encounter problems in detecting extremely small and progressively changing process shifts. The high complexity of current hybrid charts, such as the GWMA-CUSUM chart, can result in increased computational costs. Additionally, there is a notable lack of research in the SS performance, as the majority of current non-parametric charts concentrate significantly in the ZS performance. The double moving weighting mechanism of the DGWMA sign chart renders it exceptionally appropriate for monitoring intricate, noisy industrial processes with minimal shift amplitudes, showcasing distinct value and potential for application. Furthermore, there is no "triple" type chart for non-parametric monitoring in the existing literature besides the proposed TGWMA sign chart. The TGWMA sign chart retains the advantages of the DGWMA sign chart, in terms of noise smoothing, dynamic balancing of false alarm rates and sensitivity, flexible parameter adjustment, robustness towards small sample monitoring, and progressive stability for long-term monitoring. These advantages are challenging to be replicated by other existing non-parametric control charts. The proposed TGWMA sign chart in this study also offers enhanced monitoring capabilities, particularly for very small shifts. In addition to the ZS performance, this paper focuses on the SS performance to align more closely with real-life production processes.

    The remaining sections of this paper are organized as follows: In Section 2, an overview of the DGWMA sign chart is given. Section 3 presents the proposed TGWMA sign chart, while Section 4 evaluates the developed TGWMA sign chart by comparing its performance with that of the existing DGWMA sign chart. An example of an application for the TGWMA sign chart is given in Section 5. Conclusions are drawn and suggestions for further research are given in Section 6.

    Lu [19] developed the DGWMA sign chart for monitoring small process shifts when the distribution of the quality characteristic of the process is unknown. Let X denote a quality characteristic from a continuous distribution with a known value of the target median μ0. In addition, let

    Y=Xμ0 and the process proportion p=P(Y>0). Note that if{p=0.5,the process is in-controlp0.5,the process is out-of-control.

    Suppose that a sample of size n is taken at time t. Then, Yit=Xitμ0 for i = 1, 2, …, n. Let

    Iit={1,ifYit>00,otherwise (1)

    and St=ni=1Iit. St follows the binomial Bin(n,0.5) distribution when the process is in-control. The GWMA sign chart's statistic is (Lu [19])

    Gt=tj=1P(H1=j)Stj+1+P(H1>t)G0. (2)

    In Eq (2), P(H1=1), P(H1=2), …, P(H1=t) are used to weight St, St1, …, S1, respectively, and P(H1>t) is used to weight the starting value of Gt, i.e., G0. Note that G0=n/2 because E(Gt) = E(St)=n/2 when the process is in-control (Lu [19]). In Eq (2), P(H1=j)=q(j1)α1qjα1 and P(H1>t)=qtα1 for j = 1, 2, …, t, where q1 is a constant satisfying 0 ≤ q1 < 1 and α is an adjustable parameter.

    To obtain the DGWMA sign chart's statistic, i.e., DGt, we weight Gt in Eq (2) in the same way that we weight St, hence, giving

    DGt=P(H2=1)Gt+P(H2=2)Gt1++P(H2=t)G1+P(H2>t)G0=P(H2=1)(P(H1=1)St+P(H1=2)St1++P(H1=t)S1+P(H1>t)G0)
    +P(H2=2)(P(H1=1)St1+P(H1=2)St2++P(H1=t1)S1+P(H1>t1)G0)
    ++P(H2=t)(P(H1=1)S1+P(H1>1)G0)+P(H2>t)G0
    =M1St+M2St1++MtS1+(1ti=1Mi)G0
    =ti=1MiSti+1+(1ti=1Mi)G0, (3)

    where

    Mt=ti=1P(H1=i)P(H2=ti+1)
    =ti=1(q(i1)α1qiα1)(q(ti)β2q(ti+1)β2). (4)

    In Eq (4), α and β are adjustable constants and 0 ≤ qk < 1 (for k = 1, 2). According to Lu [19], the expectation and variance of the DGWMA sign chart's statistic, DGt, when the process is in-control are given in Eqs (5) and (6), respectively.

    E(DGt)=E(M1St+M2St1++MtS1+(1ti=1Mi)G0)
    =E(M1St+M2St1++MtS1)+E((1ti=1Mi)G0)
    =n2ti=1Mi+n2(1ti=1Mi)=n/2 (5)

    and

    Var(DGt)=Var(M1St+M2St1++MtS1+(1ti=1Mi)G0)
    =Var(M1St+M2St1++MtS1)+Var((1ti=1Mi)G0)
    =n4ti=1M2i. (6)

    Consequently, the time-varying limits of the DGWMA sign chart are

    UCL=n/2+LDGn4ti=1M2i (7a)
    CL=n/2 (7b)

    and

    LCL=n/2LDGn4ti=1M2i. (7c)

    The asymptotic variance of the statistic DGt is obtained as

    limtVar(DGt)=n4t=1(ti=1(q(i1)α1qiα1)(q(ti)β2q(ti+1)β2))2, (8)

    where α and β are adjustable constants and 0 ≤ qk < 1 (for k = 1, 2). Let

    R1=t=1(ti=1(q(i1)α1qiα1)(q(ti)β2q(ti+1)β2))2. (9)

    Then, the asymptotic limits of the DGWMA sign chart are

    UCL=n/2+LDGnR14 (10a)
    CL=n/2 (10b)

    and

    LCL=n/2LDGnR14. (10c)

    where LDG is the width constant of the DGWMA sign chart's limits.

    To obtain the TGWMA sign chart's statistic, i.e., TGt, we weight DGt in Eq (3) in the same way that we weight Gt or St. Thus,

    TGt=P(H3=1)DGt+P(H3=2)DGt1++P(H3=t)DG1+P(H3>t)G0
    =P(H3=1)(M1St+M2St1++MtS1+(1ti=1Mi)G0)
    +P(H3=2)(M1St1+M2St2++Mt1S1+(1t1i=1Mi)G0)+⋯
    +P(H3=t)(M1S1+(1M1)G0)+P(H3>t)G0
    =P(H3=1)M1St+[P(H3=1)M2+P(H3=2)M1]St1+
    +[P(H3=1)Mt+P(H3=2)Mt1++P(H3=t)M1]S1
    +P(H3=1)(1ti=1Mi)G0+P(H3=2)(1t1i=1Mi)G0++P(H3=t)(1M1)G0+P(H3>t)G0
    =N1St+N2St1++NtS1+Z, (11)

    where

    Nt=tj=1P(H3=j)Mtj+1
    =tj=1(q(j1)Υ3qjΥ3)Mtj+1 (12)

    and

    Z=P(H3=1)(1ti=1Mi)G0+P(H3=2)(1t1i=1Mi)G0
    ++P(H3=t)(1M1)G0+P(H3>t)G0
    =(P(H3=1)+(H3=2)++P(H3=t)+P(H3>t))G0
    (P(H3=1)ti=1Mi+P(H3=2)t1i=1Mi++P(H3=t)M1)G0
    =G0(P(H3=1)(M1+M2++Mt)+P(H3=2)(M1+M2++Mt1)
    ++P(H3=t)M1)G0
    =G0(P(H3=1)M1+P(H3=1)M2+P(H3=2)M1
    ++(P(H3=1)Mt+P(H3=2)Mt1++P(H3=t)M1))G0
    =G0(N1+N2++Nt)G0
    =(1tj=1Nj)G0. (13)

    From Eqs (11) and (13),

    TGt=tj=1NjStj+1+(1tj=1Nj)G0. (14)

    In Eqs (11)–(13), P(H3=j) and P(H3>t) for j = 1, 2, …, t are defined below Eq (2). The expectation and variance of the TGWMA sign chart's statistic, TGt, when the process is in-control are given in Eqs (15) and (16), respectively.

    E(TGt)=E(tj=1NjStj+1+(1tj=1Nj)G0)
    =E(tj=1NjStj+1)+E((1tj=1Nj)G0)
    =n2tj=1Nj+n2(1tj=1Nj)
    =n/2 (15)

    and

    Var(TGt)=Var(tj=1NjStj+1+(1tj=1Nj)G0)
    =Var(tj=1NjStj+1)+Var((1tj=1Nj)G0)
    =tj=1N2j.Var(Stj+1)
    =n4tj=1N2j. (16)

    The time-varying limits of the TGWMA sign chart are

    UCL=n/2+LTGn4tj=1N2j (17a)
    CL=n/2 (17b)

    and

    LCL=n/2LTGn4tj=1N2j, (17c)

    where LTG is the width constant of the TGWMA sign chart's limits.

    The asymptotic variance of the statistic TGt is obtained as

    limtVar(TGt)=n4t=1(tj=1(q(j1)Υ3qjΥ3)Mtj+1)2, (18)

    where γ is an adjustable constant and 0 ≤ q3 < 1. Let

    R2=t=1(tj=1(q(j1)Υ3qjΥ3)Mtj+1)2. (19)

    Consequently, the asymptotic limits of the TGWMA sign chart are

    UCL=n/2+LTGnR24 (20a)
    CL=n/2 (20b)

    and

    LCL=n/2LTGnR24. (20c)

    This study will exclusively compare the proposed TGWMA sign chart with the DGWMA sign chart, as the latter has already been evaluated against other high-performing non-parametric control charts, demonstrating superior monitoring capabilities. Due to the presence of the six parameters (q1, q2, q3, α, β, γ), the design of the TGWMA sign chart appears somewhat complex. To facilitate the design of this chart, q1 = q2 = q3 = q and α = β = γ are considered. Values of the sample size n ∈ {5, 10, 15}, process proportion p ∈ {0.1, 0.4, 0.6, 0.9}, constant q ∈ {0.5, 0.7, 0.9}, and adjustable constant α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5} are considered in the analyses for the ZS and SS conditions, respectively. To further show the effectiveness of the proposed TGWMA sign chart in detecting small shifts in the process proportion, additional values of p in the neighborhood of 0.5, i.e., p ∈ {0.44, 0.48, 0.52, 0.56}, are considered for the ZS and SS conditions. The asymptotic limits of the two charts are adopted. The ARL values for the ZS and SS based TGWMA sign and DGWMA sign charts are computed for various shift sizes in the process proportion by using the MATLAB software for simulation. Each ARL value is computed based on 10000 simulation trials. The ARL measures the average number of samples required until a chart signals an out-of-control. The ARL is denoted as ARL0 when the process is in-control and ARL1 when the process is out-of-control. The ZS condition assumes that the process shift occurs at the beginning of process monitoring. On the contrary, under the SS condition, the process does not start as out-of-control, but rather it runs for a certain time before becoming out-of-control. Hence, the SS condition is more consistent with an actual production process.

    As ARL0 = 370 is adopted for the ZS and SS conditions, the values of the limit constants, LDG (Eqs (10a) and (10c)) and LTG (Eqs (20a) and (20c)) of the DGWMA and TGWMA sign charts, respectively, are computed using the binary search method in MATLAB, so that the said ARL0 value is attained. The ARL1 performance of the proposed TGWMA sign chart will be compared with that of the existing DGWMA sign chart. For the ZS condition, the following step-by-step procedure explains the computation of the ARL1 value of the proposed TGWMA sign chart by using the MATLAB software for simulation.

    Step 1. Compute the value of R2 using Eq (19) based on t = 500 by considering practical implications.

    Step 2. Generate the dataset using the binornd function. Then, use the binary search method to obtain the value of LTG (0 < LTG < 3) in Eqs (20a) and (20c) for the various (n, q, α) combinations to attain an ARL0 value as close as possible to the desired value of 370. Note that p = 0.5 is adopted here as the process proportion is assumed to be in-control in computing LTG, followed by UCL and LCL.

    Step 3. Next, compute the ARL1 values for the out-of-control process proportions (p ≠ 0.5) for the various (n, q, α) combinations.

    The above-mentioned procedure can also be used to compute the ZS ARL of the DGWMA sign chart. Moreover, the above-mentioned procedure can be used in computing the SS ARLs of the TGWMA and DGWMA sign charts, but by assuming that the first M samples of the process are in-control and the process becomes out-of-control from the (M + 1)th sample onwards, where M = 100 is adopted in the analyses. In the SS condition, the run length of a chart until an out-of-control signal is detected is counted starting from the (M + 1)th sample, meaning the first M samples are not included.

    Table 1 provides the values of R2 of the TGWMA sign chart computed using Eq (19), while Tables 2 and 3 provide the values of the width constant, LTG, of the said chart for the ZS and SS conditions, respectively, for various combinations of (n, q, α) considered in the analyses. Note that for any (q, α) pair, the value of R2 remains the same, irrespective of the sample size n and ZS or SS condition. In Table 2, it is seen that for the ZS condition, the LTG value lies between 1 and 3 for the TGWMA sign chart to attain ARL0 = 370. However, for the SS condition in Table 3, the LTG values when q = 0.9 and α < 1.5 are less than unity. In addition, it is observed that for the same combination of (n, q, α), the LTG value of the TGWMA sign chart under the ZS condition (Table 2) is greater than that under the SS condition (Table 3). For example, when (n, q, α) = (5, 0.5, 0.5), the LTG values are 2.747 and 2.091 in Tables 2 and 3, respectively, where the former is larger than the latter.

    Table 1.  R2 values of the TGWMA sign chart for various (q, α) combinations.
    α 0.5 0.6 0.7 0.8 0.9 1 1.2 1.5
    R2 (q = 0.5) 0.0525 0.068 0.0846 0.1017 0.1189 0.1358 0.1679 0.2102
    R2 (q = 0.7) 0.0127 0.0208 0.0308 0.0421 0.0545 0.0676 0.0949 0.1359
    R2 (q = 0.9) 0.001 0.0027 0.0053 0.0090 0.0139 0.0198 0.0343 0.0610

     | Show Table
    DownLoad: CSV
    Table 2.  LTG values of the TGWMA sign chart under the ZS condition, for various (n, q, α) combinations, based on ARL0 = 370.
    q α n
    5 10 15
    0.5 0.5 2.747 2.763 2.765
    0.6 2.736 2.742 2.750
    0.7 2.725 2.739 2.746
    0.8 2.725 2.742 2.746
    0.9 2.731 2.75 2.753
    1.0 2.737 2.757 2.762
    1.2 2.750 2.779 2.786
    1.5 2.772 2.814 2.822
    0.7 0.5 2.293 2.291 2.286
    0.6 2.326 2.323 2.323
    0.7 2.369 2.372 2.371
    0.8 2.418 2.422 2.423
    0.9 2.467 2.47 2.473
    1.0 2.511 2.519 2.521
    1.2 2.588 2.601 2.602
    1.5 2.673 2.695 2.699
    0.9 0.5 1.088 1.085 1.089
    0.6 1.265 1.260 1.264
    0.7 1.491 1.489 1.492
    0.8 1.689 1.686 1.687
    0.9 1.858 1.852 1.850
    1.0 1.993 1.986 1.986
    1.2 2.198 2.199 2.200
    1.5 2.407 2.412 2.415

     | Show Table
    DownLoad: CSV
    Table 3.  LTG values of the TGWMA sign chart under the SS condition, for various (n, q, α) combinations, based on ARL0 = 370.
    q α n
    5 10 15
    0.5 0.5 2.091 2.132 2.149
    0.6 2.014 2.047 2.053
    0.7 1.967 1.986 1.995
    0.8 1.935 1.959 1.961
    0.9 1.927 1.939 1.946
    1.0 1.926 1.942 1.943
    1.2 1.946 1.960 1.962
    1.5 2.003 2.023 2.025
    0.7 0.5 1.305 1.365 1.368
    0.6 1.363 1.295 1.295
    0.7 1.291 1.274 1.275
    0.8 1.271 1.281 1.285
    0.9 1.279 1.306 1.308
    1.0 1.591 1.343 1.343
    1.2 1.433 1.438 1.436
    1.5 1.342 1.594 1.598
    0.9 0.5 0.475 0.474 0.473
    0.6 0.450 0.452 0.453
    0.7 0.493 0.492 0.490
    0.8 0.546 0.547 0.547
    0.9 0.605 0.608 0.607
    1.0 0.673 0.671 0.671
    1.2 0.810 0.810 0.810
    1.5 1.027 1.028 1.027

     | Show Table
    DownLoad: CSV

    Table 4 gives the computed ARL1 values for the DGWMA and TGWMA sign charts for various shift sizes in the process proportion p under the ZS condition. In Table 4, it is seen that when the shift in the process proportion is large, such as p = 0.1 or 0.9, the ARL1 of the TGWMA sign chart is larger than that of the DGWMA sign chart, hence the latter detects a large shift quicker than the former. However, for smaller shifts, such as p = 0.4 or 0.6, the superiority of the TGWMA sign chart to the DGWMA sign chart begins to show up, especially for smaller values of q, such as q = 0.5 and 0.7. When q = 0.5 and p ∈ {0.4, 0.6}, regardless of the values of the sample size (n) and α (∈ {0.5, 0.6, …, 1.0, 1.2, 1.5}), all the ARL1s of the TGWMA sign chart are smaller than that of the DGWMA sign chart, indicating that the former is quicker in detecting shifts. For example, in Table 4 when n = 5, q = 0.5, p = 0.6, and α ∈ {0.5, 0.6, …, 1.5}, ARL1 ∈ {33.977, 36.291, …, 70.892} and {40.935, 43.636, …, 81.477} for the TGWMA and DGWMA sign charts, respectively, where the former has smaller ARL1s. Moreover, if p ∈ {0.4, 0.6} and q = 0.7, (i) for n = 5, the ARL1s of the TGWMA sign chart are smaller than those of the DGWMA sign chart; (ii) for n = 10 and α0.8, the ARL1s of the TGWMA sign chart are lower than that of the DGWMA sign chart; and (iii) for n = 15 and α1.0, the TGWMA sign chart has smaller ARL1s than the corresponding ARL1s of the DGWMA sign chart. However, when q = 0.9, for the same shift size p (∈ {0.4, 0.6}), the TGWMA sign chart has almost no advantage compared to the DGWMA sign chart as the latter has smaller ARL1s than the former (see Table 4). In Table 4, it is also found that the charts' performance improves (ARL1 decreases) as the sample size n increases.

    Table 4.  ARL1s for the TGWMA and DGWMA sign charts for shift sizes in the process proportion, p ∈ {0.1, 0.4, 0.6, 0.9} when ARL0 = 370 under the ZS condition.
    n q α LDG LTG p
    0.1 0.4 0.6 0.9
    DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA
    5 0.5 2.791 2.747 3.994 4.299 40.685 33.728 40.935 33.977 4.002 4.302
    0.6 2.804 2.736 3.905 4.223 43.344 36.193 43.636 36.291 3.909 4.226
    0.7 2.816 2.725 3.855 4.212 47.268 39.569 47.954 39.887 3.857 4.215
    0.5 0.8 2.823 2.725 3.708 4.177 51.799 43.708 52.721 44.079 3.709 4.182
    0.9 2.825 2.731 3.694 4.098 56.616 47.933 57.355 48.358 3.695 4.099
    1.0 2.825 2.737 3.703 4.046 61.599 52.323 62.168 52.783 3.703 4.047
    1.2 2.815 2.75 3.691 3.931 70.158 60.242 71.040 60.853 3.685 3.932
    1.5 2.804 2.772 3.637 3.917 80.442 70.064 81.477 70.892 3.640 3.922
    0.5 2.688 2.293 4.491 6.177 31.664 31.001 31.797 31.159 4.495 6.178
    0.6 2.673 2.326 4.786 6.275 31.893 30.500 32.047 30.708 4.786 6.279
    0.7 2.658 2.369 4.749 6.155 33.192 30.992 33.315 31.192 4.747 6.156
    0.7 0.8 2.654 2.418 4.517 5.974 35.260 32.535 35.436 32.611 4.511 5.976
    0.9 2.661 2.467 4.442 5.826 38.315 34.897 38.459 34.948 4.441 5.825
    1.0 2.671 2.511 4.427 5.676 41.683 37.849 42.029 37.630 4.428 5.676
    1.2 2.695 2.588 4.376 5.407 49.415 44.159 50.044 44.721 4.378 6.891
    1.5 2.74 2.673 4.090 5.033 61.551 54.259 62.271 55.172 4.097 5.038
    0.5 1.892 1.088 7.068 12.804 34.413 42.183 34.497 42.275 7.070 12.804
    0.6 1.87 1.265 7.942 14.312 33.962 41.932 34.078 42.050 7.945 14.317
    0.7 1.944 1.491 8.217 14.566 32.939 39.922 33.048 40.059 8.211 14.568
    0.9 0.8 2.033 1.689 8.273 14.085 31.824 37.461 32.000 37.628 8.268 14.087
    0.9 2.123 1.858 8.127 13.320 31.235 35.559 31.425 35.723 8.128 13.322
    1.0 2.202 1.993 7.882 12.480 31.314 34.410 31.481 34.559 7.887 12.478
    1.2 2.342 2.198 7.339 10.928 33.690 34.679 33.875 34.957 7.338 10.931
    1.5 2.502 2.407 6.555 9.239 40.690 39.459 40.586 39.456 6.556 9.240
    10 0.5 2.870 2.763 2.432 3.011 22.634 19.314 22.757 19.410 2.435 3.017
    0.6 2.865 2.742 2.443 3.018 23.124 19.649 23.282 19.804 2.448 3.023
    0.7 2.862 2.739 2.430 3.010 24.227 20.621 24.386 20.747 2.436 3.013
    0.5 0.8 2.862 2.742 2.429 3.114 25.944 21.996 26.150 22.179 2.435 3.113
    0.9 2.858 2.75 2.346 3.087 27.755 23.718 28.145 23.954 2.351 3.087
    1.0 2.855 2.757 2.346 3.083 29.755 25.543 30.241 25.769 2.351 3.082
    1.2 2.856 2.779 2.342 3.072 34.076 29.291 34.386 29.518 2.347 3.070
    1.5 2.863 2.814 2.341 3.071 39.790 34.380 40.366 34.824 2.346 3.070
    0.5 2.709 2.291 3.117 4.394 19.344 19.938 19.440 19.993 3.124 4.400
    0.6 2.678 2.323 3.252 4.623 18.902 19.240 18.954 19.313 3.255 4.629
    0.7 2.665 2.372 3.299 4.705 18.812 18.838 18.868 18.926 3.303 4.712
    0.7 0.8 2.666 2.422 3.354 4.677 19.234 18.859 19.307 18.992 3.363 4.683
    0.9 2.671 2.47 3.289 4.611 20.118 19.256 20.205 19.410 3.295 4.617
    1.0 2.684 2.519 3.285 4.510 21.206 20.081 21.409 20.278 3.290 4.519
    1.2 2.714 2.601 3.211 4.316 24.351 22.440 24.525 22.660 3.214 4.320
    1.5 2.767 2.695 3.166 4.129 29.945 26.886 30.120 27.133 3.168 4.129
    0.5 1.889 1.085 4.846 9.741 22.861 30.690 22.893 30.759 4.846 9.738
    0.6 1.863 1.26 5.643 11.259 22.944 31.148 22.990 31.218 5.644 11.260
    0.7 1.936 1.489 6.117 11.763 22.320 29.945 22.408 30.009 6.121 11.760
    0.9 0.8 2.029 1.686 6.339 11.575 21.437 27.930 21.497 28.002 6.338 11.568
    0.9 2.117 1.852 6.353 11.104 20.545 25.945 20.600 26.017 6.356 11.103
    1.0 2.201 1.986 6.283 10.482 19.907 24.271 19.990 24.328 6.285 10.482
    1.2 2.344 2.199 6.023 9.333 19.670 22.396 19.839 22.524 6.025 9.336
    1.5 2.511 2.412 5.418 8.055 21.520 22.516 21.667 22.635 5.426 8.056
    15 0.5 2.89 2.765 1.865 2.309 15.970 14.124 15.980 14.187 1.864 2.302
    0.6 2.879 2.75 2.086 2.359 15.869 14.078 15.944 14.143 2.085 2.356
    0.7 2.873 2.746 2.086 2.565 16.177 14.394 16.334 14.426 2.085 2.567
    0.5 0.8 2.869 2.746 2.074 2.590 16.980 14.990 17.077 15.005 2.073 2.596
    0.9 2.866 2.753 2.072 2.591 17.932 15.795 18.052 15.788 2.071 2.596
    1.0 2.864 2.762 2.072 2.646 19.081 16.715 19.100 16.662 2.071 2.650
    1.2 2.866 2.786 2.071 2.621 21.617 18.762 21.634 18.840 2.070 2.620
    1.5 2.876 2.822 2.069 2.620 25.162 21.809 24.864 21.708 2.069 2.620
    0.5 2.714 2.286 2.386 3.707 14.585 15.637 14.610 15.678 2.385 3.705
    0.6 2.683 2.323 2.606 4.014 14.142 15.060 14.197 15.099 2.610 4.011
    0.7 2.672 2.371 2.838 4.084 13.901 14.569 13.943 14.579 2.842 4.080
    0.7 0.8 2.669 2.423 2.845 4.096 13.873 14.294 13.931 14.297 2.849 4.091
    0.9 2.676 2.473 2.983 4.079 14.180 14.266 14.181 14.283 2.986 4.074
    1.0 2.686 2.521 2.982 4.057 14.642 14.526 14.674 14.511 2.984 4.055
    1.2 2.716 2.602 2.977 4.025 16.142 15.510 16.067 15.457 2.979 4.025
    1.5 2.775 2.699 3.012 3.924 19.171 17.843 19.228 17.718 3.012 3.927
    0.5 1.894 1.089 3.945 8.342 18.200 25.807 18.230 25.814 3.948 8.339
    0.6 1.866 1.264 4.695 9.862 18.485 26.594 18.527 26.598 4.695 9.858
    0.7 1.937 1.492 5.189 10.418 18.121 25.752 18.152 25.763 5.190 10.412
    0.9 0.8 2.026 1.687 5.423 10.345 17.398 24.068 17.440 24.083 5.424 10.344
    0.9 2.12 1.850 5.548 10.036 16.666 22.289 16.699 22.309 5.546 10.035
    1.0 2.202 1.986 5.530 9.521 15.982 20.697 15.999 20.724 5.529 9.520
    1.2 2.346 2.200 5.282 8.589 15.184 18.462 15.196 18.472 5.284 8.590
    1.5 2.515 2.415 5.033 7.346 15.579 17.270 15.520 17.281 5.031 7.346

     | Show Table
    DownLoad: CSV

    As the TGWMA sign chart is generally found to be superior to the DGWMA sign chart towards small shifts in the process proportion, i.e., p ∈ {0.4, 0.6}, a further investigation is conducted by comparing the ARL1s of the two charts for p ∈ {0.44, 0.48, 0.52, 0.56}. Tables 5 and 6 present the computed ZS ARL1s for the two charts based on p{0.44,0.48} and p{0.52,0.56}, respectively. In Tables 5 and 6, a negative (or positive) value of "% Diff" represents the percentage of decrease (or increase) in the ARL1 value by using the TGWMA sign chart in place of the DGWMA sign chart. Consequently, % Diff = ARL1(TGWMA)-ARL1(DGWMA)ARL1(DGWMA)×100%. In Tables 5 and 6 under the ZS condition, it is noticed that the TGWMA sign chart surpasses the DGWMA sign chart in terms of the ARL1 criterion for q = 0.5 and 0.7, as the former has smaller ARL1s than the latter. For instance, when n = 10, p = 0.44, α = 0.8, and q = 0.5, the ARL1s are 59.578 and 71.891 for the TGWMA and DGWMA sign charts, respectively, and the former's ARL1 is 17.13% smaller relative to that of the latter (see Table 5). However, for q = 0.9, mixed performance is observed as sometimes the DGWMA sign chart beats the TGWMA sign chart, and vice-versa. From the "% Diff" in Tables 5 and 6, the TGWMA sign chart shows the best performance over the DGWMA sign chart when p is 0.44 or 0.56, and this phenomenon is particularly evident when q = 0.5. For example, when n = 5, p = 0.44, and q = 0.5, the percentage of improvement in using the TGWMA sign chart in place of the DGWMA sign chart ranges from 8.43% to 18.41%.

    Table 5.  ARL1s for the TGWMA and DGWMA sign charts, for shift sizes in the process proportion p ∈ {0.44, 0.48} when ARL0 = 370 under the ZS condition.
    n q α LDG LTG p
    0.44 0.48
    DGWMA TGWMA % Diff DGWMA TGWMA % Diff
    0.5 2.791 2.747 95.776 78.142 -18.41 285.367 260.820 -8.60
    0.6 2.804 2.736 104.800 86.959 -17.02 294.006 273.362 -7.02
    0.7 2.816 2.725 115.441 97.025 -15.95 301.878 285.331 -5.48
    0.5 0.8 2.823 2.725 124.728 107.170 -14.08 308.082 292.988 -4.90
    0.9 2.825 2.731 134.911 117.338 -13.03 313.528 300.685 -4.10
    1.0 2.825 2.737 143.805 126.202 -12.24 319.195 304.397 -4.64
    1.2 2.815 2.750 156.476 140.464 -10.23 324.420 315.274 -2.82
    1.5 2.804 2.772 171.580 157.124 -8.43 331.808 324.645 -2.16
    0.5 2.688 2.293 66.588 61.447 -7.72 234.553 216.480 -7.71
    0.6 2.673 2.326 70.709 63.495 -10.20 248.261 230.015 -7.35
    0.7 2.658 2.369 77.329 68.543 -11.36 260.718 244.354 -6.28
    5 0.7 0.8 2.654 2.418 85.044 75.628 -11.07 272.001 258.275 -5.05
    0.9 2.661 2.467 93.918 83.962 -10.60 281.364 271.158 -3.63
    1.0 2.671 2.511 102.755 91.765 -10.70 290.391 278.292 -4.17
    1.2 2.695 2.588 119.378 106.926 -10.43 302.359 292.801 -3.16
    1.5 2.740 2.673 143.244 129.601 -9.52 319.739 309.438 -3.22
    0.5 1.892 1.088 62.594 69.256 10.64 199.449 198.789 -0.33
    0.6 1.870 1.265 61.699 68.106 10.38 201.461 199.679 -0.88
    0.7 1.944 1.491 60.990 65.670 7.67 208.406 203.299 -2.45
    0.9 0.8 2.033 1.689 61.243 64.049 4.58 217.804 211.053 -3.10
    0.9 2.123 1.858 63.264 64.581 2.08 229.728 222.067 -3.33
    1.0 2.202 1.993 67.052 66.612 -0.66 241.575 234.955 -2.74
    1.2 2.342 2.198 78.480 74.988 -4.45 262.528 254.086 -3.22
    1.5 2.502 2.407 98.284 91.967 -6.43 285.362 277.323 -2.82
    10 0.5 2.870 2.763 56.531 44.535 -21.22 233.267 200.901 -13.88
    0.6 2.865 2.742 60.586 48.396 -20.12 245.522 216.739 -11.72
    0.7 2.862 2.739 66.000 53.630 -18.74 254.900 231.912 -9.02
    0.5 0.8 2.862 2.742 71.891 59.578 -17.13 264.164 244.420 -7.47
    0.9 2.858 2.750 77.589 65.737 -15.28 270.647 255.834 -5.47
    1.0 2.855 2.757 83.344 71.235 -14.53 276.855 263.289 -4.90
    1.2 2.856 2.779 93.612 80.749 -13.74 289.028 275.857 -4.56
    1.5 2.863 2.814 106.698 94.298 -11.62 299.891 290.508 -3.13
    0.5 2.709 2.291 40.599 38.246 -5.80 172.329 154.132 -10.56
    0.6 2.678 2.323 41.288 38.291 -7.26 185.063 167.276 -9.61
    0.7 2.665 2.372 43.317 39.817 -8.08 199.265 182.036 -8.65
    0.7 0.8 2.666 2.422 47.167 42.478 -9.94 214.139 197.262 -7.88
    0.9 2.671 2.470 51.556 46.109 -10.56 229.407 211.787 -7.68
    1.0 2.684 2.519 56.911 50.419 -11.41 242.247 227.441 -6.11
    1.2 2.714 2.601 67.598 60.700 -10.20 259.838 248.965 -4.18
    1.5 2.767 2.695 82.050 73.200 -10.79 276.994 266.652 -3.73
    0.5 1.889 1.085 41.417 49.067 18.47 142.487 144.623 1.50
    0.6 1.863 1.260 40.817 48.504 18.83 142.951 143.810 0.60
    0.7 1.936 1.489 39.735 46.392 16.75 146.877 145.349 -1.04
    0.9 0.8 2.029 1.686 38.833 43.906 13.06 154.802 150.547 -2.75
    0.9 2.117 1.852 38.720 42.264 9.15 164.584 158.916 -3.44
    1.0 2.201 1.986 39.573 41.737 5.47 177.120 168.667 -4.77
    1.2 2.344 2.199 43.832 43.936 0.24 202.043 191.874 -5.03
    1.5 2.511 2.412 54.656 51.862 -5.11 235.047 222.310 -5.42
    0.5 2.890 2.765 40.137 32.268 -19.61 198.990 165.848 -16.65
    0.6 2.879 2.750 42.002 34.187 -18.61 209.390 182.731 -12.73
    0.7 2.873 2.746 45.307 37.212 -17.87 219.380 197.058 -10.17
    0.5 0.8 2.869 2.746 49.017 40.837 -16.69 228.770 211.204 -7.68
    0.9 2.866 2.753 53.278 44.800 -15.91 239.500 221.996 -7.31
    1.0 2.864 2.762 57.310 48.719 -14.99 247.760 230.831 -6.83
    1.2 2.866 2.786 65.219 56.198 -13.83 259.650 244.036 -6.01
    1.5 2.876 2.822 75.453 65.260 -13.51 270.990 258.570 -4.58
    0.5 2.714 2.286 30.502 29.537 -3.17 139.520 124.226 -10.96
    0.6 2.683 2.323 30.371 29.039 -4.39 151.120 133.818 -11.45
    0.7 2.672 2.371 31.331 29.361 -6.29 166.162 147.623 -11.16
    15 0.7 0.8 2.669 2.423 33.313 30.667 -7.94 180.443 162.789 -9.78
    0.9 2.676 2.473 36.050 32.638 -9.46 194.632 176.104 -9.52
    1.0 2.686 2.521 39.139 35.376 -9.62 205.380 189.902 -7.54
    1.2 2.716 2.602 46.258 41.479 -10.33 223.390 210.621 -5.72
    1.5 2.775 2.699 57.019 50.469 -11.49 246.323 232.050 -5.79
    0.5 1.894 1.089 32.833 40.788 24.23 116.583 119.683 2.66
    0.6 1.866 1.264 32.504 40.591 24.88 116.533 118.846 1.98
    0.7 1.937 1.492 31.505 38.682 22.78 118.651 118.815 0.14
    0.9 0.8 2.026 1.687 30.371 36.201 19.20 123.606 121.642 -1.59
    0.9 2.120 1.850 29.824 34.158 14.53 132.551 127.926 -3.49
    1.0 2.202 1.986 29.742 32.952 10.79 143.040 136.393 -4.65
    1.2 2.346 2.200 31.760 33.003 3.91 166.663 158.576 -4.85
    1.5 2.515 2.415 38.295 37.021 -3.33 198.606 187.344 -5.67

     | Show Table
    DownLoad: CSV
    Table 6.  ARL1s for the TGWMA and DGWMA sign charts, for shift sizes in the process proportion p ∈ {0.52, 0.56} when ARL0 = 370 under the ZS condition.
    n q α LDG LTG p
    0.52 0.56
    DGWMA TGWMA % Diff DGWMA TGWMA % Diff
    0.5 2.791 2.747 283.967 263.320 -7.27 96.980 78.134 -19.43
    0.6 2.804 2.736 293.126 278.963 -4.83 105.678 88.081 -16.65
    0.7 2.816 2.725 302.425 290.412 -3.97 115.410 98.026 -15.06
    0.5 0.8 2.823 2.725 309.249 299.157 -3.26 126.058 108.886 -13.62
    0.9 2.825 2.731 315.325 305.724 -3.04 136.451 118.727 -12.99
    1.0 2.825 2.737 320.868 311.620 -2.88 145.862 128.081 -12.19
    1.2 2.815 2.750 328.365 318.839 -2.90 160.400 142.703 -11.03
    1.5 2.804 2.772 334.231 328.831 -1.62 174.800 160.782 -8.02
    0.5 2.688 2.293 234.930 219.378 -6.62 66.738 61.294 -8.16
    0.6 2.673 2.326 249.469 231.280 -7.29 70.899 63.669 -10.20
    0.7 2.658 2.369 265.338 244.38 -7.90 77.767 68.633 -11.75
    5 0.7 0.8 2.654 2.418 276.773 261.171 -5.64 85.869 75.928 -11.58
    0.9 2.661 2.467 286.094 275.310 -3.77 94.550 84.310 -10.83
    1.0 2.671 2.511 294.972 285.356 -3.26 104.187 92.159 -11.54
    1.2 2.695 2.588 305.457 297.385 -2.64 121.744 109.092 -10.39
    1.5 2.740 2.673 322.193 311.332 -3.37 146.307 131.298 -10.26
    0.5 1.892 1.088 202.562 201.499 -0.52 62.608 69.176 10.49
    0.6 1.870 1.265 204.994 203.024 -0.96 61.829 68.081 10.11
    0.7 1.944 1.491 210.850 205.604 -2.49 61.100 65.797 7.69
    0.9 0.8 2.033 1.689 219.033 213.720 -2.43 61.342 64.188 4.64
    0.9 2.123 1.858 230.279 223.825 -2.80 63.587 64.611 1.61
    1.0 2.202 1.993 242.174 234.969 -2.98 67.306 66.835 -0.70
    1.2 2.342 2.198 265.223 255.643 -3.61 78.536 74.994 -4.51
    1.5 2.502 2.407 291.267 283.520 -2.66 99.040 92.518 -6.59
    10 0.5 2.870 2.763 233.529 200.364 -14.20 57.261 45.420 -20.68
    0.6 2.865 2.742 245.610 216.762 -11.75 61.489 49.589 -19.35
    0.7 2.862 2.739 256.077 232.882 -9.06 66.612 54.722 -17.85
    0.5 0.8 2.862 2.742 266.367 246.390 -7.50 72.805 60.223 -17.28
    0.9 2.858 2.750 272.460 257.957 -5.32 78.530 66.438 -15.40
    1.0 2.855 2.757 279.352 265.057 -5.12 84.403 72.101 -14.58
    1.2 2.856 2.779 290.680 276.848 -4.76 95.964 82.420 -14.11
    1.5 2.863 2.814 300.031 293.507 -2.17 108.731 95.733 -11.95
    0.5 2.709 2.291 173.121 155.374 -10.25 41.150 38.666 -6.04
    0.6 2.678 2.323 184.823 168.718 -8.71 41.836 38.719 -7.45
    0.7 2.665 2.372 198.869 184.804 -7.07 44.120 40.303 -8.65
    0.7 0.8 2.666 2.422 215.238 199.802 -7.17 47.737 42.980 -9.96
    0.9 2.671 2.470 229.176 213.460 -6.86 52.287 46.620 -10.84
    1.0 2.684 2.519 242.220 226.719 -6.40 57.788 51.219 -11.37
    1.2 2.714 2.601 259.415 249.026 -4.00 68.592 61.430 -10.44
    1.5 2.767 2.695 278.987 267.700 -4.05 83.861 74.214 -11.50
    0.5 1.889 1.085 143.967 147.073 2.16 41.624 49.274 18.38
    0.6 1.863 1.260 144.764 146.470 1.18 41.034 48.666 18.60
    0.7 1.936 1.489 148.709 147.230 -0.99 39.940 46.483 16.38
    0.9 0.8 2.029 1.686 156.248 152.390 -2.47 39.130 44.074 12.63
    0.9 2.117 1.852 167.194 160.457 -4.03 38.919 42.526 9.27
    1.0 2.201 1.986 179.464 171.374 -4.51 39.929 41.985 5.15
    1.2 2.344 2.199 204.765 195.575 -4.49 44.541 44.485 -0.13
    1.5 2.511 2.412 234.767 223.978 -4.60 55.326 52.162 -5.72
    0.5 2.890 2.765 197.860 165.998 -16.10 39.679 32.140 -19.00
    0.6 2.879 2.750 209.590 180.485 -13.89 41.855 34.134 -18.45
    0.7 2.873 2.746 218.480 196.552 -10.04 45.072 37.058 -17.78
    0.5 0.8 2.869 2.746 227.370 209.369 -7.92 49.169 40.541 -17.55
    0.9 2.866 2.753 237.000 220.456 -6.98 53.247 44.477 -16.47
    1.0 2.864 2.762 244.640 228.585 -6.56 57.300 48.466 -15.42
    1.2 2.866 2.786 256.530 243.192 -5.20 65.083 56.060 -13.86
    1.5 2.876 2.822 268.580 257.659 -4.07 74.845 65.386 -12.64
    0.5 2.714 2.286 140.670 124.572 -11.44 30.388 29.468 -3.03
    0.6 2.683 2.323 151.136 134.686 -10.88 30.274 28.995 -4.23
    0.7 2.672 2.371 165.440 149.199 -9.82 31.270 29.316 -6.25
    15 0.7 0.8 2.669 2.423 179.435 165.367 -7.84 33.228 30.643 -7.78
    0.9 2.676 2.473 192.322 177.948 -7.47 35.976 32.691 -9.13
    1.0 2.686 2.521 203.683 190.367 -6.54 38.899 35.249 -9.38
    1.2 2.716 2.602 222.144 207.492 -6.60 45.731 41.098 -10.13
    1.5 2.775 2.699 243.483 230.177 -5.46 57.101 50.344 -11.83
    0.5 1.894 1.089 117.288 120.783 2.98 32.813 40.769 24.24
    0.6 1.866 1.264 117.594 120.063 2.10 32.522 40.570 24.75
    0.7 1.937 1.492 119.089 120.407 1.11 31.514 38.691 22.77
    0.9 0.8 2.026 1.687 123.913 122.778 -0.92 30.406 36.268 19.28
    0.9 2.120 1.850 133.505 128.391 -3.83 29.829 34.227 14.74
    1.0 2.202 1.986 145.206 137.325 -5.43 29.693 32.989 11.10
    1.2 2.346 2.200 168.248 159.435 -5.24 31.678 32.954 4.03
    1.5 2.515 2.415 198.805 188.456 -5.21 37.992 36.844 -3.02

     | Show Table
    DownLoad: CSV

    From the results in Tables 5 and 6, the TGWMA sign chart outperforms the DGWMA sign chart in detecting small shifts in the process proportion, especially when q takes values of 0.5 and 0.7. When q takes the value of 0.9, the superiority of the TGWMA sign chart to the DGWMA sign chart is only evident when α takes larger values, such as 1.2 and 1.5, or when the shift is particularly small (p ∈ {0.48, 0.52}).

    After verifying that the TGWMA sign chart exhibits better sensitivity in detecting small shifts than the DGWMA sign chart, it is also essential to assess whether the TGWMA sign chart shows better run length stability. To this end, the standard deviation of the run length (SDRL) performance of these two charts for small shifts is compared, as the strength of the TGWMA sign chart lies in detecting small shifts. Table 7 illustrates that when the shift is small (p ∈ {0.44, 0.48, 0.52, 0.56}), all SDRL1 values of the TGWMA sign chart are smaller than that of the DGWMA sign chart under the ZS condition. This outcome clearly illustrates that the TGWMA sign chart gives better SDRL1 performance than the DGWMA sign chart when the shift is very small. For example, when n = 10, q = 0.5, p = 0.44, and α ∈ {0.5, 0.6, …, 1.5}, SDRL1 ∈ {34.38, 40.17, …, 90.98} and {48.19, 53.76, …, 103.43} for the TGWMA and DGWMA sign charts, respectively, where the former has smaller SDRL1 values (see Table 7). This outcome aligns with our findings on the ARL1 comparison between the two charts.

    Table 7.  SDRL1s for the TGWMA and DGWMA sign charts, for shift sizes in the process proportion p ∈ {0.44, 0.48, 0.52, 0.56} when ARL0 = 370 under the ZS condition.
    n q α LDG LTG p
    0.44 0.48 0.52 0.56
    DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA
    0.5 2.791 2.747 87.14 67.38 281.82 251.17 276.78 254.74 88.27 67.32
    0.6 2.804 2.736 98.31 78.84 293.20 264.38 284.83 271.36 98.33 79.86
    0.7 2.816 2.725 110.82 91.25 298.81 277.61 294.10 282.63 109.09 91.03
    0.5 0.8 2.823 2.725 121.06 102.97 304.82 288.34 302.90 292.96 121.31 103.72
    0.9 2.825 2.731 131.73 114.25 311.64 295.91 310.80 299.59 133.11 113.27
    1.0 2.825 2.737 140.68 123.73 318.76 296.58 316.21 306.33 141.95 123.84
    1.2 2.815 2.750 154.25 138.33 321.87 311.41 325.50 314.50 156.81 139.34
    1.5 2.804 2.772 168.16 154.36 330.10 320.55 336.37 325.20 173.30 158.69
    0.5 2.688 2.293 49.79 41.35 217.35 192.27 215.47 196.08 50.25 41.19
    0.6 2.673 2.326 57.73 47.04 236.41 214.47 235.85 211.85 57.57 47.34
    0.7 2.658 2.369 67.39 55.25 250.38 233.70 254.90 109.57 68.05 56.03
    5 0.7 0.8 2.654 2.418 76.48 65.23 262.22 248.46 268.18 252.75 77.91 66.16
    0.9 2.661 2.467 87.58 75.82 272.84 260.38 278.07 267.64 87.21 76.29
    1.0 2.671 2.511 97.50 84.68 285.03 268.38 288.57 278.92 97.48 83.88
    1.2 2.695 2.588 115.79 100.85 299.07 288.49 298.89 292.75 116.04 102.54
    1.5 2.74 2.673 141.07 126.13 315.75 304.49 317.71 306.02 143.22 126.69
    0.5 1.892 1.088 34.97 30.95 158.08 145.93 161.83 146.90 34.56 30.60
    0.6 1.87 1.265 35.06 31.02 165.08 151.25 169.75 155.51 34.80 30.65
    0.7 1.944 1.491 36.91 32.39 178.96 164.78 182.27 167.12 36.57 32.06
    0.9 0.8 2.033 1.689 40.29 35.53 194.77 179.87 196.43 183.11 40.19 35.33
    0.9 2.123 1.858 45.65 40.43 211.70 196.45 209.19 196.68 45.90 40.53
    1.0 2.202 1.993 52.38 46.36 228.51 215.87 224.79 211.58 52.54 46.51
    1.2 2.342 2.198 67.97 60.19 250.61 237.86 255.85 238.34 68.46 60.44
    1.5 2.502 2.407 91.05 81.70 278.76 264.26 284.99 273.53 91.05 82.15
    10 0.5 2.87 2.763 48.19 34.38 226.59 192.32 228.12 190.66 48.71 35.29
    0.6 2.865 2.742 53.76 40.17 239.87 211.17 241.34 210.32 54.85 41.66
    0.7 2.862 2.739 60.55 46.96 251.53 228.19 253.07 230.24 61.44 48.21
    0.5 0.8 2.862 2.742 66.94 54.01 262.21 242.73 264.36 241.89 68.84 54.57
    0.9 2.858 2.750 73.80 61.10 268.78 254.21 270.07 254.56 75.36 62.25
    1.0 2.855 2.757 80.17 66.87 273.82 259.84 276.85 260.55 82.43 68.58
    1.2 2.856 2.779 89.80 76.67 288.92 274.40 289.55 272.76 94.35 80.25
    1.5 2.863 2.814 103.43 90.98 301.09 287.71 297.87 293.30 106.88 93.50
    0.5 2.709 2.291 27.11 21.97 153.21 130.74 153.94 128.71 27.53 22.59
    0.6 2.678 2.323 29.60 24.23 171.19 149.25 169.48 149.54 30.19 24.67
    0.7 2.665 2.372 33.44 27.94 189.48 168.97 187.96 169.85 34.29 28.61
    0.7 0.8 2.666 2.422 39.28 32.64 206.51 186.06 208.21 188.35 39.47 33.09
    0.9 2.671 2.470 44.82 37.79 225.48 202.36 224.43 203.53 45.32 38.00
    1.0 2.684 2.519 50.88 42.93 238.48 220.27 238.10 221.31 51.52 43.70
    1.2 2.714 2.601 63.14 54.81 257.91 245.70 254.31 245.11 64.26 55.62
    1.5 2.767 2.695 78.47 68.11 274.77 261.43 276.01 262.40 81.49 69.93
    0.5 1.889 1.085 19.90 17.53 105.09 94.46 103.60 95.85 20.01 17.52
    0.6 1.863 1.26 19.43 17.10 108.69 98.02 107.28 98.72 19.47 17.03
    0.7 1.936 1.489 19.64 17.27 117.80 106.97 117.22 105.84 19.77 17.20
    0.9 0.8 2.029 1.686 20.74 18.13 131.70 119.42 129.36 119.37 21.24 18.29
    0.9 2.117 1.852 22.91 19.95 146.20 133.96 146.53 131.76 23.36 20.46
    1.0 2.201 1.986 25.98 22.64 162.19 148.18 162.88 147.98 26.66 23.15
    1.2 2.344 2.199 33.77 29.64 190.25 176.61 193.77 179.04 34.69 30.47
    1.5 2.511 2.412 47.11 41.64 228.65 210.49 229.12 214.04 47.64 41.70
    0.5 2.890 2.765 32.14 23.26 192.25 157.09 189.36 155.47 31.80 23.14
    0.6 2.879 2.750 35.36 26.57 205.11 176.04 203.53 171.91 35.89 26.61
    0.7 2.873 2.746 40.01 30.96 218.00 190.22 214.01 190.47 40.54 30.72
    0.5 0.8 2.869 2.746 44.28 35.47 227.80 205.80 224.26 205.35 45.20 35.45
    0.9 2.866 2.753 48.99 39.89 238.04 218.39 233.29 217.73 49.76 40.41
    1.0 2.864 2.762 53.55 44.15 247.07 228.24 241.77 224.44 54.43 44.62
    1.2 2.866 2.786 61.44 52.29 257.78 242.45 254.31 240.31 62.86 53.02
    1.5 2.876 2.822 73.04 61.54 268.24 256.07 267.93 255.49 73.17 62.85
    0.5 2.714 2.286 19.01 15.31 120.88 101.29 121.84 99.44 18.73 15.41
    0.6 2.683 2.323 20.14 16.35 137.68 116.07 137.28 116.06 19.77 16.37
    0.7 2.672 2.371 22.51 18.39 156.95 135.08 155.25 134.89 22.21 18.24
    15 0.7 0.8 2.669 2.423 25.81 21.35 172.68 153.20 170.47 155.44 25.71 21.09
    0.9 2.676 2.473 29.57 24.56 187.17 168.25 184.30 169.44 29.67 24.37
    1.0 2.686 2.521 33.62 28.34 199.43 181.86 197.61 184.98 33.43 28.04
    1.2 2.716 2.602 41.52 35.78 219.34 204.55 217.52 200.12 41.53 35.62
    1.5 2.775 2.699 52.91 45.30 245.23 229.19 238.33 224.17 53.95 45.81
    0.5 1.894 1.089 14.33 12.60 80.14 71.39 79.91 72.17 14.44 12.74
    0.6 1.866 1.264 13.71 12.11 83.21 73.85 83.55 74.89 13.89 12.22
    0.7 1.937 1.492 13.64 11.87 90.02 80.27 89.59 81.46 13.81 12.00
    0.9 0.8 2.026 1.687 14.03 12.11 100.80 90.37 98.93 90.50 14.23 12.34
    0.9 2.120 1.850 15.26 13.00 113.60 102.60 113.36 101.29 15.42 13.25
    1.0 2.202 1.986 16.87 14.61 127.64 115.55 128.75 114.63 16.94 14.81
    1.2 2.346 2.200 22.11 19.11 156.07 144.09 156.69 142.84 21.71 18.93
    1.5 2.515 2.415 31.26 26.90 190.31 177.77 190.76 178.74 31.13 26.58

     | Show Table
    DownLoad: CSV

    Next, the ARL1 comparison between the TGWMA and DGWMA sign charts under the SS condition will be made. Table 8 displays the SS ARL1s for these two charts based on p ∈ {0.1, 0.4, 0.6, 0.9}. Similar to the ZS condition, it is seen in Table 8 that for p = 0.1 and 0.9, which indicates a larger shift in the process proportion, the ARL1 of the DGWMA sign chart is smaller than that of the TGWMA sign chart. However, for a small shift, such as p ∈ {0.4, 0.6}, the superiority of the TGWMA sign chart to the DGWMA sign chart becomes evident. When q = 0.5 and p ∈ {0.4, 0.6}, the ARL1s of the TGWMA sign chart are less than that of the DGWMA sign chart. When p ∈ {0.4, 0.6} and q = 0.7, the SS TGWMA sign chart beats the SS DGWMA sign chart for the following situations: (i) n = 5 and α ≥ 0.6, (ii) n = 10 and α ≥ 1.2, and (iii) n = 15 and α = 1.5 (see Table 8). Nonetheless, similar to the findings under the ZS condition, when q = 0.9, the TGWMA sign chart has almost no advantage compared to the DGWMA sign chart, as the latter gives smaller ARL1s for all shift sizes. Since the performance trends of the TGWMA and DGWMA sign charts in Tables 4 (ZS condition) and 8 (SS condition) are the same, this paragraph provides a concise discussion regarding the SS performance of the two charts for p ∈ {0.1, 0.4, 0.6, 0.9}.

    Table 8.  ARL1s for the TGWMA and DGWMA sign charts, for shift sizes in the process proportion p ∈ {0.1, 0.4, 0.6, 0.9} when ARL0 = 370 under the SS condition.
    n q α LDG LTG p
    0.1 0.4 0.6 0.9
    DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA
    0.5 2.389 2.091 1.264 1.659 16.235 12.547 16.323 12.473 1.260 1.680
    0.6 2.341 2.014 1.339 1.769 17.275 12.799 17.328 12.831 1.343 1.795
    0.7 2.299 1.967 1.416 1.853 18.719 13.750 18.468 13.678 1.424 1.881
    0.5 0.8 2.265 1.935 1.491 1.916 20.850 14.732 20.663 14.654 1.503 1.944
    0.9 2.237 1.927 1.550 1.977 22.646 16.464 23.009 16.128 1.565 1.997
    1.0 2.222 1.926 1.611 2.020 25.391 18.426 25.407 18.102 1.625 2.027
    1.2 2.205 1.946 1.711 2.082 30.336 22.249 30.134 22.246 1.713 2.084
    1.5 2.217 2.003 1.823 2.149 38.921 28.914 38.260 28.653 1.830 2.146
    0.5 1.982 1.305 1.038 1.618 6.897 7.141 6.901 7.129 1.042 1.647
    0.6 1.859 1.363 1.090 1.794 6.903 6.812 6.914 6.748 1.093 1.800
    0.7 1.780 1.291 1.174 1.940 7.098 6.719 7.111 6.685 1.182 1.952
    5 0.7 0.8 1.730 1.271 1.278 2.046 7.536 6.864 7.451 6.853 1.277 2.067
    0.9 1.708 1.279 1.376 2.123 8.201 7.045 8.071 7.054 1.378 2.163
    1.0 1.702 1.591 1.461 2.211 8.971 7.609 8.882 7.553 1.476 2.232
    1.2 1.722 1.433 1.611 2.341 11.452 9.226 11.421 9.110 1.621 2.360
    1.5 1.807 1.342 1.776 2.478 16.879 13.616 16.775 13.015 1.774 2.487
    0.5 1.083 0.475 1.021 1.828 3.834 4.573 3.918 4.638 1.024 1.836
    0.6 0.932 0.450 1.062 1.814 3.425 3.948 3.458 4.001 1.064 1.826
    0.7 0.884 0.493 1.132 1.867 3.324 3.825 3.338 3.876 1.136 1.868
    0.9 0.8 0.877 0.546 1.232 1.996 3.386 3.885 3.358 3.886 1.235 1.979
    0.9 0.894 0.605 1.350 2.165 3.515 4.260 3.558 4.206 1.355 2.174
    1.0 0.925 0.673 1.468 2.364 3.737 4.589 3.765 4.612 1.487 2.358
    1.2 1.019 0.810 1.672 2.661 4.224 5.185 4.267 5.195 1.687 2.673
    1.5 1.193 1.027 1.938 3.091 5.421 6.061 5.402 6.064 1.971 3.066
    10 0.5 2.504 2.132 1.017 1.201 9.349 7.397 9.262 7.378 1.015 1.204
    0.6 2.434 2.047 1.030 1.310 9.478 7.387 9.424 7.386 1.028 1.318
    0.7 2.369 1.986 1.050 1.405 9.673 7.459 9.549 7.424 1.046 1.411
    0.5 0.8 2.327 1.959 1.079 1.483 10.209 7.756 10.202 7.723 1.071 1.494
    0.9 2.288 1.939 1.111 1.547 10.776 8.146 10.897 8.157 1.101 1.553
    1.0 2.265 1.942 1.147 1.608 11.596 8.749 11.465 8.736 1.144 1.614
    1.2 2.245 1.960 1.230 1.695 13.539 10.044 13.307 10.103 1.228 1.699
    1.5 2.247 2.023 1.360 1.795 16.741 12.476 16.397 12.757 1.359 1.786
    0.5 2.031 1.365 1.000 1.258 4.125 4.761 4.124 4.773 1.000 1.266
    0.6 1.888 1.295 1.002 1.404 4.133 4.652 4.117 4.626 1.002 1.428
    0.7 1.801 1.274 1.013 1.549 4.265 4.630 4.287 4.628 1.011 1.560
    0.7 0.8 1.746 1.281 1.037 1.681 4.422 4.630 4.435 4.664 1.039 1.680
    0.9 1.718 1.306 1.079 1.769 4.634 4.715 4.660 4.786 1.083 1.783
    1.0 1.709 1.343 1.136 1.851 4.877 4.884 4.844 4.847 1.137 1.866
    1.2 1.731 1.438 1.278 1.988 5.662 5.336 5.600 5.367 1.283 1.998
    1.5 1.817 1.594 1.472 2.133 7.610 6.746 7.567 6.688 1.491 2.136
    0.5 1.095 0.474 1.000 1.258 2.466 4.761 2.486 4.773 1.000 1.266
    0.6 0.939 0.453 1.003 1.404 2.357 4.652 2.383 4.626 1.005 1.428
    0.7 0.888 0.490 1.020 1.549 2.377 4.630 2.403 4.628 1.024 1.560
    0.9 0.8 0.878 0.547 1.069 1.681 2.479 4.630 2.532 4.664 1.071 1.680
    0.9 0.892 0.607 1.150 1.769 2.620 4.715 2.668 4.786 1.154 1.783
    1.0 0.926 0.671 1.241 1.851 2.814 4.884 2.837 4.847 1.246 1.866
    1.2 1.020 0.810 1.425 1.988 3.186 5.336 3.166 5.367 1.432 1.998
    1.5 1.195 1.027 1.664 2.133 3.717 6.746 3.718 6.688 1.670 2.136
    0.5 2.537 2.149 1.001 1.052 6.372 5.498 6.416 5.497 1.000 1.052
    0.6 2.455 2.053 1.001 1.119 6.356 5.433 6.384 5.427 1.002 1.121
    0.7 2.391 1.995 1.004 1.199 6.418 5.430 6.482 5.420 1.003 1.202
    0.5 0.8 2.343 1.961 1.008 1.274 6.579 5.499 6.647 5.504 1.008 1.280
    0.9 2.304 1.946 1.013 1.346 6.838 5.651 6.901 5.672 1.013 1.360
    1.0 2.278 1.943 1.022 1.415 7.161 5.878 7.353 5.845 1.021 1.426
    1.2 2.250 1.962 1.052 1.530 8.163 6.553 8.157 6.553 1.049 1.539
    1.5 2.256 2.025 1.122 1.652 9.898 8.030 10.001 7.956 1.119 1.652
    0.5 2.046 1.368 1.000 1.124 3.033 3.790 3.016 3.800 1.000 1.122
    0.6 1.899 1.295 1.000 1.249 3.065 3.783 3.099 3.796 1.000 1.253
    0.7 1.806 1.275 1.001 1.376 3.234 3.862 3.221 3.804 1.001 1.381
    15 0.7 0.8 1.750 1.285 1.003 1.490 3.350 3.905 3.331 3.848 1.004 1.493
    0.9 1.725 1.308 1.012 1.595 3.490 3.915 3.462 3.910 1.012 1.591
    1.0 1.713 1.343 1.032 1.677 3.617 3.988 3.622 4.004 1.033 1.668
    1.2 1.737 1.436 1.108 1.797 4.030 4.213 4.003 4.234 1.111 1.810
    1.5 1.818 1.598 1.280 1.935 5.011 4.876 4.954 4.903 1.289 1.938
    0.5 1.096 0.473 1.000 1.402 1.944 3.020 1.922 2.977 1.000 1.413
    0.6 0.941 0.453 1.000 1.510 1.953 2.816 1.949 2.763 1.000 1.511
    0.7 0.885 0.490 1.004 1.571 2.009 2.694 1.997 2.766 1.004 1.553
    0.9 0.8 0.878 0.547 1.020 1.670 2.127 2.932 2.124 2.888 1.023 1.671
    0.9 0.892 0.607 1.065 1.799 2.272 3.135 2.277 3.100 1.065 1.813
    1.0 0.927 0.671 1.140 1.968 2.427 3.394 2.437 3.370 1.138 1.945
    1.2 1.019 0.810 1.302 2.220 2.720 3.811 2.757 3.838 1.307 2.224
    1.5 1.194 1.027 1.531 2.561 3.157 4.349 3.168 4.412 1.531 2.575

     | Show Table
    DownLoad: CSV

    A further investigation on the SS performance of the TGWMA and DGWMA sign charts in detecting small shifts, p ∈ {0.44, 0.48, 0.52, 0.56}, is made, and the ARL1s are shown in Tables 9 and 10. The trend in Tables 8 and 9 for the SS condition is the same as those for the ZS condition in Tables 5 and 6, where it is seen that when p ∈ {0.44, 0.56} and q ∈ {0.5, 0.7}, the ARL1s of the TGWMA sign chart are smaller than that of the DGWMA sign chart, irrespective of the sample size n. For even smaller shifts, such as p ∈ {0.48, 0.52}, all the ARL1s of the TGWMA sign chart are less than that of the DGWMA sign chart, for any sample size n.

    Table 9.  ARL1s for the TGWMA and DGWMA sign charts, for shift sizes in the process proportion p ∈ {0.44, 0.48} when ARL0 = 370 under the SS condition.
    n q α LDG LTG p
    0.44 0.48
    DGWMA TGWMA % Diff DGWMA TGWMA % Diff
    0.5 2.389 2.091 43.859 30.288 -30.94 206.928 166.350 -19.61
    0.6 2.341 2.014 49.624 33.027 -33.45 229.764 185.130 -19.43
    0.7 2.299 1.967 55.677 37.506 -32.64 247.635 203.183 -17.95
    0.5 0.8 2.265 1.935 62.597 41.694 -33.39 254.198 213.941 -15.84
    0.9 2.237 1.927 70.279 48.550 -30.92 264.116 231.882 -12.20
    1.0 2.222 1.926 75.878 55.098 -27.39 269.622 246.856 -8.44
    1.2 2.205 1.946 88.333 66.052 -25.22 286.585 259.882 -9.32
    1.5 2.217 2.003 107.235 84.920 -20.81 302.848 275.864 -8.91
    0.5 1.982 1.305 16.277 13.523 -16.92 95.150 61.710 -35.14
    0.6 1.859 1.363 16.479 12.851 -22.02 107.211 67.262 -37.26
    0.7 1.780 1.291 17.456 13.163 -24.59 123.888 80.903 -34.70
    5 0.7 0.8 1.730 1.271 19.412 14.298 -26.35 141.093 98.181 -30.41
    0.9 1.708 1.279 22.444 16.288 -27.43 157.615 118.169 -25.03
    1.0 1.702 1.591 26.594 18.844 -29.14 174.780 137.637 -21.25
    1.2 1.722 1.433 35.804 26.324 -26.48 204.987 173.632 -15.30
    1.5 1.807 1.342 54.600 41.247 -24.46 243.555 216.557 -11.08
    0.5 1.083 0.475 7.625 7.436 -2.47 30.577 21.678 -29.10
    0.6 0.932 0.450 6.223 5.938 -4.58 23.055 16.347 -29.09
    0.7 0.884 0.493 5.642 5.412 -4.09 20.987 14.856 -29.21
    0.9 0.8 0.877 0.546 5.619 5.491 -2.29 22.023 15.385 -30.14
    0.9 0.894 0.605 5.830 5.956 2.15 26.516 18.405 -30.59
    1.0 0.925 0.673 6.281 6.459 2.82 33.753 23.658 -29.91
    1.2 1.019 0.810 7.954 7.538 -5.23 59.188 41.791 -29.39
    1.5 1.193 1.027 13.197 11.112 -15.80 114.917 89.586 -22.04
    10 0.5 2.504 2.132 26.935 17.490 -35.06 172.197 114.295 -33.63
    0.6 2.434 2.047 27.804 18.222 -34.46 183.439 129.920 -29.18
    0.7 2.369 1.986 29.593 19.150 -35.29 188.868 140.536 -25.59
    0.5 0.8 2.327 1.959 32.977 21.531 -34.71 201.378 159.515 -20.79
    0.9 2.288 1.939 34.960 23.386 -33.11 208.525 164.481 -21.12
    1.0 2.265 1.942 38.845 26.398 -32.04 217.502 178.574 -17.90
    1.2 2.245 1.960 46.172 32.571 -29.46 232.794 199.000 -14.52
    1.5 2.247 2.023 56.286 42.456 -24.57 250.453 220.997 -11.76
    0.5 2.031 1.365 9.662 8.719 -9.75 61.142 38.501 -37.03
    0.6 1.888 1.295 9.307 8.345 -10.34 63.997 38.869 -39.26
    0.7 1.801 1.274 9.653 8.331 -13.70 72.892 44.824 -38.51
    0.7 0.8 1.746 1.281 10.268 8.576 -16.48 83.152 54.095 -34.94
    0.9 1.718 1.306 11.275 9.014 -20.05 98.133 67.415 -31.30
    1.0 1.709 1.343 12.657 9.846 -22.21 109.922 79.157 -27.99
    1.2 1.731 1.438 16.617 12.894 -22.41 138.679 110.143 -20.58
    1.5 1.817 1.594 25.285 19.448 -23.08 176.707 151.183 -14.44
    0.5 1.095 0.474 4.915 5.371 9.28 20.281 15.720 -22.49
    0.6 0.939 0.452 4.226 4.490 6.26 15.791 11.714 -25.82
    0.7 0.888 0.492 3.946 4.233 7.28 13.544 10.207 -24.64
    0.9 0.8 0.878 0.547 3.941 4.279 8.59 13.860 10.534 -24.00
    0.9 0.892 0.608 4.146 4.721 13.85 15.535 11.578 -25.47
    1.0 0.926 0.671 4.357 5.060 16.16 18.614 13.987 -24.86
    1.2 1.020 0.810 5.059 5.763 13.92 29.797 22.015 -26.12
    1.5 1.195 1.028 6.988 7.061 1.05 64.014 47.708 -25.47
    0.5 2.537 2.149 18.390 12.426 -32.43 139.083 85.675 -38.40
    0.6 2.455 2.053 18.616 12.526 -32.72 145.832 94.802 -34.99
    0.7 2.391 1.995 19.501 13.220 -32.21 152.573 105.469 -30.87
    0.5 0.8 2.343 1.961 21.047 14.142 -32.81 166.033 118.315 -28.74
    0.9 2.304 1.946 22.432 15.384 -31.42 171.438 129.249 -24.61
    1.0 2.278 1.943 24.345 16.919 -30.50 176.783 139.162 -21.28
    1.2 2.250 1.962 28.795 20.359 -29.30 191.834 159.782 -16.71
    1.5 2.256 2.025 35.273 26.633 -24.49 214.662 186.033 -13.34
    0.5 2.046 1.368 7.022 6.908 -1.62 44.609 28.655 -35.76
    0.6 1.899 1.295 6.809 6.577 -3.41 46.257 29.071 -37.15
    0.7 1.806 1.275 6.972 6.536 -6.25 51.171 32.185 -37.10
    15 0.7 0.8 1.750 1.285 7.260 6.654 -8.35 59.622 38.118 -36.07
    0.9 1.725 1.308 7.776 6.766 -12.99 69.432 45.571 -34.37
    1.0 1.713 1.343 8.422 7.252 -13.89 79.886 55.199 -30.90
    1.2 1.737 1.436 10.651 8.579 -19.46 105.700 78.353 -25.87
    1.5 1.818 1.598 15.592 12.344 -20.83 136.590 112.626 -17.54
    0.5 1.096 0.473 3.777 4.439 17.54 15.725 12.398 -21.15
    0.6 0.941 0.453 3.395 3.837 13.03 12.226 9.454 -22.67
    0.7 0.885 0.490 3.207 3.610 12.57 10.598 8.257 -22.09
    0.9 0.8 0.878 0.547 3.283 3.828 16.62 10.472 8.594 -17.93
    0.9 0.892 0.607 3.411 4.094 20.00 11.477 9.464 -17.54
    1.0 0.927 0.671 3.685 4.482 21.61 13.260 10.813 -18.45
    1.2 1.019 0.810 4.140 5.072 22.51 19.968 15.562 -22.06
    1.5 1.194 1.027 5.224 5.800 11.02 41.467 31.588 -23.82

     | Show Table
    DownLoad: CSV
    Table 10.  ARL1s for the TGWMA and DGWMA sign charts, for shift sizes in the process proportion p ∈ {0.52, 0.56} when ARL0 = 370 under the SS condition.
    n q α LDG LTG p
    0.52 0.56
    DGWMA TGWMA % Diff DGWMA TGWMA % Diff
    0.5 2.389 2.091 209.226 166.647 -20.35 43.500 30.298 -30.35
    0.6 2.341 2.014 229.379 186.152 -18.85 49.661 33.589 -32.36
    0.7 2.299 1.967 241.981 206.289 -14.75 56.198 37.903 -32.55
    0.5 0.8 2.265 1.935 258.510 217.386 -15.91 63.211 42.328 -33.04
    0.9 2.237 1.927 266.651 230.145 -13.69 67.894 48.677 -28.30
    1.0 2.222 1.926 272.363 238.198 -12.54 76.114 54.874 -27.91
    1.2 2.205 1.946 280.510 259.583 -7.46 87.427 67.071 -23.28
    1.5 2.217 2.003 303.270 276.409 -8.86 105.355 83.311 -20.92
    0.5 1.982 1.305 94.476 63.667 -32.61 16.181 13.633 -15.74
    0.6 1.859 1.363 107.693 66.727 -38.04 16.129 12.771 -20.82
    0.7 1.780 1.291 121.746 80.677 -33.73 17.395 13.309 -23.49
    5 0.7 0.8 1.730 1.271 139.984 97.726 -30.19 19.687 14.213 -27.81
    0.9 1.708 1.279 160.618 117.059 -27.12 22.461 15.910 -29.17
    1.0 1.702 1.591 177.157 138.139 -22.02 26.357 18.742 -28.89
    1.2 1.722 1.433 211.368 174.282 -17.55 36.221 26.445 -26.99
    1.5 1.807 1.342 244.940 219.838 -10.25 53.780 40.870 -24.00
    0.5 1.083 0.475 30.831 21.476 -30.34 7.665 7.290 -4.89
    0.6 0.932 0.450 23.653 16.342 -30.91 6.218 5.959 -4.16
    0.7 0.884 0.493 21.010 14.596 -30.53 5.642 5.332 -5.49
    0.9 0.8 0.877 0.546 22.352 15.126 -32.33 5.611 5.475 -2.43
    0.9 0.894 0.605 26.435 18.039 -31.76 5.870 5.846 -0.40
    1.0 0.925 0.673 33.676 23.164 -31.21 6.256 6.311 0.88
    1.2 1.019 0.810 58.679 41.973 -28.47 7.829 7.529 -3.84
    1.5 1.193 1.027 113.888 88.482 -22.31 13.098 11.358 -13.28
    10 0.5 2.504 2.132 171.698 113.141 -34.10 26.500 17.378 -34.42
    0.6 2.434 2.047 181.791 127.989 -29.60 27.851 18.072 -35.11
    0.7 2.369 1.986 192.217 140.131 -27.10 29.943 19.009 -36.51
    0.5 0.8 2.327 1.959 203.606 154.659 -24.04 32.840 20.987 -36.09
    0.9 2.288 1.939 210.117 164.940 -21.50 35.027 23.477 -32.98
    1.0 2.265 1.942 214.309 184.365 -13.97 38.700 26.905 -30.48
    1.2 2.245 1.960 237.088 198.176 -16.41 46.435 32.414 -30.20
    1.5 2.247 2.023 249.893 226.499 -9.36 55.671 42.291 -24.04
    0.5 2.031 1.365 61.643 38.092 -38.21 9.659 8.702 -9.91
    0.6 1.888 1.295 64.965 40.388 -37.83 9.396 8.265 -12.04
    0.7 1.801 1.274 73.471 45.753 -37.73 9.709 8.172 -15.83
    0.7 0.8 1.746 1.281 84.367 55.115 -34.67 10.311 8.332 -19.20
    0.9 1.718 1.306 98.852 66.096 -33.14 11.188 8.926 -20.22
    1.0 1.709 1.343 110.362 78.863 -28.54 12.533 9.761 -22.12
    1.2 1.731 1.438 139.238 110.958 -20.31 16.313 12.529 -23.20
    1.5 1.817 1.594 178.413 151.261 -15.22 25.381 18.705 -26.30
    0.5 1.095 0.474 20.707 15.159 -26.79 4.888 5.447 11.45
    0.6 0.939 0.452 15.645 11.589 -25.92 4.252 4.559 7.23
    0.7 0.888 0.492 13.583 10.180 -25.06 3.923 4.226 7.71
    0.9 0.8 0.878 0.547 13.695 10.391 -24.13 3.948 4.396 11.33
    0.9 0.892 0.608 15.164 11.668 -23.05 4.125 4.713 14.25
    1.0 0.926 0.671 18.158 13.793 -24.04 4.364 5.029 15.23
    1.2 1.020 0.810 30.562 21.254 -30.46 5.046 5.660 12.16
    1.5 1.195 1.028 64.556 46.848 -27.43 6.974 7.029 0.79
    0.5 2.537 2.149 140.084 87.115 -37.81 18.169 12.305 -32.27
    0.6 2.455 2.053 144.999 93.707 -35.37 18.505 12.461 -32.66
    0.7 2.391 1.995 154.711 105.488 -31.82 19.503 13.133 -32.66
    0.5 0.8 2.343 1.961 164.023 117.697 -28.24 21.090 13.935 -33.93
    0.9 2.304 1.946 167.140 130.851 -21.71 22.473 15.331 -31.78
    1.0 2.278 1.943 180.418 138.107 -23.45 24.170 16.923 -29.98
    1.2 2.250 1.962 190.454 158.358 -16.85 28.601 20.450 -28.50
    1.5 2.256 2.025 211.809 180.815 -14.63 35.432 26.249 -25.92
    0.5 2.046 1.368 45.530 28.873 -36.58 6.986 6.794 -2.74
    0.6 1.899 1.295 45.744 29.116 -36.35 6.763 6.454 -4.58
    0.7 1.806 1.275 52.094 32.461 -37.69 6.948 6.447 -7.21
    15 0.7 0.8 1.750 1.285 59.696 37.995 -36.35 7.224 6.487 -10.21
    0.9 1.725 1.308 69.395 45.373 -34.62 7.747 6.820 -11.96
    1.0 1.713 1.343 79.332 56.029 -29.37 8.360 7.205 -13.81
    1.2 1.737 1.436 106.480 77.171 -27.53 10.570 8.482 -19.76
    1.5 1.818 1.598 138.830 114.277 -17.69 15.444 12.389 -19.78
    0.5 1.096 0.473 16.054 12.379 -22.89 3.769 4.439 17.77
    0.6 0.941 0.453 12.421 9.460 -23.84 3.387 3.806 12.39
    0.7 0.885 0.490 10.545 8.391 -20.42 3.203 3.689 15.16
    0.9 0.8 0.878 0.547 10.476 8.585 -18.05 3.256 3.788 16.32
    0.9 0.892 0.607 11.464 9.323 -18.68 3.423 4.094 19.59
    1.0 0.927 0.671 13.515 10.598 -21.58 3.632 4.425 21.84
    1.2 1.019 0.810 20.138 15.514 -22.96 4.102 5.006 22.03
    1.5 1.194 1.027 42.334 31.521 -25.54 5.214 5.858 12.33

     | Show Table
    DownLoad: CSV

    Table 11 compares the SDRL1 values of the TGWMA and DGWMA sign charts under the SS condition. The comparison indicates that, when the shift is small (p ∈ {0.44, 0.48, 0.52, 0.56}), all SDRL1 values of the TGWMA sign chart are smaller than that of the DGWMA sign chart, with the exception of some cases when q = 0.9. For instance, when n = 5, q = 0.5, p = 0.56, and α ∈ {0.5, 0.6, …, 1.5}, SDRL1 ∈ {25.09, 29.98, …, 82.98} and {39.45, 46.31, …, 103.83} for the TGWMA and DGWMA sign charts, respectively, where the former has smaller SDRL1s (see Table 11). These findings align with our conclusion regarding the ARL1 performance of the two charts.

