Research article Special Issues

Interpolation unitarily invariant norms inequalities for matrices with applications

  • Received: 05 May 2024 Revised: 31 May 2024 Accepted: 06 June 2024 Published: 18 June 2024
  • MSC : 15B48, 15A60, 15A45, 47A30

  • Let $ A_j, B_j, P_j $, and $ Q_j \in M_{n}(\mathbb{C}) $, where $ j = 1, 2, \dots, m $. For a real number $ c \in [0, 1] $, we prove the following interpolation inequality:

    $ \begin{equation*} {\left\vert\kern-0.1ex\left\vert\kern-0.1ex\left\vert {\sum\limits_{j = 1}^m {{A_j}{P_j}{Q_j}^*{B_j}^*} } \right\vert\kern-0.1ex\right\vert\kern-0.1ex\right\vert}^2 \leq {\left( {\max \left\{ {L,\,M} \right\}} \right)^4} {\left\vert\kern-0.1ex\left\vert\kern-0.1ex\left\vert {K_c} \right\vert\kern-0.1ex\right\vert\kern-0.1ex\right\vert} \quad {\left\vert\kern-0.1ex\left\vert\kern-0.1ex\left\vert {K_{1-c}} \right\vert\kern-0.1ex\right\vert\kern-0.1ex\right\vert}, \end{equation*} $

    where

    $ \begin{equation*} L = {\left\vert\kern-0.1ex\left\vert {\sum\limits_{j = 1}^m {\left| {{A_j}^*} \right|^2} } \right\vert\kern-0.1ex\right\vert}^ \frac{1}{2}, M = {\left\vert\kern-0.1ex\left\vert {\sum\limits_{j = 1}^m {\left| {{B_j}^*} \right|^2} } \right\vert\kern-0.1ex\right\vert}^ \frac{1}{2}, \end{equation*} $

    and

    $ \begin{equation*} K_c = \left( {c{{\left| {{P_1}} \right|}^2} + \left( {1 - c} \right){{\left| {{Q_1}} \right|}^2}} \right) \oplus \cdots \oplus \left( {c{{\left| {{P_m}} \right|}^2} + \left( {1 - c} \right){{\left| {{Q_m}} \right|}^2}} \right). \end{equation*} $

    Many other related interpolation inequalities are also obtained.

    Citation: Mohammad Al-Khlyleh, Mohammad Abdel Aal, Mohammad F. M. Naser. Interpolation unitarily invariant norms inequalities for matrices with applications[J]. AIMS Mathematics, 2024, 9(7): 19812-19821. doi: 10.3934/math.2024967

    Related Papers:

  • Let $ A_j, B_j, P_j $, and $ Q_j \in M_{n}(\mathbb{C}) $, where $ j = 1, 2, \dots, m $. For a real number $ c \in [0, 1] $, we prove the following interpolation inequality:

    $ \begin{equation*} {\left\vert\kern-0.1ex\left\vert\kern-0.1ex\left\vert {\sum\limits_{j = 1}^m {{A_j}{P_j}{Q_j}^*{B_j}^*} } \right\vert\kern-0.1ex\right\vert\kern-0.1ex\right\vert}^2 \leq {\left( {\max \left\{ {L,\,M} \right\}} \right)^4} {\left\vert\kern-0.1ex\left\vert\kern-0.1ex\left\vert {K_c} \right\vert\kern-0.1ex\right\vert\kern-0.1ex\right\vert} \quad {\left\vert\kern-0.1ex\left\vert\kern-0.1ex\left\vert {K_{1-c}} \right\vert\kern-0.1ex\right\vert\kern-0.1ex\right\vert}, \end{equation*} $

    where

    $ \begin{equation*} L = {\left\vert\kern-0.1ex\left\vert {\sum\limits_{j = 1}^m {\left| {{A_j}^*} \right|^2} } \right\vert\kern-0.1ex\right\vert}^ \frac{1}{2}, M = {\left\vert\kern-0.1ex\left\vert {\sum\limits_{j = 1}^m {\left| {{B_j}^*} \right|^2} } \right\vert\kern-0.1ex\right\vert}^ \frac{1}{2}, \end{equation*} $

    and

    $ \begin{equation*} K_c = \left( {c{{\left| {{P_1}} \right|}^2} + \left( {1 - c} \right){{\left| {{Q_1}} \right|}^2}} \right) \oplus \cdots \oplus \left( {c{{\left| {{P_m}} \right|}^2} + \left( {1 - c} \right){{\left| {{Q_m}} \right|}^2}} \right). \end{equation*} $

    Many other related interpolation inequalities are also obtained.



    加载中


    [1] M. Al-khlyleh, F. Alrimawi, Generalizations of the unitarily invariant norm version of the arithmetic–geometric mean inequality, Adv. Oper. Theory, 6 (2021), 2. https://doi.org/10.1007/s43036-020-00106-1 doi: 10.1007/s43036-020-00106-1
    [2] M. Al-khlyleh, F. Alrimawi, Further interpolating inequalities related to arithmetic-geometric mean, Cauchy-Schwarz and Hölder inequalities for unitarily invariant norms, Math. Inequal. Appl., 23 (2020), 1135–1143. http://doi.org/10.7153/mia-2020-23-87 doi: 10.7153/mia-2020-23-87
    [3] M. Al-khlyleh, F. Kittaneh, Interpolating inequalities related to a recent result of Audenaert, Linear Multil. Algebra, 65 (2017), 922–929. https://doi.org/10.1080/03081087.2016.1216069 doi: 10.1080/03081087.2016.1216069
    [4] W. Audeh, Singular value inequalities with applications, J. Math. Comput. Sci., 24 (2022), 323–329.
    [5] W. Audeh, Generalizations for singular value and arithmetic-geometric mean inequalities of operators, J. Math. Anal. Appl., 489 (2020), 124184. https://doi.org/10.1016/j.jmaa.2020.124184 doi: 10.1016/j.jmaa.2020.124184
    [6] K. Audenaert, A norm inequality for pairs of commuting positive semidefinite matrices, Electron. J. Linear Algebra, 30 (2015), 80–84.
    [7] R. Bhatia, Matrix Analysis, New York: Springer-Verlag, 1997.
    [8] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11 (1990), 272–277. https://doi.org/10.1137/0611018 doi: 10.1137/0611018
    [9] I. Gohberg, M. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, New York: American Mathematical Society, 1969.
    [10] A. Taghavi, T. Azimi Roushan, V. Darvish, Some refinements for the arithmetic-geometric mean and Cauchy-Schwarz matrix norm interpolating inequalities, Bull. Iran. Math. Soc., 44 (2018), 927–936. https://doi.org/10.1007/s41980-018-0060-7 doi: 10.1007/s41980-018-0060-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(551) PDF downloads(29) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog