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Abstract: Let A j, B j, P j, and Q j ∈ Mn(C), where j = 1, 2, . . . ,m. For a real number c ∈ [0, 1], we
prove the following interpolation inequality:∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
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A jP jQ j
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∗

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ (max {L, M})4
|||Kc||| |||K1−c|||,

where
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∣∣∣∣∣∣∣
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∗
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∣∣∣∣∣∣∣

1
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∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣B j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

,

and
Kc =

(
c|P1|

2 + (1 − c) |Q1|
2
)
⊕ · · · ⊕

(
c|Pm|

2 + (1 − c) |Qm|
2
)
.

Many other related interpolation inequalities are also obtained.
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1. Introduction

In this paper, Mn(C) stands for the set of all n×n complex matrices. A symmetric matrix A ∈ Mn(C)
is positive semidefinite, if for every x ∈ Cn, we have ⟨Ax, x⟩ ≥ 0. For H,K ∈ Mn(C), The block matrix
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H 0
0 K

]
will be denoted by H ⊕ K, and it is called the direct sum of H and K. We will use |||·|||

to denote a unitarily invariant matrix norm, which satisfies the property that |||A||| = |||UAV ||| for all
A,U,V ∈ Mn(C), where U and V are “unitary matrices” while we will use ||·|| to denote the usual
operator or spectral norm. For A ∈ Mn(C), si(A) will denote ith largest singular value of A, which

is the ith largest eigenvalue of |A| = (A∗A)
1
2 . It is well known that

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
[

0 H
H∗ 0

]∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ = |||H ⊕ H|||, and

||H ⊕ K|| = max(||H||, ||K||) for all H,K ∈ Mn(C). We refer to [7] for more about unitarily invariant
matrix norms and singular values.

The arithmetic–geometric mean inequality for matrices, obtained in [8], states that if H,K ∈ Mn(C),
then

|||HK∗||| ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ |H|2 + |K|22

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣, (1.1)

and the Cauchy–Schwarz inequality states that

|||HK∗|||2 ≤
∣∣∣∣∣∣∣∣∣|H|2∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣|K|2∣∣∣∣∣∣∣∣∣. (1.2)

The author in [4] obtained two main results; in both of them, he used an increasing convex
nonnegative function f defined on an interval I that contains the number 0 with f (0) ≤ 0. The first
result states that if A, B, P, and Q ∈ Mn(C) with max {||A||, ||B||} ≤ 1, then

2si (|APQ∗B∗|) ≤ (max {||A||, ||B||})2si

(
f
(
|P|2 + |Q|2

))
, (1.3)

for all i = 1, 2, . . . , n. In the second result, he obtained that if A j, B j, P j, and Q j ∈ Mn(C), where
j = 1, 2, . . . ,m, then

2si

 f

∣∣∣∣∣∣∣

m∑
j=1

A jP jQ j
∗B j
∗

∣∣∣∣∣∣∣

 ≤ (max {L,M})2si (K) , (1.4)

for all i = 1, 2, . . . , n, where

L =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣A j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

,M =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣B j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

,

and
K = f

(
|P1|

2 + |Q1|
2
)
⊕ · · · ⊕ f

(
|Pm|

2 + |Qm|
2
)
.

Letting f (t) = t, the norm version of inequality (1.3) is given by

|||APQ∗B∗||| ≤
(max {||A||, ||B||})2

2

∣∣∣∣∣∣∣∣∣|P|2 + |Q|2∣∣∣∣∣∣∣∣∣, (1.5)

while the norm version of inequality (1.4) is given by

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

A jP jQ j
∗B j
∗

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ (max {L,M})2

|||K|||, (1.6)

where L and M are the same as given formerly, but
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K =
(
|P1|

2 + |Q1|
2
)
⊕ · · · ⊕

(
|Pm|

2 + |Qm|
2
)
.

For more inequalities related to the inequalities (1.3)–(1.6), we refer to [1,5]. And for some inequalities
of interpolation type, we refer to [10].

In this paper, interpolation inequalities that can be considered generalizations of the
inequalities (1.5) and (1.6) are introduced, and many other consequences and applications of these
generalizations are also presented.

2. Results

We begin this section by introducing three lemmas; these lemmas support the proof of the first main
result of this paper. The first lemma can be obtained using “The min-max principle” (see, e.g., [7,
p. 75]); in addition, it is a direct consequence of a result introduced in [9, p. 27]. The second lemma
can be found in [7, p. 253], and the last lemma was introduced in [1].

Lemma 2.1. Let H,K, and L ∈ Mn(C). Then

|||HLK||| ≤ ||H|| |||L||| ||K||.

Lemma 2.2. Let P,Q ∈ Mn(C) such that PQ is normal. Then

|||PQ||| ≤ |||QP|||.

Lemma 2.3. Let A, B, P, and Q ∈ Mn(C). Then

|||APQ∗B∗|||2 ≤
∣∣∣∣∣∣∣∣∣cP∗|A|2P + (1 − c) Q∗|B|2Q

∣∣∣∣∣∣∣∣∣ × ∣∣∣∣∣∣∣∣∣(1 − c) P∗|A|2P + cQ∗|B|2Q
∣∣∣∣∣∣∣∣∣,

for every real number c ∈ [0, 1].

It should be mentioned here that the inequality in Lemma 2.3 interpolates between the
arithmetic-geometric mean inequality (1.1)

(
c = 1

2 , P = Q = I
)

and the Cauchy-Schwarz
inequality (1.2) (c = 0 or 1, P = Q = I). For more results on interpolation inequalities, we refer
to [1–3, 6].

Now, we will give the first main result in this paper.

Theorem 2.4. Let A, B, P, and Q ∈ Mn(C). Then

|||APQ∗B∗|||2 ≤ (max {||A||, ||B||})4
∣∣∣∣∣∣∣∣∣c|P|2 + (1 − c) |Q|2

∣∣∣∣∣∣∣∣∣ × ∣∣∣∣∣∣∣∣∣c|Q|2 + (1 − c) |P|2
∣∣∣∣∣∣∣∣∣, (2.1)

for every real number c ∈ [0, 1].

Proof. Using Lemma 2.3, we get that

|||APQ∗B∗|||2 ≤ |||cP∗A∗AP + (1 − c) Q∗B∗BQ||| × |||(1 − c) P∗A∗AP + cQ∗B∗BQ|||. (2.2)

Now let Fc be the block 2 × 2 matrix defined as Fc =

[ √
cP 0

√
1 − cQ 0

]
. Then
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Fc
∗

[
|A|2 0
0 |B|2

]
Fc =

[
cP∗A∗AP + (1 − c) Q∗B∗BQ 0

0 0

]
,

therefore

|||cP∗A∗AP + (1 − c) Q∗B∗BQ||| =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣Fc
∗

[
|A|2 0
0 |B|2

]
Fc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣. (2.3)

Similarly, we can get the following equality:

|||(1 − c) P∗A∗AP + cQ∗B∗BQ||| =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣F1−c

∗

[
|A|2 0
0 |B|2

]
F1−c

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣. (2.4)

Combining the inequality (2.2) with the equalities (2.3) and (2.4) leads to

|||APQ∗B∗|||2 ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣Fc
∗

[
|A|2 0
0 |B|2

]
Fc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ×
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣F1−c

∗

[
|A|2 0
0 |B|2

]
F1−c

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣. (2.5)

By using Lemmas 2.1 and 2.2, we can get that∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣Fc
∗

[
|A|2 0
0 |B|2

]
Fc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
[
|A| 0
0 |B|

]
FcFc

∗

[
|A| 0
0 |B|

]∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
[
|A| 0
0 |B|

]∣∣∣∣∣∣
∣∣∣∣∣∣2|||FcFc

∗|||

=

∣∣∣∣∣∣
∣∣∣∣∣∣
[
|A| 0
0 |B|

]∣∣∣∣∣∣
∣∣∣∣∣∣2|||Fc

∗Fc|||.

So ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣Fc
∗

[
|A|2 0
0 |B|2

]
Fc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ (max {||A||, ||B||})2

|||Fc
∗Fc|||

= (max {||A||, ||B||})2
∣∣∣∣∣∣∣∣∣c|P|2 + (1 − c) |Q|2

∣∣∣∣∣∣∣∣∣. (2.6)

Similarly ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣F1−c

∗

[
|A|2 0
0 |B|2

]
F1−c

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ (max {||A||, ||B||})2

|||F1−c
∗F1−c|||

= (max {||A||, ||B||})2
∣∣∣∣∣∣∣∣∣(1 − c) |P|2 + c|Q|2

∣∣∣∣∣∣∣∣∣. (2.7)

The result follows immediately from the inequality (2.5) and the inequalities (2.6) and (2.7). □

Note that substituting c = 1
2 in the inequality (2.1) leads us directly to the inequality (1.5), which

means that Theorem 2.4 generalizes the inequality (1.5).

Corollary 2.5. Let A, B, P, and Q ∈ Mn(C). Then

|||APQ∗B∗||| ≤ (max {||A||, ||B||})2
∣∣∣∣∣∣∣∣∣|P|2∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣|Q|2∣∣∣∣∣∣∣∣∣. (2.8)

Proof. Substitute c = 0 or c = 1 in the inequality (2.1) to get the result directly. □

AIMS Mathematics Volume 9, Issue 7, 19812–19821.



19816

Corollary 2.5 illustrates that the inequality (2.1) can be considered an interpolation inequality
between the inequalities (1.5) and (2.8).

Corollary 2.6. Let A, B, P, and Q ∈ Mn(C) such that P and Q are positive semidefinite matrices. Then∣∣∣∣∣∣∣∣∣∣∣∣AP
1
2 Q

1
2 B∗
∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ (max {||A||, ||B||})4

|||cP + (1 − c) Q||| |||(1 − c) P + cQ|||, (2.9)

for every real number c ∈ [0, 1].

Proof. Replace P and Q in the inequality (2.1) by P
1
2 and Q

1
2 respectively to get the result directly. □

Now we are ready to give the second main result in this paper.

Theorem 2.7. Let A j, B j, P j, and Q j ∈ Mn(C), where j = 1, 2, . . . ,m. For a real number c ∈ [0, 1], we
have ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

A jP jQ j
∗B j
∗

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ (max {L, M})4
|||Kc||| |||K1−c|||, (2.10)

where

L =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣A j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

,M =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣B j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

,

and
Kc =

(
c|P1|

2 + (1 − c) |Q1|
2
)
⊕ · · · ⊕

(
c|Pm|

2 + (1 − c) |Qm|
2
)
.

Proof. Consider the following m × m block matrices

A =


A1 A2 · · · Am

0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 , B =


B1 B2 · · · Bm

0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 ,

P =


P1 0 · · · 0
0 P2 · · · 0
...
...
. . .

...

0 0 · · · Pm

 , and Q =


Q1 0 · · · 0
0 Q2 · · · 0
...
...
. . .

...

0 0 · · · Qm

 .
Through simple and direct calculations, we get that

APQ∗B∗ =



m∑
j=1

A jP jQ j
∗B j
∗ 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


.

Thus ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

A jP jQ j
∗B j
∗

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = |||APQ∗B∗|||. (2.11)
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Also, it is an easy task to see that

||A|| =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣A j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

, (2.12)

||B|| =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣B j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

, (2.13)

∣∣∣∣∣∣∣∣∣c|P|2 + (1 − c) |Q|2
∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣((1 − c) |Q1|

2 + c|P1|
2
)
⊕ · · · ⊕

(
(1 − c) |Qm|

2 + c|Pm|
2
)∣∣∣∣∣∣∣∣∣∣∣∣, (2.14)

and ∣∣∣∣∣∣∣∣∣(1 − c) |P|2 + c|Q|2
∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣(c|Q1|

2 + (1 − c) |P1|
2
)
⊕ · · · ⊕

(
c|Qm|

2 + (1 − c) |Pm|
2
)∣∣∣∣∣∣∣∣∣∣∣∣. (2.15)

We get our result by applying the inequality (2.1) to the block matrices A, B, P, and Q and using the
Eqs (2.11) to (2.15). □

Note that substituting c = 1
2 in the inequality (2.10) leads us directly to the inequality (1.6), which

means that Theorem 2.7 is a generalization of the inequality (1.6).

Corollary 2.8. Let A j, B j, P j, and Q j ∈ Mn(C), where j = 1, 2, . . . ,m. Then∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

A jP jQ j
∗B j
∗

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ (max {L, M})4
|||S ||| |||T |||, (2.16)

where

L =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣A j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

,M =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
j=1

∣∣∣B j
∗
∣∣∣2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

,

and
S = |P1|

2
⊕ · · · ⊕ |Pm|

2,T = |Q1|
2
⊕ · · · ⊕ |Qm|

2.

Proof. Substitute c = 0 or c = 1 in the inequality (2.10) to get the result directly. □

The inequality (2.10) can be viewed as an interpolation inequality between the inequalities (1.6)
and (2.16), as demonstrated by Corollary 2.8.

The following corollary is nothing but constraining the inequality (2.10) for two pairs of matrices.

Corollary 2.9. Let A j, B j, P j, and Q j ∈ Mn(C), where j = 1, 2. For a real number c ∈ [0, 1], we have∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

2∑
j=1

A jP jQ j
∗B j
∗

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ (max {L, M})4
|||Kc||| |||K1−c|||, (2.17)

where
L = ||A1A1

∗ + A2A2
∗||

1
2 ,M = ||B1B1

∗ + B2B2
∗||

1
2 ,

and
Kc =

(
c|P1|

2 + (1 − c) |Q1|
2
)
⊕
(
c|P2|

2 + (1 − c) |Q2|
2
)
.
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Proof. Let A = P = Q = B = 0 for 3 ≤ j ≤ n in inequality (2.10) to get the result directly. □

Corollary 2.10. Let A, B, P, and Q ∈ Mn(C), where P and Q are positive semidefinite. For a real
number c ∈ [0, 1], we have∣∣∣∣∣∣∣∣∣∣∣∣AP

1
2 Q

1
2 B∗ + BP

1
2 Q

1
2 A∗
∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ ||AA∗ + BB∗||2|||Kc||| |||K1−c|||, (2.18)

where
Kc = (cP + (1 − c) Q) ⊕ (cP + (1 − c) Q) .

Proof. Replace A1 and B2 by A, replace A2 and B1 by B, and let P1 = P2 = P
1
2 and Q1 = Q2 = Q

1
2 in

the inequality (2.17) to get the result. □

Now we will present two directly proven inequalities in the subsequent two corollaries.

Corollary 2.11. Let A, B, P, and Q ∈ Mn(C), where P and Q are positive semidefinite. Then

2
∣∣∣∣∣∣∣∣∣∣∣∣AP

1
2 Q

1
2 B∗ + BP

1
2 Q

1
2 A∗
∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ||AA∗ + BB∗|| |||K|||, (2.19)

where
K = (P + Q) ⊕ (P + Q) .

Proof. Substitute c = 1
2 in inequality (2.18) to get the result directly. □

Corollary 2.12. Let A, B, P, and Q ∈ Mn(C), where P and Q are positive semidefinite. Then∣∣∣∣∣∣∣∣∣∣∣∣AP
1
2 Q

1
2 B∗ + BP

1
2 Q

1
2 A∗
∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ ||AA∗ + BB∗||2|||P ⊕ P||| |||Q ⊕ Q|||. (2.20)

Proof. Substitute c = 0 or c = 1 in the inequality (2.18) to get the result directly. □

It can be observed that the inequality (2.18) is an interpolation inequality between the
inequalities (2.19) and (2.20).

Remark 2.13. Substitute P = Q = X, where X ∈ Mn(C) is positive semidefinite, in the inequality (2.20)
to get that

|||AXB∗ + BXA∗||| ≤ ||AA∗ + BB∗|| |||X ⊕ X|||, (2.21)

letting X = I gives the following inequality:

|||AB∗ + BA∗||| ≤ ||AA∗ + BB∗||. (2.22)

Corollary 2.14. Let A, B, P, and Q ∈ Mn(C) be positive semidefinite. Then for a real number c ∈ [0, 1],
we have

|||S + T |||2 ≤ ||A + B||2 |||Kc||| |||K1−c|||, (2.23)

where
S = A

1
2 P

1
2 Q

1
2 A

1
2 ,T = B

1
2 P

1
2 Q

1
2 B

1
2 ,

and
Kc = (cP + (1 − c) Q) ⊕ (cP + (1 − c) Q) .

Letting P = Q = X. We get that∣∣∣∣∣∣∣∣∣∣∣∣A 1
2 XA

1
2 + B

1
2 XB

1
2

∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ ||A + B||2 |||X ⊕ X|||. (2.24)
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Proof. Let A1 = B1 = A
1
2 , A2 = B2 = B

1
2 , P1 = P2 = P

1
2 , and Q1 = Q2 = Q

1
2 in the inequality (2.17) to

get the inequality (2.23). □

Corollary 2.15. Let A, B, P1, P2,Q1,Q2 ∈ Mn(C). For a real number c ∈ [0, 1], we have∣∣∣∣∣∣∣∣∣AP1Q∗1A∗ − BP2Q∗2B∗
∣∣∣∣∣∣∣∣∣2 ≤ ||AA∗ + BB∗||2 |||Kc||| |||K1−c|||, (2.25)

where
Kc =

(
c|P1|

2 + (1 − c) |Q1|
2
)
⊕
(
c|P2|

2 + (1 − c) |Q2|
2
)
.

Proof. Let A1 = B1 = A, A2 = −B2 = B in the inequality (2.17) to get the inequality (2.25). □

It can be directly deduced that the inequality (2.25) can be considered an interpolation inequality
between the inequalities (2.26) and (2.27) that are demonstrated by the subsequent two corollaries.

Corollary 2.16. Let A, B, P1, P2,Q1,Q2 ∈ Mn(C). Then

2
∣∣∣∣∣∣∣∣∣AP1Q∗1A∗ − BP2Q∗2B∗

∣∣∣∣∣∣∣∣∣ ≤ ||AA∗ + BB∗|| |||K|||, (2.26)

where
K =
(
|P1|

2 + |Q1|
2
)
⊕
(
|P2|

2 + |Q2|
2
)
.

Proof. Substitute c = 1
2 in inequality (2.25) to get the result directly. □

Corollary 2.17. Let A, B, P1, P2,Q1,Q2 ∈ Mn(C). Then∣∣∣∣∣∣∣∣∣AP1Q∗1A∗ − BP2Q∗2B∗
∣∣∣∣∣∣∣∣∣2 ≤ ||AA∗ + BB∗||2 |||S ||| |||T |||, (2.27)

where
S = |P1|

2 + |P2|
2, T = |Q1|

2 + |Q2|
2.

Proof. Substitute c = 0 or c = 1 in the inequality (2.25) to get the result directly. □

Remark 2.18. Substitute P2 = Q2 = B = 0 in the inequality (2.25) to get that∣∣∣∣∣∣∣∣∣AP1Q∗1A∗
∣∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣|A∗|2∣∣∣∣∣∣2 |||Kc||| |||K1−c|||, (2.28)

where
Kc = c|P1|

2 + (1 − c) |Q1|
2.

Corollary 2.19. Let A, B, and X ∈ Mn(C), where X is positive semidefinite. Then

|||AXB∗ ⊕ AXB∗||| ≤ (max {||A||, ||B||})2
|||X ⊕ X|||. (2.29)

Proof. In the inequality (2.25), replace A and B by
[

A
B

]
and
[

A
−B

]
respectively and let P1 = P2 =

Q1 = Q2 = X
1
2 , to get that the left-hand side of this inequality equals∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣2
[

0 AXB∗

BXA∗ 0

]∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣2 = 4|||AXB∗ ⊕ AXB∗|||2,
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while the right-hand side of this inequality equals∣∣∣∣∣∣
∣∣∣∣∣∣2
[

AA∗ 0
0 BB∗

]∣∣∣∣∣∣
∣∣∣∣∣∣2|||X ⊕ X|||2 = 4(max {||AA∗||, ||BB∗||})2

|||X ⊕ X|||2

= 4
(
max
{
||A||2, ||B||2

})2
|||X ⊕ X|||2

= 4(max {||A||, ||B||})4
|||X ⊕ X|||2.

The result follows directly from the above discussion. □

3. Conclusions

Wasim Audeh latterly obtained two matrix singular values inequalities. The norm versions of these
inequalities are provided in this paper, and we utilize a recent result by Mohammad Al-khlyleh to
derive an interpolation inequalities that are related to Audeh’s inequalities.
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