    Table 11.  SDRL1s for the TGWMA and DGWMA sign charts, for shift sizes in the process proportion p ∈ {0.44, 0.48, 0.52, 0.56} when ARL0 = 370 under the SS condition.
    n q α LDG LTG p
    0.44 0.48 0.52 0.56
    DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA DGWMA TGWMA
    0.5 2.389 2.091 39.65 25.38 202.21 168.00 209.16 167.41 39.45 25.09
    0.6 2.341 2.014 46.33 28.78 232.81 187.48 226.75 186.74 46.31 29.98
    0.7 2.299 1.967 52.82 35.02 251.29 208.61 240.99 210.02 52.89 34.64
    0.5 0.8 2.265 1.935 60.22 38.77 253.23 217.47 260.73 219.58 62.15 40.02
    0.9 2.237 1.927 68.86 47.27 262.70 234.67 265.58 235.47 66.81 46.95
    1.0 2.222 1.926 73.80 54.24 270.77 250.54 273.22 239.96 75.58 54.18
    1.2 2.205 1.946 87.91 64.56 288.01 263.26 281.69 265.09 87.22 66.52
    1.5 2.217 2.003 106.42 85.22 304.36 277.18 300.35 279.07 103.83 82.98
    0.5 1.982 1.305 11.99 10.44 88.99 61.59 88.38 64.23 11.80 10.23
    0.6 1.859 1.363 12.52 10.11 106.50 72.04 106.75 73.11 12.27 9.89
    0.7 1.780 1.291 13.98 10.41 125.69 91.97 126.18 90.82 13.66 10.66
    5 0.7 0.8 1.730 1.271 16.30 11.94 144.87 114.70 145.23 112.94 16.69 11.90
    0.9 1.708 1.279 19.92 14.29 160.08 136.75 165.15 134.27 20.05 14.32
    1.0 1.702 1.591 24.34 17.62 180.52 159.75 183.13 157.26 24.54 17.86
    1.2 1.722 1.433 34.60 26.22 210.87 198.16 215.10 194.78 34.81 27.07
    1.5 1.807 1.342 54.31 42.08 250.10 234.79 255.61 238.02 53.32 41.30
    0.5 1.083 0.475 6.47 8.15 28.70 27.01 28.95 27.10 6.43 7.97
    0.6 0.932 0.450 5.47 6.89 24.02 22.47 24.25 22.12 5.41 6.84
    0.7 0.884 0.493 4.94 6.32 23.01 20.70 22.59 20.52 4.93 6.25
    0.9 0.8 0.877 0.546 4.78 6.20 24.88 21.40 24.64 21.25 4.78 6.20
    0.9 0.894 0.605 4.85 6.29 31.02 26.17 30.87 25.48 4.84 6.27
    1.0 0.925 0.673 5.15 6.41 41.90 33.67 40.85 33.57 5.08 6.38
    1.2 1.019 0.810 6.53 6.91 74.13 60.78 73.76 61.93 6.62 7.03
    1.5 1.193 1.027 12.95 11.00 137.34 124.92 137.57 123.44 12.53 11.24
    10 0.5 2.504 2.132 22.83 12.78 170.68 110.45 172.55 111.46 22.43 12.64
    0.6 2.434 2.047 24.06 14.23 178.71 131.59 179.20 126.63 24.58 14.25
    0.7 2.369 1.986 26.93 15.60 187.69 139.35 188.46 140.45 27.07 15.69
    0.5 0.8 2.327 1.959 30.96 18.26 201.68 158.37 201.29 156.04 30.20 18.15
    0.9 2.288 1.939 32.73 21.03 209.84 168.85 205.45 167.54 32.97 21.30
    1.0 2.265 1.942 36.74 24.33 216.36 179.57 216.46 186.87 36.73 25.08
    1.2 2.245 1.960 44.80 30.80 235.61 204.78 235.65 200.55 44.20 30.25
    1.5 2.247 2.023 55.90 41.23 248.33 223.54 253.55 231.50 55.27 40.95
    0.5 2.031 1.365 6.58 6.28 52.69 35.20 54.32 35.10 6.55 6.26
    0.6 1.888 1.295 6.36 5.91 60.24 38.52 60.34 39.82 6.43 5.78
    0.7 1.801 1.274 6.68 5.85 70.56 48.03 70.31 48.58 6.78 5.77
    0.7 0.8 1.746 1.281 7.39 6.09 82.88 58.20 85.38 60.16 7.38 5.90
    0.9 1.718 1.306 8.57 6.60 97.24 75.23 101.62 74.02 8.41 6.63
    1.0 1.709 1.343 10.19 7.62 114.20 88.26 112.90 89.77 10.24 7.60
    1.2 1.731 1.438 14.51 11.18 140.21 123.56 143.41 125.22 14.36 10.91
    1.5 1.817 1.594 24.27 18.55 180.57 160.83 181.01 163.89 24.14 17.71
    0.5 1.095 0.474 3.96 5.49 18.44 18.63 18.56 18.25 3.92 5.49
    0.6 0.939 0.452 3.43 4.88 15.26 15.24 15.29 15.13 3.41 4.87
    0.7 0.888 0.492 3.13 4.59 13.79 13.67 13.81 13.57 3.12 4.57
    0.9 0.8 0.878 0.547 3.06 4.54 14.16 13.60 14.00 13.40 3.05 4.59
    0.9 0.892 0.608 3.13 4.68 16.13 14.78 15.90 14.73 3.11 4.68
    1.0 0.926 0.671 3.21 4.75 20.18 17.54 20.19 17.15 3.19 4.70
    1.2 1.020 0.810 3.58 4.76 35.21 29.59 35.71 28.99 3.52 4.73
    1.5 1.195 1.028 5.46 5.51 75.75 64.23 75.97 62.43 5.30 5.43
    0.5 2.537 2.149 14.62 8.50 135.64 80.41 135.92 82.76 14.45 8.39
    0.6 2.455 2.053 15.51 8.81 143.65 92.89 140.54 93.07 15.23 9.00
    0.7 2.391 1.995 16.68 10.07 150.64 105.54 154.17 103.02 16.87 9.98
    0.5 0.8 2.343 1.961 18.37 11.43 167.85 117.48 162.55 117.36 18.74 11.18
    0.9 2.304 1.946 20.03 12.94 173.87 127.80 168.63 130.99 20.54 12.84
    1.0 2.278 1.943 22.64 14.67 175.07 141.07 183.16 141.15 22.16 14.63
    1.2 2.250 1.962 27.46 18.46 189.80 162.95 190.35 160.08 27.06 18.73
    1.5 2.256 2.025 33.92 25.09 212.15 189.28 216.74 184.52 34.41 24.77
    0.5 2.046 1.368 4.67 4.66 37.10 25.13 37.36 25.11 4.52 4.50
    0.6 1.899 1.295 4.43 4.41 41.36 26.49 39.99 26.76 4.34 4.30
    0.7 1.806 1.275 4.54 4.27 47.82 32.29 48.73 33.02 4.42 4.21
    15 0.7 0.8 1.750 1.285 4.80 4.30 58.73 40.02 58.29 40.09 4.66 4.21
    0.9 1.725 1.308 5.37 4.41 68.68 49.29 68.44 49.29 5.15 4.41
    1.0 1.713 1.343 6.17 4.98 79.23 61.16 79.28 61.90 6.03 4.86
    1.2 1.737 1.436 8.70 6.54 105.78 85.66 108.50 85.37 8.59 6.52
    1.5 1.818 1.598 13.96 10.81 139.49 122.74 140.42 123.26 13.65 10.62
    0.5 1.096 0.473 2.93 4.36 13.93 14.59 14.11 14.62 2.87 4.36
    0.6 0.941 0.453 2.63 3.96 11.64 12.09 11.79 11.97 2.61 3.93
    0.7 0.885 0.490 2.42 3.79 10.44 10.79 10.33 10.82 2.40 3.80
    0.9 0.8 0.878 0.547 2.38 3.85 10.28 10.71 10.26 10.64 2.35 3.84
    0.9 0.892 0.607 2.43 3.96 11.17 11.32 11.14 11.18 2.41 3.94
    1.0 0.927 0.671 2.51 4.04 13.41 12.67 13.57 12.33 2.51 4.01
    1.2 1.019 0.810 2.65 4.03 21.68 18.95 22.13 19.18 2.65 4.00
    1.5 1.194 1.027 3.42 4.04 47.24 40.05 48.58 40.18 3.36 4.03

     | Show Table
    DownLoad: CSV

    By comparing the ZS and SS performances of the charts, it is found that the magnitude in which the TGWMA sign chart surpasses the DGWMA sign chart in detecting small shifts is larger under the SS condition. This is reflected by the smaller ARL1s for the TGWMA sign chart compared to that of the DGWMA sign chart for all (n, q, α) combinations, even when q = 0.9. For example, when p = 0.56, n = 5, q = 0.5, and α = 0.7, ARL1 = 115.410 and 98.026 for the DGWMA and TGWMA sign charts, respectively, under the ZS condition, where the latter beats the former by 15.06% (see Table 6). For the same (p, n, q, α) combination but under the SS condition, the latter (ARL1 = 37.903) beats the former (ARL1 = 56.198) by 32.55% (see Table 10).

    From the findings for the ZS and SS conditions, the following outcomes can be drawn: (1) For very small shifts in the process proportion (p∈ {0.48, 0.52}), the TGWMA sign chart signals an out-of-control quicker than the DGWMA sign chart for both the ZS and SS conditions, irrespective of the value of q. (2) For moderately small shifts (p ∈ {0.44, 0.56}) and q ∈ {0.5, 0.7}, the TGWMA sign chart beats the DGWMA sign chart under both the ZS and SS conditions. (3) The superiority of the TGWMA sign chart to the DGWMA sign chart in detecting small shifts is more pronounced under the SS condition.

    To illustrate the implementation of the TGWMA sign chart, we use the data generated from the beta distribution, which are shown in Table 12. The observations of the first 30 samples (Phase-I), each of size 10, are generated from an in-control process where the two shape parameters of the beta distribution, say v1 and v2 are set to have a value of 0.5. Observations in the last 8 samples (Phase-II), each of size 10, are generated for the out-of-control process, where the shape parameters of the beta distribution are set as v1 = 2 and v2 = 1. The in-control process mean is computed as v1v1+v2=0.5, while the out-of-control mean is computed as 0.667. Therefore, the out-of-control samples 31–38 represent the out-of-control process with an increasing process mean.

    Table 12.  Data from beta distribution for the example of application.
    Sample, t X1t X2t X3t X4t X5t X6t X7t X8t X9t X10t Stt TGt
    DGt
    1 0.5702 0.08012 0.8845 0.629479 0.6825 0.999919 0.579285 0.719615 0.102486 0.275464 7 5.2500 5.5000
    2 0.5034 0.702642 0.7163 0.957226 0.9987 0.973864 0.801551 0.093206 0.471036 0.996615 8 5.713519 6.201359
    3 0.9978 0.009929 0.6221 0.164068 0.5071 0.003535 0.601063 0.223815 0.179336 0.161444 4 5.714266 5.767158
    4 0.0229 0.991813 0.8299 0.000328 0.9984 0.786728 0.616461 0.499141 0.73215 0.476604 6 5.735828 5.773452
    5 0.0028 0.784026 0.1454 0.902179 0.8500 0.522691 0.988197 0.025847 0.910285 0.217237 6 5.776512 5.826092
    6 0.4196 0.059927 0.8491 0.979391 0.4959 0.830559 0.496686 0.016712 0.763549 0.046209 4 5.572838 5.376999
    7 0.8318 0.018198 0.1706 0.41589 0.7909 0.99963 0.009571 0.436939 0.975319 0.075149 4 5.277275 4.96498
    8 0.3257 0.918843 0.2579 0.951921 0.7523 0.697847 0.97078 0.009051 0.099304 0.027537 5 5.10656 4.902844
    9 0.4862 0.124097 0.4065 0.876814 0.7640 0.797717 0.013378 0.863669 0.096703 0.128255 4 4.895887 4.658683
    10 0.4274 0.233716 0.5386 0.130684 0.3301 0.888911 0.753793 0.975762 0.354549 0.981492 5 4.814553 4.703775
    11 0.0219 0.306122 0.2492 0.032105 0.0126 0.999092 0.005505 0.718202 0.117349 0.84933 3 4.555975 4.279593
    12 0.5609 0.574035 0.9958 0.168582 0.9895 0.301979 0.676129 0.972852 0.942276 0.010371 7 4.741244 4.894672
    13 0.9951 0.029546 0.0014 0.584294 0.8523 0.328844 0.355607 0.409936 0.53435 0.530612 5 4.870391 5.007145
    14 0.6267 0.003471 0.6669 0.92144 0.0125 0.99732 0.611229 0.000115 0.279645 0.570439 6 5.069664 5.282129
    15 0.0762 0.407474 0.0250 0.841336 0.9966 0.588368 0.264362 0.961856 0.28094 0.856199 5 5.152052 5.25735
    16 0.4696 0.003238 0.2489 0.994475 3.55E-06 0.644047 0.984545 0.191073 0.380588 0.305798 3 4.916056 4.695024
    17 0.8246 0.018678 0.9999 0.865013 0.3863 0.92085 0.999862 0.518415 0.008572 0.069978 6 4.934962 4.936133
    18 0.0546 0.223302 0.4345 0.872334 0.6366 0.71856 0.750281 0.019878 0.374078 0.020426 4 4.83323 4.729009
    19 0.0041 0.876838 5.86E-05 0.973007 0.0515 0.843726 0.36796 0.884074 0.603529 0.154157 5 4.805902 4.767614
    20 0.3767 0.23556 0.4572 0.992474 0.6600 0.129325 0.849969 0.009487 0.520841 0.71771 5 4.820062 4.828212
    21 0.0779 0.370026 0.9717 0.001115 0.8748 0.255375 0.599647 0.538014 0.788778 0.040764 5 4.850669 4.880465
    22 0.3515 0.46473 0.5917 0.245184 0.5480 0.06595 0.27332 0.580468 0.187294 0.002535 3 4.633838 4.419386
    23 0.8088 0.26253 0.0925 0.825565 0.3767 0.933075 0.211791 0.204973 0.930286 0.898264 5 4.574832 4.495261
    24 0.7305 0.933924 0.0560 0.337528 0.9340 0.707821 0.59638 0.382755 0.734368 0.873163 7 4.855729 5.124938
    25 0.9906 0.036636 0.0188 0.634851 0.0643 0.65767 0.700874 0.053167 0.997942 0.65193 6 5.136117 5.439705
    26 0.1522 0.285573 0.6655 0.999483 0.0946 0.996726 0.413136 0.783623 0.005903 0.466228 4 5.120927 5.139082
    27 0.0512 0.983117 0.4765 0.812364 0.0293 0.076785 0.996703 0.461926 0.004158 0.983148 4 4.964178 4.81621
    28 0.9669 0.977164 0.4041 0.956877 0.1992 0.998982 0.219952 0.550532 0.274517 0.764285 6 5.017297 5.059067
    29 0.3861 0.052703 0.6222 0.610627 0.8858 0.938853 0.343466 0.354105 0.317215 0.96051 5 5.044818 5.074977
    30 0.0401 0.371909 0.5778 0.628514 0.6814 0.999111 0.105374 0.999734 0.043668 0.289866 5 5.051645 5.061799
    31 0.8750 0.256548 0.4494 0.239001 0.2225 0.334312 0.108355 0.995916 0.80597 0.794395 4 4.922528 4.795131
    32 0.9395 0.990588 0.4428 0.539487 0.7370 0.740426 0.452595 0.221729 0.823141 0.65797 7 5.119995 5.305558
    33 0.5955 0.229933 0.6993 0.710866 0.9304 0.932369 0.912159 0.91385 0.876076 0.798972 9 5.703212 6.302307
    34 0.9150 0.735176 0.2272 0.154289 0.6596 0.737279 0.351968 0.682104 0.674293 0.581332 7 6.139748 6.637249
    35 0.3078 0.69469 0.9601 0.880546 0.3982 0.098874 0.986994 0.899163 0.778053 0.651785 7 6.43888 6.79861
    36 0.7120 0.215475 0.4185 0.498992 0.6470 0.96941 0.918386 0.61711 0.301867 0.607577 6 6.511691 6.633487
    37 0.9938 0.872322 0.7515 0.973524 0.7097 0.687674 0.060591 0.775218 0.479455 0.971956 8 6.721238 6.954998
    38 0.6109 0.617634 0.5627 0.361924 0.7872 0.860665 0.677536 0.988587 0.728429 0.941723 9 7.102303 7.513546

     | Show Table
    DownLoad: CSV

    The number of observations larger than the grand average, ¯ˉX = 0.5029 in each sample, is counted and the count is recorded as St ( = ni=1Iit) (for t = 1, 2, …, 38) in the third to last column of Table 12. Note that ¯ˉX is computed from the 30×10 in-control observations of the 30 Phase-I samples, and it is also taken as μ0 in Eq (1). The TGt values for the TGWMA sign chart, computed using Eq (11), for the 38 samples are given in the second to last column of Table 12. ARL0 = 370, the parameter combination (n, q, α) = (10, 0.5, 0.9), and the ZS condition are considered. Then, LTG = 2.750 is obtained from Table 2. The TGt values for the 38 samples are plotted in Figure 1 as the TGWMA sign chart, based on the limits UCL = 6.4993, CL = 5, and LCL = 3.5007, computed using Eqs (20a)–(20c), respectively.

    Figure 1.  An example of application for the TGWMA sign chart, based on (n, q, α) = (10, 0.5, 0.9) and ARL0 = 370.

    Figure 1 shows a plot of TG1, TG2, …, TG30 (first 30 samples) within the limits UCL/LCL of the TGWMA sign chart. However, the TGt statistic for the last 8 samples (t = 31, 32, …, 38) show an increasing trend, and the first out-of-control signal is detected at sample 36. In fact, TGt (for t = 36, 37 and 38) is above the UCL of the TGWMA sign chart, hence the last 3 samples are out-of-control. Following the detection of these out-of-control signals, corrective actions are made to investigate the underlying process to bring the out-of-control process back into the in-control situation again.

    In order to compare the TGWMA and DGWMA sign charts, we also construct the DGWMA sign chart in Figure 2 based on the chart's limits UCL = 6.8535, CL = 5, and LCL = 3.1465, computed using Eqs (10a)–(10c), respectively. Figure 2 shows that DG1, DG2, …, DG30 (first 30 samples) are within the limits UCL/LCL of the DGWMA sign chart. However, the DGt statistic in the last 8 samples (i.e., t = 31, 32, …, 38) shows an increasing trend, and the first out-of-control signal is detected at sample 37 by the chart.

    Figure 2.  An example of application for the DGWMA sign chart, based on (n, q, α) = (10, 0.5, 0.9) and ARL0 = 370.

    By comparing Figures 1 and 2, it is found that the TGWMA sign chart detects the increasing shift in the mean slightly quicker than the DGWMA sign chart. The former signals at sample 36, while the latter is at sample 37.

    The purpose of this study is to further enhance the ability of non-parametric control charts to detect small shifts, and to meet the real-world demands for high-performance control charts in achieving a stable process control scenario. The TGWMA sign chart's statistic (TGt), expectation and variance of TGt, and control limits of the TGWMA sign chart are derived in this paper. Through numerical simulations, the detection capability of the TGWMA and DGWMA sign charts, especially in detecting small shifts, is compared, in terms of the charts' ARL1s for both ZS and SS conditions. The findings show that regardless of the ZS or SS condition, and under most parameter combinations, the TGWMA sign chart is more effective in detecting small shifts in the process proportion than the DGWMA sign chart, and this superiority becomes more apparent as the shift becomes smaller. The implementation of the TGWMA sign chart is also demonstrated with an example. Given the excellent small shift detection effectiveness of the TGWMA sign chart, the said chart can be applied in actual production and manufacturing processes, especially when the data come from an unknown underlying distribution.

    Practitioners in manufacturing and service industries can use the developed non-parametric TGWMA sign chart in process monitoring effectively, as tables providing the values of the constants LTG and R2 are given for various (n, q, α) combinations when ARL0 = 370 to facilitate the computation of the chart's limits. This will enable practitioners to use the developed chart instantaneously for more efficient process monitoring so that small shifts can be detected faster when the process distribution is unknown.

    Further research could focus on investigating the performance of the proposed TGWMA sign chart when measurement errors exist in the process, as well as by considering the presence of autocorrelation in the underlying process. The use of advanced optimization techniques, including genetic algorithms or deep reinforcement learning, in computing the optimal parameters of the TGWMA sign chart could be a potential area for further research. An extension of the TGWMA sign control charting approach to its multivariate counterpart for monitoring multivariate non-parametric data could also be made. The fast initial response feature could also be incorporated into the TGWMA sign chart to improve the sensitivity of the chart in detecting shifts at process start-up.

    Dongmei Cui: Conceptualization, formal analysis, investigation, methodology, software, visualization, writing-original draft; Michael B. C. Khoo: Data Curation, funding acquisition, project administration, supervision, writing - review & editing; Huay Woon You: Investigation and supervision; Sajal Saha: Software, visualization, supervision; Zhi Lin Chong: Supervision, writing - review & editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used Artificial Intelligence (AI) tools in producing this article.

    This research was supported by the provincial-level special applied discipline fund designated for "Applied Economics" at Hunan International Economics University. This research was conducted when the corresponding author was spending his sabbatical leave at Estek Automation Sdn Bhd.

    The authors declare no competing interests.



    [1] R. W. Amin, M. R. Reynolds Jr., S. Bakir, Nonparametric quality control charts based on the sign statistic, Commun. Stat. Theory Methods, 24 (1995), 1597–1623. https://doi.org/10.1080/03610929508831574 doi: 10.1080/03610929508831574
    [2] S. Chakraborti, S. Eryilmaz, A nonparametric Shewhart-type signed-rank control chart based on runs, Commun. Stat. Simul. Comput., 36 (1995), 335–356. http://doi.org/10.1080/03610910601158427 doi: 10.1080/03610910601158427
    [3] C. Zhou, Y. Zhang, Z. Wang, Nonparametric control chart based on change-point model, Stat. Pap., 50 (2009), 13–28. https://doi.org/10.1007/s00362-007-0054-7 doi: 10.1007/s00362-007-0054-7
    [4] S. K. Khilare, D. T. Shirke, Nonparametric synthetic control charts for process variation, Qual. Reliab. Eng. Int., 28 (2012), 193–202. https://doi.org/10.1002/qre.1233 doi: 10.1002/qre.1233
    [5] W. Tapang, A. Pongpullponsak, S. Sarikavanij, Three non-parametric control charts based on ranked set sampling, Chiang Mai J. Sci., 43 (2016), 914–929. Available from: https://www.thaiscience.info/journals/Article/CMJS/10982829.pdf.
    [6] Y. Li, D. Pei, Z. Wu, A multivariate non-parametric control chart based on run test, Comput. Ind. Eng., 149 (2020), 106839. https://doi.org/10.1016/j.cie.2020.106839 doi: 10.1016/j.cie.2020.106839
    [7] F. Boroomandi, M. Kharrati-Kopaei, Non parametric PROS quality control chart for monitoring the process mean, Commun. Stat. Theory Methods, 51 (2022), 1706–1723. https://doi.org/10.1080/03610926.2020.1767139 doi: 10.1080/03610926.2020.1767139
    [8] J. C. Malela-Majika, Nonparametric precedence chart with repetitive sampling, Stat, 12 (2023), e512. https://doi.org/10.1002/sta4.512 doi: 10.1002/sta4.512
    [9] J. C. Malela-Majika, O. A. Adeoti, E. Rapoo, An EWMA control chart based on the Wilcoxon rank-sum statistic using repetitive sampling, Int. J. Qual. Reliab. Manage., 35 (2018), 711–728. https://doi.org/10.1108/IJQRM-10-2016-0181 doi: 10.1108/IJQRM-10-2016-0181
    [10] A. Tang, J. Sun, X. Hu, P. Castagliola, A new nonparametric adaptive EWMA control chart with exact run length properties, Comput. Ind. Eng., 130 (2019), 404–419. https://doi.org/10.1016/j.cie.2019.02.045 doi: 10.1016/j.cie.2019.02.045
    [11] V. Alevizakos, K. Chatterjee, C. Koukouvinos, The triple exponentially weighted moving average control chart, Qual. Technol. Quant. Manag., 18 (2021), 326–354. https://doi.org/10.1080/16843703.2020.1809063 doi: 10.1080/16843703.2020.1809063
    [12] A. Haq, An EWMA sign chart for monitoring processes with fixed and variable sample sizes, Stat, 13 (2024), e652. https://doi.org/10.1002/sta4.652 doi: 10.1002/sta4.652
    [13] P. S. Ng, M. B. C. Khoo, S. Saha, M. H. Lee, A variable sampling interval EWMA t chart with auxiliary information - A robustness study in the presence of estimation error, Alex. Eng. J., 61 (2022), 6043–6059. http://doi.org/10.1016/j.aej.2021.11.033 doi: 10.1016/j.aej.2021.11.033
    [14] L. Xue, L. An, S. Feng, Y. Liu, H. Wu, Q. Wang, A nonparametric adaptive EWMA control chart for monitoring multivariate time-between-events-and-amplitude data, Comput. Ind. Eng., 193 (2024), 110250. http://doi.org/10.1016/j.cie.2024.110250 doi: 10.1016/j.cie.2024.110250
    [15] S. H. Sheu, T. C. Lin, The generally weighted moving average control chart for detecting small shifts in the process mean, Qual. Eng., 16 (2023), 209–231. https://doi.org/10.1081/QEN-120024009 doi: 10.1081/QEN-120024009
    [16] S. H. Sheu, Y. T. Hsieh, The extended GWMA control chart, J. Appl. Stat., 36 (2009), 135–147. https://doi.org/10.1080/02664760802443913 doi: 10.1080/02664760802443913
    [17] S. L. Lu, An extended nonparametric exponentially weighted moving average sign control chart, Qual. Reliab. Eng. Int., 31 (2015), 3–13. https://doi.org/10.1002/qre.1673 doi: 10.1002/qre.1673
    [18] N. Chakraborty, S. Chakraborti, S. W. Human, N. Balakrishnan, A generally weighted moving average signed-rank control chart, Qual. Reliab. Eng. Int., 32 (2016), 2835–2845. https://doi.org/10.1002/qre.1968 doi: 10.1002/qre.1968
    [19] S. L. Lu, Non parametric double generally weighted moving average sign charts based on process proportion, Commun. Stat. Theory Methods, 47 (2018), 2684–2700. https://doi.org/10.1080/03610926.2017.1342832 doi: 10.1080/03610926.2017.1342832
    [20] V. Alevizakos, C. Koukouvinos, K. Chatterjee, A nonparametric double generally weighted moving average signed-rank control chart for monitoring process location, Qual. Reliab. Eng. Int., 36 (2020), 2441–2458. https://doi.org/10.1002/qre.2706 doi: 10.1002/qre.2706
    [21] K. Mabude, J. C. Malela-Majika, M. Aslam, Z. L. Chong, S. C. Shongwe, Distribution-free composite Shewhart-GWMA Mann-Whitney charts for monitoring the process location, Qual. Reliab. Eng. Int., 37 (2021), 1409–1435. https://doi.org/10.1002/qre.2804 doi: 10.1002/qre.2804
    [22] D. G. Godase, S. B. Mahadik, The combined Shewhart-CUSUM sign charts, Commun. Stat. Simul. Comput., 53 (2021), 357–366. https://doi.org/10.1080/03610918.2021.2020287 doi: 10.1080/03610918.2021.2020287
    [23] K. Mabude, J. C. Malela-Majika, P. Castagliola, S. C. Shongwe, Distribution-free mixed GWMA-CUSUM and CUSUM-GWMA Mann-Whitney charts to monitor unknown shifts in the process location, Commun. Stat. Simul. Comput., 51 (2022), 6667–6690. https://doi.org/10.1080/03610918.2020.1811331 doi: 10.1080/03610918.2020.1811331
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(124) PDF downloads(25) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog