This paper revisits the issue of stability analysis of neural networks subjected to time-varying delays. A novel approach, termed a compound-matrix-based integral inequality (CPBII), which accounts for delay derivatives using two adjustable parameters, is introduced. By appropriately adjusting these parameters, the CPBII efficiently incorporates coupling information along with delay derivatives within integral inequalities. By using CPBII, a novel stability criterion is established for neural networks with time-varying delays. The effectiveness of this approach is demonstrated through a numerical illustration.
Citation: Wenlong Xue, Zhenghong Jin, Yufeng Tian. Stability analysis of delayed neural networks via compound-parameter -based integral inequality[J]. AIMS Mathematics, 2024, 9(7): 19345-19360. doi: 10.3934/math.2024942
[1] | Wei Xue, Pengcheng Wan, Qiao Li, Ping Zhong, Gaohang Yu, Tao Tao . An online conjugate gradient algorithm for large-scale data analysis in machine learning. AIMS Mathematics, 2021, 6(2): 1515-1537. doi: 10.3934/math.2021092 |
[2] | Yiyuan Cheng, Yongquan Zhang, Xingxing Zha, Dongyin Wang . On stochastic accelerated gradient with non-strongly convexity. AIMS Mathematics, 2022, 7(1): 1445-1459. doi: 10.3934/math.2022085 |
[3] | Yassamine Chellouf, Banan Maayah, Shaher Momani, Ahmad Alawneh, Salam Alnabulsi . Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method. AIMS Mathematics, 2021, 6(4): 3465-3485. doi: 10.3934/math.2021207 |
[4] | Kasamsuk Ungchittrakool, Natthaphon Artsawang . A generalized viscosity forward-backward splitting scheme with inertial terms for solving monotone inclusion problems and its applications. AIMS Mathematics, 2024, 9(9): 23632-23650. doi: 10.3934/math.20241149 |
[5] | Suthep Suantai, Pronpat Peeyada, Andreea Fulga, Watcharaporn Cholamjiak . Heart disease detection using inertial Mann relaxed CQ algorithms for split feasibility problems. AIMS Mathematics, 2023, 8(8): 18898-18918. doi: 10.3934/math.2023962 |
[6] | Junaid Ahmad, Kifayat Ullah, Reny George . Numerical algorithms for solutions of nonlinear problems in some distance spaces. AIMS Mathematics, 2023, 8(4): 8460-8477. doi: 10.3934/math.2023426 |
[7] | Chibueze C. Okeke, Abubakar Adamu, Ratthaprom Promkam, Pongsakorn Sunthrayuth . Two-step inertial method for solving split common null point problem with multiple output sets in Hilbert spaces. AIMS Mathematics, 2023, 8(9): 20201-20222. doi: 10.3934/math.20231030 |
[8] | Raweerote Suparatulatorn, Wongthawat Liawrungrueang, Thanasak Mouktonglang, Watcharaporn Cholamjiak . An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction. AIMS Mathematics, 2025, 10(2): 2541-2561. doi: 10.3934/math.2025118 |
[9] | Yali Zhao, Qixin Dong, Xiaoqing Huang . A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem. AIMS Mathematics, 2025, 10(2): 4504-4523. doi: 10.3934/math.2025208 |
[10] | Puntita Sae-jia, Suthep Suantai . A new two-step inertial algorithm for solving convex bilevel optimization problems with application in data classification problems. AIMS Mathematics, 2024, 9(4): 8476-8496. doi: 10.3934/math.2024412 |
This paper revisits the issue of stability analysis of neural networks subjected to time-varying delays. A novel approach, termed a compound-matrix-based integral inequality (CPBII), which accounts for delay derivatives using two adjustable parameters, is introduced. By appropriately adjusting these parameters, the CPBII efficiently incorporates coupling information along with delay derivatives within integral inequalities. By using CPBII, a novel stability criterion is established for neural networks with time-varying delays. The effectiveness of this approach is demonstrated through a numerical illustration.
The objective of this paper is to investigate the existence and uniqueness of invariant measures for the stochastic FitzHugh-Nagumo delay lattice system with long-range interactions on the integer set Z:
{dun(t)=(∑m∈ZJ(n−m)um(t)−αvn(t)+fn(un(t))+an)dt+∞∑j=1(gj,n(un(t),un(t−ρ))+bj,n)dWj(t),dvn(t)=(βun(t)−λvn(t)+cn)dt+∞∑j=1(hj,n(vn(t),vn(t−ρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s∈[−ρ,0], | (1.1) |
where un,vn∈R, t>0, α,ρ,β,λ>0, the coupling parameters J(m) are real numbers satisfying J(m)=J(−m) for all positive integer m, a=(an)n∈Z, c=(cn)n∈Z, b=(bj,n)j∈N,n∈Z, and l=(lj,n)j∈N,n∈Z are given deterministic sequences in ℓ2η, fn,gj,n,hj,n are Lipschitz continuous functions for all j∈N,n∈Z, and (Wj(t))j∈N is a sequence of independent two-sided real-valued Wiener processes defined on a complete filtered probability space (Ω,F,{F}t∈R,P).
The subsequent changes should be observed while considering the transformation of J(m),
J(m)=2k∑j=0(2kj)(−1)jδm,j−k, |
where k is any positive integer and δm,n is the Kronecker's delta. Then, lattice system (1.1) can be changed into
{dun(t)=(△kun(t)−αvn(t)+fn(un(t))+an)dt+∞∑j=1(gj,n(un(t),un(t−ρ))+bj,n)dWj(t),dvn(t)=(βun(t)−λvn(t)+cn)dt+∞∑j=1(hj,n(vn(t),vn(t−ρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s∈[−ρ,0], |
where t>0,n∈Z, △k=△∘⋯∘△,k times, and △ is defined by △un=un+1+un−1−2un.
The emergence of lattice equations from spatial discretization of partial differential equations is widely acknowledged. Lattice systems exhibiting long-range interactions have garnered significant attention in the literature. Of those, the dynamics of the DNA molecule were described by Schrödinger lattice systems in [1]. Subsequently, Pereira investigated the asymptotic behavior of Schrödinger lattice systems in [2] and delay lattice systems in [3], respectively. Recently, Chen et al. considered the long-term dynamics of stochastic complex Ginzburg-Landau systems in their study [4], and Wong-Zakai approximations of stochastic lattice systems in another study [5].
The FitzHugh-Nagumo systems were used to describe the transmission of signals across axons in neurobiology in [6]. The asymptotic behavior of FitzHugh-Nagumo systems were studied in both deterministic [7] and stochastic scenarios [8,9,10,11,12]. The FitzHugh-Nagumo lattice systems were employed to stimulate the propagation of action potentials in myelinated nerve axons in [13]. The attractors of FitzHugh-Nagumo lattice systems were investigated in the deterministic case by [7,14], and in the stochastic case by [11,12,15,16,17,18]. Among these studies, Wang et al. [11] derived the existence and upper semi-continuity of random attractors for FitzHugh-Nagumo lattice systems in ℓ2×ℓ2, while Chen et al. [15] obtained the existence and uniqueness of weak pullback mean random attractors for FitzHugh-Nagumo lattice systems with nonlinear noises in weighted spaces ℓ2σ×ℓ2σ.
Furthermore, time delays are a common occurrence in various systems, and can lead to instability, oscillation, and other changes in dynamical systems. Due to their practical and theoretical significance, there has been an increasing emphasis on the study of time-delay systems. Recent studies have delved into the exploration of random attractors for stochastic lattice systems featuring fixed delays in [18,19,20,21,22]. Additionally, investigations have also been carried out concerning systems with varying delays over time as documented in [3,12,23,24,25].
Currently, there has been a significant amount of research conducted on the dynamical behavior of differential equations driven by linear noise. In order to effectively handle stochastic systems with nonlinear noise, Kloeden[26] and Wang[27,28] introduced the concept of weak pullback mean random attractors. The work described above has subsequently been widely applied in numerous studies on stochastic systems by a multitude of scholars in [15,16,17,19,20,21,25,27,28,29,30,31,32,33,34,35,36,37,38]. Among them, Wang et al [25] studied the stochastic delay modified Swift-Hohenberg lattice systems, as well as Chen et al.[19] and Li et al.[20] considered the stochastic delay lattice systems. However, to the best of our knowledge, the current state of literature on the invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions driven by nonlinear noise in weighted space is regrettably scarce.
The lattice system (1.1) is defined on Z, which represents a spatially discrete analogue to stochastic partial differential equations (PDEs) defined on R. Proving the existence of invariant measures for PDEs on unbounded domains poses a major challenge, primarily due to establishing the tightness of distribution laws of solutions caused by non-compactness in usual Sobolev embeddings on unbounded domains. Various approaches have been developed in literature to address the tightness of solution distributions for PDEs on unbounded domains, such as using weighted spaces in [39,40], weak Feller property of solutions in [41,42], and cut-off techniques in [43,44]. In this paper, the cut-off method will be employed to establish the existence of invariant measures for the stochastic lattice system (1.1) in C([−ρ,0],ℓ2η×ℓ2η). Specifically, we will demonstrate that when time is sufficiently large, the mean square of solution tails in C([−ρ,0],ℓ2η×ℓ2η) becomes uniformly small; based on this result, we can establish tightness in distribution laws for solutions in C([−ρ,0],ℓ2η×ℓ2η). The tail-estimates method has previously been used to prove existence of global attractors for deterministic PDEs [45,46] and stochastic PDEs with additive or linear multiplicative noise in [47,48]. In this paper, we will apply the tail-estimates approach to handle nonlinear noise involved in (1.1) in C([−ρ,0],ℓ2η×ℓ2η). For further information regarding existence of invariant measures for stochastic PDEs defined within bounded domains, please refer to [49] and its references.
The structure of this paper is organized as follows: Section 2 introduces the notations and discusses the well-posedness of lattice system (1.1). The subsequent section establishes necessary uniform estimates of solutions, which play a crucial role in demonstrating the main results in the following section. Sections 4 and 5 focus on establishing the existence and uniqueness of invariant measures for lattice system (1.1). Finally, we provide a summary and closing remarks in the last section.
In this section, we will investigate the well-posedness of the stochastic Fitzhugh-Nagumo delay lattice system (1.1) in weighted space ℓ2η×ℓ2η, where ℓ2η is defined by
ℓ2η={u=(un)n∈Z|un∈R,∑n∈Zηn|un|2<∞}. |
ℓ2η is a Hilbert space with the inner product and norm given by
(u,v)η=∑n∈Zηnunvn,‖u‖2η=(u,u)η,u,v∈ℓ2η. |
We further assume that weights η=(ηn)n∈Z satisfy the conditions
ηn>0,∀n∈Z,∑n∈Zηn<∞, | (2.1) |
and
αm:=supn∈Zηn+m+ηnη1/2n+mη1/2n<∞,∀m∈N. | (2.2) |
To get the existence of invariant measures for lattice system (1.1) in ℓ2η, the interaction J(m) should decrease at a sufficiently rapid rate such that
˜α:=∞∑m=0αm|J(m)|<∞. | (2.3) |
For sequences a=(an)n∈Z, c=(cn)n∈Z, b=(bj,n)j∈N,n∈Z, and l=(lj,n)j∈N,n∈Z in lattice system (1.1), we assume
‖a‖2η=∑n∈Zηn|an|2<∞,‖b‖2η=∑j∈N∑n∈Zηn|bj,n|2<∞,‖c‖2η=∑n∈Zηn|cn|2<∞,‖l‖2η=∑j∈N∑n∈Zηn|lj,n|2<∞. | (2.4) |
For the nonlinear term fn in lattice system (1.1), we assume that fn is a smooth function satisfying that there exists κ∈R such that for all z∈R and n∈Z,
fn(0)=0,f′n(z)≤κ. | (2.5) |
Moreover, for each n∈Z and z∈R, we assume that there are positive constants ιn and δ such that
fn(z)z≤−δ|z|2+ιn, | (2.6) |
where ι=(ιn)n∈Z belongs to ℓ1η and its norm is denoted by ‖ι‖1,η.
For every j∈N and n∈Z, we assume that gj,n,hj,n:R→R is globally Lipschitz continuous; that is, there is a constant L>0 such that for all z1,z2,z∗1,z∗2∈R,
|gj,n(z1,z2)−gj,n(z∗1,z∗2)|⋁|hj,n(z1,z2)−hj,n(z∗1,z∗2)|≤L(|z1−z∗1|+|z2−z∗2|). | (2.7) |
We further assume that for each z,z∗∈R, j∈N, and n∈Z,
|gj,n(z,z∗)|⋁|hj,n(z,z∗)|≤γj,n(1+|z|+|z∗|), | (2.8) |
where γj,n>0, ‖γ‖2=∑j∈N∑n∈Z|γj,n|2<∞, and ‖γ‖2η=∑j∈N∑n∈Zηn|γj,n|2<∞.
For any u=(un)n∈Z∈ℓ2η and v=(vn)n∈Z∈ℓ2η, denote by f(u)=(fn(un))n∈Z and f(v)=(fn(vn))n∈Z. By (2.5), we get
(f(u)−f(v),u−v)η=∑n∈Zηn(fn(un)−fn(vn))(un−vn)=∑n∈Zηnf′n(ξn)|un−vn|2≤κ‖u−v‖2η, | (2.9) |
where ξn=θnun+(1−θn)vn for some θn∈(0,1). Moreover, we can obtain that f is locally Lipschitz continuous from ℓ2η to ℓ2η; that is, there exists LC>0 such that for any u,v∈ℓ2η with ‖u‖2η≤C and ‖v‖2η≤C,
‖f(u)−f(v)‖2η≤L2C‖u−v‖2η. | (2.10) |
For each u1=(u1n)n∈Z,u2=(u2n)n∈Z,v1=(v1n)n∈Z,v2=(v2n)n∈Z∈ℓ2η, and j∈N, denote by gj(u1,v1)=(gj,n(u1n,v1n))n∈Z and hj(u1,v1)=(hj,n(u1n,v1n))n∈Z. It follows from (2.7) and (2.8) that
∑j∈N‖gj(u1,v1)‖2η⋁∑j∈N‖hj(u1,v1)‖2η≤2‖γ‖2η+4‖γ‖2(‖u1‖2η+‖v1‖2η) | (2.11) |
and
∑j∈N‖gj(u1,v1)−gj(u2,v2)‖2η⋁∑j∈N‖hj(u1,v1)−gj(u2,v2)‖2η≤2L2(‖u1−u2‖2η+‖v1−v2‖2η). | (2.12) |
The system (1.1) can be reformulated as an abstract system in ℓ2, for u=(un)n∈Z∈ℓ2, and we set
(Au)n=∑m∈ZJ(n−m)um. | (2.13) |
By Lemma 3.1 of [4], we have
‖Au‖2≤2|J(0)|2‖u‖2+8(∞∑m=1|J(m)|)2‖u‖2. | (2.14) |
By the above notation, system (1.1) can be rewritten as follows: For all t>0,
{du(t)=(Au(t)−αv(t)+f(u(t))+a)dt+∞∑j=1(gj(u(t),u(t−ρ))+bj)dWj(t),dv(t)=(βu(t)−λv(t)+c)dt+∞∑j=1(hj(v(t),v(t−ρ))+lj)dWj(t),u(s)=ϕ(s),v(s)=φ(s),s∈[−ρ,0]. | (2.15) |
Let (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be F0 -measurable. Then, a continuous ℓ2η×ℓ2η -valued Ft -adapted stochastic process (u(t),v(t)) is called a solution of stochastic lattice system (2.15) if (u0,v0)=(ϕ,φ), (u(t),v(t))∈L2(Ω,C([−ρ,T],ℓ2η×ℓ2η)) for all T>−ρ, t≥0 and for almost all ω∈Ω,
{u(t)=ϕ(0)+∫t0(Au(r)−αv(r)+f(u(r))+a)dr+∞∑j=1∫t0(gj(u(r),u(r−ρ))+bj)dWj(r),v(t)=φ(0)+∫t0(βu(r)−λv(r)+c)dr+∞∑j=1∫t0(hj(v(r),v(r−ρ))+lj)dWj(r). |
By (2.1)–(2.8) and the theory of the functional differential equation, we can get that for any (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), stochastic lattice system (2.15) has a solution (u(t),v(t))∈L2(Ω,C([−ρ,T],ℓ2η×ℓ2η)) for every T≥−ρ. Moreover, this solution is unique if (u∗(t),v∗(t)) is any other solution of system (2.15), then
P({(u(t),v(t))=(u∗(t),v∗(t))for allt≥−ρ})=1. |
Actually, the stochastic lattice system (2.15) has a unique solution defined for t∈[t0−ρ,∞), regardless of any initial time t0≥0 and any Ft0 -measurable (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)).
Hereafter, for t∈R, (ut,vt) is defined by
(ut,vt)(s)=(un,t(s),vn,t(s))n∈Z=(un(t+s),vn(t+s))n∈Z=(u(t+s),v(t+s)),s∈[−ρ,0], |
and let Cρ,η=C([−ρ,0],ℓ2η) with the norm ‖χ‖ρ,η=sup−ρ≤s≤0‖χ(s)‖η, χ∈Cρ,η.
The establishment of Lipschitz continuity for solutions to stochastic lattice system (2.15) in relation to initial data will now be undertaken, which shall subsequently be employed.
Lemma 2.1. Suppose (2.1)–(2.8) hold and (ϕ1,φ1),(ϕ2,φ2)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of stochastic lattice system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any t≥0,
E[sup−ρ≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+sup−ρ≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤M1(1+eM1t)E[‖ϕ1−ϕ2‖2Cρ,η+‖φ1−φ2‖2Cρ,η], |
where M1 is a positive constant independent of (ϕ1,φ1), (ϕ2,φ2), and t.
Proof. By (2.15), we get that for all t≥0,
d(u(t,ϕ1)−u(t,ϕ2))=A(u(t,ϕ1)−u(t,ϕ2))dt−α(v(t,φ1)−v(t,φ2))dt+(f(u(t,ϕ1))−f(u(t,ϕ2)))dt+∞∑j=1(gj(u(t,ϕ1),u(t−ρ,ϕ1))−gj(u(t,ϕ2),u(t−ρ,ϕ2)))dWj(t), | (2.16) |
and
d(v(t,φ1)−v(t,φ2))=β(u(t,ϕ1)−u(t,ϕ2))dt−λ(v(t,φ1)−v(t,φ2))dt+∞∑j=1(hj(v(t,φ1),v(t−ρ,φ1))−hj(v(t,φ2),v(t−ρ,φ2)))dWj(t), |
which along with (2.16) and Itô's formula shows that for all t≥0,
12(β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η)=12(β‖ϕ1(0)−ϕ2(0)‖2η+α‖φ1(0)−φ2(0)‖2η)−λα∫t0‖v(s,φ1)−v(s,φ2)‖2ηds+β∫t0(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds+β∫t0(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds+β2∞∑j=1∫t0‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds+α2∞∑j=1∫t0‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2ηds+β∞∑j=1∫t0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)+α∞∑j=1∫t0(hj,v(s,φ1)−v(s,φ2))ηdWj(s), | (2.17) |
where
gj=gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2)) |
and
hj=hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2)). |
By (2.13) and the fact of J(m)=J(−m), we have
(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η=J(0)‖u(s,ϕ1)−u(s,ϕ2)‖2η+∑n∈Zηn∞∑m=1J(m)(un(s,ϕ1)−un(s,ϕ2))×(un−m(s,ϕ1)−un−m(s,ϕ2)+un+m(s,ϕ1)−un+m(s,ϕ2))=J(0)‖u(s,ϕ1)−u(s,ϕ2)‖2η+∑n∈Z∞∑m=1J(m)ηn+m(un+m(s,ϕ1)−un+m(s,ϕ2))(un(s,ϕ1)−un(s,ϕ2))+∑n∈Z∞∑m=1J(m)ηn(un(s,ϕ1)−un(s,ϕ2))(un+m(s,ϕ1)−un+m(s,ϕ2))=J(0)‖u(s,ϕ1)−u(s,ϕ2)‖2η+∑n∈Z∞∑m=1J(m)(ηn+ηn+m)(un(s,ϕ1)−un(s,ϕ2))(un+m(s,ϕ1)−un+m(s,ϕ2)), | (2.18) |
which along with (2.2) and (2.3) implies that
β∫t0(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds≤βJ(0)∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds+β∫t0∑n∈Z∞∑m=1|J(m)|αmη12nη12n+m|un(s,ϕ1)−un(s,ϕ2)||un+m(s,ϕ1)−un+m(s,ϕ2)|ds≤β˜α∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds. | (2.19) |
By (2.9), we obtain
β∫t0(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds≤βκ∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds. | (2.20) |
By (2.12), we get
β2∞∑j=1∫t0‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds+α2∞∑j=1∫t0‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2ηds≤2βL2∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds+βL2∫0−ρ‖ϕ1(s)−ϕ2(s)‖2ηds+2αL2∫t0‖v(s,φ1)−v(s,φ2)‖2ηds+αL2∫0−ρ‖φ1(s)−φ2(s)‖2ηds. | (2.21) |
It follows from (2.17)–(2.21) that for all t≥0,
β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η≤β‖ϕ1(0)−ϕ2(0)‖2η+α‖φ1(0)−φ2(0)‖2η+2βL2∫0−ρ‖ϕ1(s)−ϕ2(s)‖2ηds+2αL2∫0−ρ‖φ1(s)−φ2(s)‖2ηds+4αL2∫t0‖v(s,φ1)−v(s,φ2)‖2ηds+2β(˜α+|κ|+2L2)∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds+2β|∞∑j=1∫t0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|+2α|∞∑j=1∫t0(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|, |
which implies that for all t≥0,
E[βsup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤(1+2ρL2)(E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η])+2β(˜α+|κ|+2L2)∫t0E[sup0≤r≤s‖u(r,ϕ1)−u(r,ϕ2)‖2η]ds+4αL2∫t0E[sup0≤r≤s‖v(r,φ1)−v(r,φ2)‖2η]ds+2βE[sup0≤r≤t|∞∑j=1∫r0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|]+2αE[sup0≤r≤t|∞∑j=1∫r0(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|]. | (2.22) |
For the last two terms of (2.22), by (2.12), the Burkholder-Davis-Gundy (BDG) inequality, and the Minkowski inequality, we have
2βE[sup0≤r≤t|∞∑j=1∫r0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|]≤βC1√2E[(∫t0∞∑j=1‖gj‖2η‖u(s,ϕ1)−u(s,ϕ2)‖2ηds)12]≤βC1√2E[sup0≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖η×(∫t0∞∑j=1‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds)12]≤βC1LE[sup0≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖η(∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds)12]+βC1LE[sup0≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖η(∫t0‖u(s−ρ,ϕ1)−u(s−ρ,ϕ2)‖2ηds)12]≤β2E[sup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η]+2βC21L2∫t0E[sup0≤r≤s‖u(r,ϕ1)−u(r,ϕ2)‖2η]ds+ρβC21L2E[‖ϕ1−ϕ2‖2Cρ,η], | (2.23) |
and
2αE[sup0≤r≤t|∞∑j=1∫r0(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|]≤α2E[sup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]+2αC21L2∫t0E[sup0≤r≤s‖v(r,φ1)−v(r,φ2)‖2η]ds+ραC21L2E[‖φ1−φ2‖2Cρ,η], |
which along with (2.22) and (2.23) shows that
E[βsup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤C2E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]+C3∫t0E[βsup0≤r≤s‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤s‖v(r,φ1)−v(r,φ2)‖2η]ds, | (2.24) |
where C2=2(1+2ρL2+ρC21L2), C3=4(˜α+2L2+|κ|+C21L2). It follows from (2.24) and the Gronwall inequality that for all t≥0,
E[βsup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤C2eC3tE[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]. |
This completes the proof.
The existence of invariant measures of the stochastic lattice system (2.15) in the subsequent analysis necessitates the fulfillment of the following inequality.
‖γ‖2<196eρνmax{2δ−4˜α−27β4λ3−8,2λ−27α4δ3−6}, | (2.25) |
where ν>0,2δ−4˜α−27β4λ3−8>0,2λ−27α4δ3−6>0.
In this section, we obtain uniform estimates of the solutions to stochastic lattice system (2.15), which play a pivotal role in proving the existence of invariant measures. More specifically, we will showcase the compactness of a family of probability distributions pertaining to (ut,vt) in C([−ρ,0],ℓ2η×ℓ2η). Initially, our focus lies on discussing uniform estimates of solutions to stochastic lattice system (2.15) in C([−ρ,0],ℓ2η×ℓ2η) for all t≥0.
Lemma 3.1. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies
supt≥−ρE[‖u(t)‖2η+‖v(t)‖2η]≤M2(1+E[‖ϕ‖2Cρ,η+‖φ‖2Cρ,η]), |
where M2 is a positive constant independent of (ϕ,φ).
Proof. By (2.15) and Itô's formula, we get that for all t≥0,
{d‖u(t)‖2η=2((Au(t),u(t))η−α(v(t),u(t))η+(f(u(t)),u(t))η+(a,u(t))η)dt+∞∑j=1‖gj(u(t),u(t−ρ))+bj‖2ηdt+2∞∑j=1(gj(u(t),u(t−ρ))+bj,u(t))ηdWj(t),d‖v(t)‖2η=2(β(u(t),v(t))η−λ‖v(t)‖2η+(c,v(t))η)dt+∞∑j=1‖hj(v(t),v(t−ρ))+lj‖2ηdt+2∞∑j=1(hj(v(t),v(t−ρ))+lj,v(t))ηdWj(t). | (3.1) |
Let ν be a positive constant which will be specified later. We get from (3.1) that for all t≥0,
eνt(β‖u(t)‖2η+α‖v(t)‖2η)−νβ∫t0eνs‖u(s)‖2ηds−(ν−2λ)α∫t0eνs‖v(s)‖2ηds=β‖ϕ(0)‖2η+α‖φ(0)‖2η+2β∫t0eνs(Au(s),u(s))ηds+2β∫t0eνs(a,u(s))ηds+2β∫t0eνs(f(u(s)),u(s))ηds+β∞∑j=1∫t0eνs‖gj(u(s),u(s−ρ))+bj‖2ηds+2α∫t0eνs(c,v(s))ηds+α∞∑j=1∫t0eνs‖hj(v(s),v(s−ρ))+lj‖2ηds+2β∞∑j=1∫t0eνs(gj(u(s),u(s−ρ))+bj,u(s))ηdWj(s)+2α∞∑j=1∫t0eνs(hj(v(s),v(s−ρ))+lj,v(s))ηdWj(s). | (3.2) |
Taking the expectation, we obtain that for t≥0,
eνtE[β‖u(t)‖2η+α‖v(t)‖2η]−νβ∫t0eνsE[‖u(s)‖2η]ds−(ν−2λ)α∫t0eνsE[‖v(s)‖2η]ds=E[β‖ϕ(0)‖2η+α‖φ(0)‖2η]+2β∫t0eνsE[(Au(s),u(s))η]ds+2β∫t0eνsE[(a,u(s))η]ds+2β∫t0eνsE[(f(u(s)),u(s))η]ds+2α∫t0eνsE[(c,v(s))η]ds+β∞∑j=1∫t0eνsE[‖gj(u(s),u(s−ρ))+bj‖2η]ds+α∞∑j=1∫t0eνsE[‖hj(v(s),v(s−ρ))+lj‖2η]ds. | (3.3) |
Similar to (2.18) and (2.19), we get
2β∫t0eνsE[(Au(s),u(s))η]ds≤2β˜α∫t0eνsE[‖u(s)‖2η]ds. | (3.4) |
By (2.6), we have
2β∫t0eνsE[(f(u(s)),u(s))η]ds≤−2βδ∫t0eνsE[‖u(s)‖2η]ds+2β‖ι‖1,ηνeνt. | (3.5) |
Note that
2β∫t0eνsE[(a,u(s))η]ds+2α∫t0eνsE[(c,v(s))η]ds≤βδ∫t0eνsE[‖u(s)‖2η]ds+λα∫t0eνsE[‖v(s)‖2η]ds+βδν‖a‖2ηeνt+αλν‖c‖2ηeνt. | (3.6) |
By (2.11), we obtain
β∞∑j=1∫t0eνsE[‖gj(u(s),u(s−ρ))+bj‖2η]ds≤2β∞∑j=1∫t0eνsE[‖gj(u(s),u(s−ρ))‖2η]ds+2β∞∑j=1∫t0eνsE[‖bj‖2η]ds≤8β‖γ‖2∫t0eνsE[‖u(s)‖2η+‖u(s−ρ)‖2η]ds+4βν‖γ‖2ηeνt+2βν‖b‖2ηeνt≤8βρeρν‖γ‖2E[‖ϕ‖2Cρ,η]+16βeρν‖γ‖2∫t0eνsE[‖u(s)‖2η]ds+4βν‖γ‖2ηeνt+2βν‖b‖2ηeνt, | (3.7) |
and
α∞∑j=1∫t0eνsE[‖hj(v(s),v(s−ρ))+lj‖2η]ds≤8αρeρν‖γ‖2E[‖φ‖2Cρ,η]+16αeρν‖γ‖2∫t0eνsE[‖v(s)‖2η]ds+4αν‖γ‖2ηeνt+2αν‖l‖2ηeνt. | (3.8) |
For t≥0, it follows from (3.3)–(3.8) that
eνtE[β‖u(t)‖2η+α‖v(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϕ‖2Cρ,η+α‖φ‖2Cρ,η]+eνtν(4(β+α)‖γ‖2η+βδ‖a‖2η+αλ‖c‖2η+2β‖b‖2η+2α‖l‖2η+2β‖ι‖1,η)+β(ν−δ+2˜α+16eρν‖γ‖2)∫t0eνsE[‖u(s)‖2η]ds+α(ν−λ+16eρν‖γ‖2)∫t0eνsE[‖v(s)‖2η]ds. | (3.9) |
For t≥0, by (2.25) and (3.9), we get that there exists ν1>0 such that for all ν∈(0,ν1),
E[β‖u(t)‖2η+α‖v(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϕ‖2Cρ,η+α‖φ‖2Cρ,η]e−νt+1ν(4(β+α)‖γ‖2η+βδ‖a‖2η+αλ‖c‖2η+2β‖b‖2η+2α‖l‖2η+2β‖ι‖1,η). | (3.10) |
Note that
sup−ρ≤t≤0E[β‖u(t)‖2η+α‖v(t)‖2η]≤E[β‖ϕ‖2Cρ,η+α‖φ‖2Cρ,η], |
which along with (3.10) implies the desired result.
Lemma 3.2. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)∈L4(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies
supt≥−ρE[‖u(t)‖4η+‖v(t)‖4η]≤M3(1+E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]), |
where M3 is a positive constant independent of (ϕ,φ).
Proof. Given n∈N, define τn by
τn=inf{t≥0:‖u(t)‖η+‖v(t)‖η>n}, |
and τn=∞ if the set {t≥0:‖u(t)‖η+‖v(t)‖η>n}=∅. By (3.1) and Itô's formula, we get for all t≥0,
d(‖u(t)‖4η+‖v(t)‖4η)+4λ‖v(t)‖4ηdt−4(β‖v(t)‖2η−α‖u(t)‖2η)(u(t),v(t))ηdt=4‖u(t)‖2η(Au(t),u(t))ηdt+4‖u(t)‖2η(f(u(t)),u(t))ηdt+4‖u(t)‖2η(a,u(t))ηdt+2‖u(t)‖2η∞∑j=1‖gj(u(t),u(t−ρ))+bj‖2ηdt+4∞∑j=1|(gj(u(t),u(t−ρ))+bj,u(t))η|2dt+4‖u(t)‖2η∞∑j=1(gj(u(t),u(t−ρ))+bj,u(t))ηdWj(t)+4‖v(t)‖2η(c,v(t))ηdt+2‖v(t)‖2η∞∑j=1‖hj(v(t),v(t−ρ))+lj‖2ηdt+4∞∑j=1|(hj(v(t),v(t−ρ))+lj,v(t))η|2dt+4‖v(t)‖2η∞∑j=1(hj(v(t),v(t−ρ))+lj,v(t))ηdWj(t). | (3.11) |
Let ν be a positive constant which will be specified later, and we get from (3.11) that for all t≥0,
E[eν(t∧τn)(‖u(t∧τn)‖4η+‖v(t∧τn)‖4η)]+4λE[∫t∧τn0eνs‖v(s)‖4ηds]=E[‖ϕ(0)‖4η+‖φ(0)‖4η]+νE[∫t∧τn0eνs(‖u(s)‖4η+‖v(s)‖4η)ds]+4E[∫t∧τn0eνs(β‖v(s)‖2η−α‖u(s)‖2η)(u(s),v(s))ηds]+4E[∫t∧τn0eνs‖u(s)‖2η(A(u(s)),u(s))ηds]+4E[∫t∧τn0eνs‖u(s)‖2η(a,u(s))ηds]+4E[∫t∧τn0eνs‖u(s)‖2η(f(u(s)),u(s))ηds]+4E[∫t∧τn0eνs‖v(s)‖2η(c,v(s))ηds]+2E[∫t∧τn0eνs‖u(s)‖2η∞∑j=1‖gj(u(s),u(s−ρ))+bj‖2ηds]+4E[∫t∧τn0eνs∞∑j=1|(gj(u(s),u(s−ρ))+bj,u(s))η|2ds]+2E[∫t∧τn0eνs‖v(s)‖2η∞∑j=1‖hj(v(s),v(s−ρ))+lj‖2ηds]+4E[∫t∧τn0eνs∞∑j=1|(hj(v(s),v(s−ρ))+lj,v(s))η|2ds]. | (3.12) |
Similar to (2.18) and (2.19), we get
4∫t∧τn0eνsE[‖u(s)‖2η(Au(s),u(s))η]ds≤4˜α∫t∧τn0eνsE[‖u(s)‖4η]ds. | (3.13) |
By (2.6) and Young's inequality, we have
4E[∫t∧τn0eνs‖u(s)‖2η(f(u(s)),u(s))ηds]≤4E[∫t∧τn0eνs‖u(s)‖2η(−δ‖u(s)‖2η+‖ι‖1,η)ds]≤2(1−2δ)E[∫t∧τn0eνs‖u(s)‖4ηds]+2‖ι‖21,ηνeνt. | (3.14) |
Note that
4E[∫t∧τn0eνs‖u(s)‖2η(a,u(s))ηds]+4E[∫t∧τn0eνs‖v(s)‖2η(c,v(s))ηds]≤δE[∫t∧τn0eνs‖u(s)‖4ηds]+λE[∫t∧τn0eνs‖v(s)‖4ηds]+27δ3ν‖a‖4ηeνt+27λ3ν‖c‖4ηeνt, | (3.15) |
and
4E[∫t∧τn0eνs(β‖v(s)‖2η−α‖u(s)‖2η)(u(s),v(s))ηds]≤4βE[∫t∧τn0eνs‖v(s)‖3η‖u(s)‖ηds]+4αE[∫t∧τn0eνs‖u(s)‖3η‖v(s)‖ηds]≤(λ+27α4δ3)E[∫t∧τn0eνs‖v(s)‖4ηds]+(δ+27β4λ3)E[∫t∧τn0eνs‖u(s)‖4ηds]. | (3.16) |
By (2.8), we get
2E[∞∑j=1∫t∧τn0eνs‖u(s)‖2η‖gj(u(s),u(s−ρ))+bj‖2ηds]+4E[∞∑j=1∫t∧τn0eνs|(gj(u(s),u(s−ρ))+bj,u(s))η|2ds]≤6E[∞∑j=1∫t∧τn0eνs‖u(s)‖2η‖gj(u(s),u(s−ρ))+bj‖2ηds]≤12E[∫t∧τn0eνs‖u(s)‖2η(∞∑j=1‖bj‖2η+2‖γ‖2η)ds]+72‖γ‖2E[∫t∧τn0eνs‖u(s)‖4ηds]+24‖γ‖2E[∫t∧τn0eνs‖u(s−ρ)‖4ηds]≤(96eρν‖γ‖2+6)E[∫t∧τn0eνs‖u(s)‖4ηds]+6(‖b‖2η+2‖γ‖2η)2eνtν+24ρeρν‖γ‖2E[‖ϕ‖4Cρ,η], | (3.17) |
and
2E[∞∑j=1∫t∧τn0eνs‖v(s)‖2η‖hj(v(s),v(s−ρ))+lj‖2ηds]+4E[∞∑j=1∫t∧τn0eνs|(hj(v(s),v(s−ρ))+lj,v(s))η|2ds]≤(96eρν‖γ‖2+6)E[∫t∧τn0eνs‖v(s)‖4ηds]+6(‖l‖2η+2‖γ‖2η)2eνtν+24ρeρν‖γ‖2E[‖φ‖4Cρ,η]. | (3.18) |
For t≥0, it follows from (3.12)–(3.18) that
E[eν(t∧τn)(‖u(t∧τn)‖4η+‖v(t∧τn)‖4η)]≤(1+24ρeρν‖γ‖2)E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]+(ν−2δ+4˜α+96eρν‖γ‖2+27β4λ3+8)E[∫t∧τn0eνs‖u(s)‖4ηds]+(ν−2λ+96eρν‖γ‖2+27α4δ3+6)E[∫t∧τn0eνs‖v(s)‖4ηds]+(2‖ι‖21,η+6(‖b‖2η+2‖γ‖2η)2+6(‖l‖2η+2‖γ‖2η)2+27δ3‖a‖4η+27λ3‖c‖4η)eνtν, |
which along with (2.25) implies that there exists ν2>0 such that for all ν∈(0,ν2),
E[eν(t∧τn)(‖u(t∧τn)‖4η+‖v(t∧τn)‖4η)]≤(1+24ρeρν‖γ‖2)E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]+(2‖ι‖21,η+6(‖b‖2η+2‖γ‖2η)2+6(‖l‖2η+2‖γ‖2η)2+27δ3‖a‖4η+27λ3‖c‖4η)eνtν. |
Letting n→∞, we obtain from the above inequality that for all t≥0,
E[‖u(t)‖4η+‖v(t)‖4η]≤(1+24ρeρν‖γ‖2)E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]e−νt+(2‖ι‖21,η+6(‖b‖2η+2‖γ‖2η)2+6(‖l‖2η+2‖γ‖2η)2+27δ3‖a‖4η+27λ3‖c‖4η)1ν. | (3.19) |
Note that for all t∈[−ρ,0],
E[‖u(t)‖4η+‖v(t)‖4η]≤E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η], |
which along with (3.19) concludes the proof.
Lemma 3.3. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)∈L4(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies, for any t>r≥0,
E[‖u(t)−u(r)‖4η+‖v(t)−v(r)‖4η]≤M4(|t−r|2+|t−r|4), |
where M4 is a positive constant depending on (ϕ,φ), but is independent of t and r.
Proof. For t>r≥0, by (2.15), we get
{u(t)−u(r)=∫tr(Au(s)−αv(s)+f(u(s))+a)ds+∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s),v(t)−v(r)=∫tr(βu(s)−λv(s)+c)dt+∞∑j=1∫tr(hj(v(s),v(t−ρ))+lj)dWj(s), |
which together with (2.5), (2.10), and (2.14) implies that, for t>r≥0,
{‖u(t)−u(r)‖η≤∫tr(C4‖u(s)‖η+α‖v(s)‖η)ds+‖a‖η|t−r|+‖∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s)‖η,‖v(t)−v(r)‖η≤∫tr(β‖u(s)‖η+λ‖v(s)‖η)ds+‖c‖η‖|t−r|+‖∞∑j=1∫tr(hj(v(s),v(t−ρ))+lj)dWj(s)‖η, | (3.20) |
where C4=√2|J(0)|2+8(∞∑m=1|J(m)|)2+LC. By (3.20), we get
E[‖u(t)−u(r)‖4η+‖v(t)−v(r)‖4η]≤64(C44+β4)E[(∫tr‖u(s)‖ηds)4]+64(α4+λ4)E[(∫tr‖v(s)‖ηds)4]+64(‖a‖4η+‖c‖4η)|t−r|4+64E[‖∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s)‖4η]+64E[‖∞∑j=1∫tr(hj(v(s),v(s−ρ))+lj)dWj(s)‖4η]. | (3.21) |
By Schwarz's inequality and Lemma 3.2, we have
64(C44+β4)E[(∫tr‖u(s)‖ηds)4]+64(α4+λ4)E[(∫tr‖v(s)‖ηds)4]≤64(C44+β4+α4+λ4)|t−r|3∫trE[‖u(s)‖4η+‖v(s)‖4η]ds≤C5|t−r|4. | (3.22) |
For the last two terms of (3.21), by (2.11), Lemma 3.2, and the BDG inequality, we get
64E[‖∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s)‖4η]≤C6E[(∫tr∞∑j=1‖gj(u(s),u(s−ρ))+bj‖2ηds)2]≤8C6(2‖γ‖2η+‖b‖2η)2|t−r|2+128C6‖γ‖4E[(∫tr(‖u(s)‖2η+‖u(s−ρ)‖2η)ds)2]≤C7|t−r|2, | (3.23) |
and
64E[‖∞∑j=1∫tr(hj(v(s),v(s−ρ))+lj)dWj(s)‖4η]≤C7|t−r|2, |
which along with (3.21)–(3.23) implies the desired result.
The subsequent step entails acquiring uniform estimates on the tails of solutions to stochastic lattice system (2.15), which play a pivotal role in proving the tightness of a family of solution distributions.
Lemma 3.4. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset E⊂L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies
lim supk→∞sup(ϕ,φ)∈Esupt≥−ρ∑|n|≥kE[ηn(|un(t,ϕ)|2+|vn(t,φ)|2)]=0. |
Proof. Let ϑ be a smooth function which is defined on R+ such that 0≤ϑ(z)≤1 for all z∈R+, and
ϑ(z)={0,0≤z≤1;1,z≥2. |
For k∈N, set ϑk=(ϑ(|n|k))n∈Z, ϑku=(ϑ(|n|k)un)n∈Z, and ϑkv=(ϑ(|n|k)vn)n∈Z. By (2.15), we have
{d(ϑku(t))=(ϑkAu(t)−αϑkv(t)+ϑkf(u(t))+ϑka)dt+∞∑j=1(ϑkgj(u(t),u(t−ρ))+ϑkbj)dWj(t),d(ϑkv(t))=(βϑku(t)−λϑkv(t)+ϑkc)dt+∞∑j=1(ϑkhj(v(t),v(t−ρ))+ϑklj)dWj(t), |
which along with Itô's formula implies that
d(β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η)=2β(ϑkAu(t),ϑku(t))ηdt+2β(ϑkf(u(t)),ϑku(t))ηdt+2β(ϑka,ϑku(t))ηdt+β∞∑j=1‖ϑkgj(u(t),u(t−ρ))+ϑkbj‖2ηdt−2λα‖ϑkv(t)‖2ηdt+2α(ϑkc,ϑkv(t))ηdt+α∞∑j=1‖ϑkhj(v(t),v(t−ρ))+ϑklj‖2ηdt+2β∞∑j=1(ϑkgj(u(t),u(t−ρ))+ϑkbj,ϑku(t))ηdWj(t)+2α∞∑j=1(ϑkhj(v(t),v(t−ρ))+ϑklj,ϑkv(t))ηdWj(t). | (3.24) |
Then, we get that for all t≥0,
eνtE[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]+(2λ−ν)α∫t0eνsE[‖ϑkv(s)‖2η]ds=E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]+νβ∫t0eνsE[‖ϑku(s)‖2η]ds+2β∫t0eνsE[(ϑkAu(s),ϑku(s))η]ds+2β∫t0eνsE[(ϑkf(u(s)),ϑku(s))η]ds+2β∫t0eνsE[(ϑka,ϑku(s))η]ds+2α∫t0eνsE[(ϑkc,ϑkv(s))η]ds+β∞∑j=1∫t0eνsE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds+α∞∑j=1∫t0eνsE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds, | (3.25) |
where ν is a positive constant which will be specified later. Furthermore, we find that
(ϑkAu,ϑku)η=∑n∈Zηn∑m∈ZJ(m)ϑ2(|n|k)un−mun=J(0)∑n∈Zϑ2(|n|k)ηn|un|2+∑n∈Z∞∑m=1J(m)ϑ2(|n|k)ηnun+mun+∑n∈Z∞∑m=1J(m)ϑ2(|n+m|k)ηn+munun+m=J(0)∑n∈Zϑ2(|n|k)ηn|un|2+∑n∈Z∞∑m=1J(m)(ϑ2(|n+m|k)ηn+m+ϑ2(|n|k)ηn)unun+m=J(0)∑n∈Zϑ2(|n|k)ηn|un|2+J1+J2, | (3.26) |
where
J1=∑n∈Z∞∑m=1J(m)(ϑ2(|n+m|k)−ϑ2(|n|k))ηn+munun+m, |
and
J2=∑n∈Z∞∑m=1J(m)ϑ2(|n|k)(ηn+m+ηn)unun+m. |
For any n∈Z and m∈N+, by the definition of ϑ(z) we can get that there exists a constant C8>0 such that
|ϑ(|n+m|k)−ϑ(|n|k)|≤mkC8. | (3.27) |
By (2.2), we have
η1/2n+m≤αmη1/2n,∀n∈Z,m≥1, |
which together with (3.27) implies that for any p>1,
|J1|≤∑n∈Z∞∑m=1|J(m)||ϑ2(|n+m|k)−ϑ2(|n|k)|ηn+m|un+m||un|≤2C8kp∑m=1mαm|J(m)|∑n∈Zη1/2n+mη1/2n|un+m||un|+∞∑m=p+1αm|J(m)|∑n∈Zη1/2n+mη1/2n|un+m||un|≤2C8kp∑m=1mαm|J(m)|‖u‖2η+∞∑m=p+1αm|J(m)|‖u‖2η. | (3.28) |
By (2.2), we obtain
|J2|≤∞∑m=1αm|J(m)|∑n∈Zϑ2(|n|k)η1/2n+mη1/2n|un+m||un|≤12∞∑m=1αm|J(m)|(∑n∈Zϑ2(|n|k)ηn+m|un+m|2+∑n∈Zϑ2(|n|k)ηn|un|2), |
which together with (3.27) and (2.3) implies that for any p>1,
|J2|≤∞∑m=1αm|J(m)|∑n∈Zϑ2(|n|k)ηn|un|2+12p∑m=1αm|J(m)|∑n∈Zηn+m|ϑ2(|n+m|k)−ϑ2(|n|k)||un+m|2+12∞∑m=p+1αm|J(m)|∑n∈Zηn+m|ϑ2(|n+m|k)−ϑ2(|n|k)||un+m|2≤∞∑m=1αm|J(m)|∑n∈Zϑ2(|n|k)ηn|un|2+C8kp∑m=1mαm|J(m)|‖u‖2η+∞∑m=p+1αm|J(m)|‖u‖2η. | (3.29) |
For any p>1, it follows from (3.26), (3.28), and (3.29) that
2β|(ϑkAu,ϑku)η|≤2β˜α∑n∈Zϑ2(|n|k)ηn|un|2+6βC8kp∑m=1mαm|J(m)|‖u‖2η+4β∞∑m=p+1αm|J(m)|‖u‖2η. | (3.30) |
By (2.6) and Young's inequality, we have
2β∫t0eνsE[(ϑkf(u(s)),ϑku(s))η]ds≤−2βδ∫t0eνsE[‖ϑku(s)‖2η]ds+2βeνtν∑|n|≥kηn|ιn|. | (3.31) |
Note that
2β∫t0eνsE[(ϑka,ϑku(s))η]ds+2α∫t0eνsE[(ϑkc,ϑkv(s))η]ds≤βδ∫t0eνsE[‖ϑku(s)‖2η]ds+βeνtδν∑|n|≥kηn|an|2+λα∫t0eνsE[‖ϑkv(s)‖2η]ds+αeνtλν∑|n|≥kηn|cn|2. | (3.32) |
For the last two terms of (3.25), by (2.8), we get
β∞∑j=1∫t0eνsE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds+α∞∑j=1∫t0eνsE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds≤2βνeνt∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+8β‖γ‖2∫t0eνsE[‖ϑku(s)‖2η+‖ϑku(s−ρ)‖2η]ds+2ανeνt∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+8α‖γ‖2∫t0eνsE[‖ϑkv(s)‖2η+‖ϑkv(s−ρ)‖2η]ds≤2βνeνt∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+16βeρν‖γ‖2∫t0eνsE[‖ϑku(s)‖2η]ds+2ανeνt∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+16αeρν‖γ‖2∫t0eνsE[‖ϑkv(s)‖2η]ds+8βeρν‖γ‖2∫0−ρeνsE[‖ϑkϕ(s)‖2η]ds+8αeρν‖γ‖2∫0−ρeνsE[‖ϑkφ(s)‖2η]ds. | (3.33) |
Then, it follows from (3.25) and (3.30)–(3.33) that for p>1,
E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]e−νt+β(ν−δ+16eρν‖γ‖2+2˜α+6C8kp∑m=1mαm|J(m)|+4+∞∑m=p+1αm|J(m)|)∫t0eν(s−t)E[‖u(s)‖2η]ds+α(ν−λ+16eρν‖γ‖2)∫t0eν(s−t)E[‖v(s)‖2η]ds+βδν∑|n|≥kηn|an|2+αλν∑|n|≥kηn|cn|2+2βν∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+2αν∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+2βν∑|n|≥kηn|ιn|. | (3.34) |
Furthermore, it follows from (2.3) that there is a K1=K1(ν)>0 such that for all k≥K1,
6C8kp∑m=1mαm|J(m)|≤ν2. | (3.35) |
By (2.3) again, we can choose p=p(ν) large enough such that
4∞∑m=p+1αm|J(m)|≤ν2, |
which along with (3.35) and (2.25) implies that there exists ν3>0 such that for all ν∈(0,ν3),
ν−δ+16eρν‖γ‖2+2˜α+6C8kp∑m=1mαm|J(m)|+4+∞∑m=p+1αm|J(m)|≤2ν−δ+16eρν‖γ‖2≤0, |
which together with (3.34) and (2.25) shows that for all t≥0 and k≥K1,
E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]e−νt+βδν∑|n|≥kηn|an|2+αλν∑|n|≥kηn|cn|2+2βν∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+2αν∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+2βν∑|n|≥kηn|ιn|. | (3.36) |
Note that (ϕ,φ)∈E and E is a compact subset in L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)). Then, for each ε>0, there exists K2=K2(ε,ϕ,φ)≥1 such that for all k≥K2,
∑|n|≥kE[ηn(β|ϕn(0)|2+α|φn(0)|2)]≤ε. | (3.37) |
It follows from (3.37) that for all k≥K2,
(1+8ρeρν‖γ‖2)E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]=(1+8ρeρν‖γ‖2)∑n∈ZE[ηn(β|ϑ(|n|k)ϕn(0)|2+α|ϑ(|n|k)φn(0)|2)]≤(1+8ρeρν‖γ‖2)∑|n|≥kE[ηn(β|ϕn(0)|2+α|φn(0)|2)]≤(1+8ρeρν‖γ‖2)ε. | (3.38) |
Since a=(an)n∈Z, c=(cn)n∈Z,b=(bj,n)j∈N,n∈Z,l=(lj,n)j∈N,n∈Z,γ=(γj,n)j∈N,n∈Z∈ℓ2η and ι=(ιn)n∈Z∈ℓ1η, we get that there exists K3=K3(ε)≥1 such that for all t≥0 and k≥K3,
βδν∑|n|≥kηn|an|2+αλν∑|n|≥kηn|cn|2+2βν∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+2αν∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+2βν∑|n|≥kηn|ιn|≤ε, |
which along with (3.36) and (3.38) implies that for all t≥0, k≥max{K1,K2,K3}, and (ϕ,φ)∈E,
∑|n|≥2kE[ηn(β|un(t)|2η+α|vn(t)|2η)]≤E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]≤(2+8ρeρν‖γ‖2)ε. | (3.39) |
Observe that {(ϕ(s),φ(s))∈L2(Ω,ℓ2η×ℓ2η):s∈[−ρ,0]} is a compact subset in L2(Ω,ℓ2η×ℓ2η). Then, for each ε>0, there are s1,s2,⋯sm∈[−ρ,0] such that
{(ϕ(s),φ(s))∈L2(Ω,ℓ2η×ℓ2η):s∈[−ρ,0]}⊆m⋃j=1B((ϕ(sj),φ(sj)),12√ε), | (3.40) |
where B((ϕ(sj),φ(sj)),12√ε) is an open ball in L2(Ω,ℓ2η×ℓ2η) centered at (ϕ(sj),φ(sj)) with radius 12√ε. Since (ϕ(sj),φ(sj))∈L2(Ω,ℓ2η×ℓ2η), for j=1,⋯,m, there exists K4=K4(ε,ϕ,φ)≥1, such that for all k≥K4,
∑|n|≥kE[ηn(|ϕn(sj)|2+|φn(sj)|2)]≤14ε,j=1,2,⋯,m. | (3.41) |
It follows from (3.40) and (3.41) that for all k≥K4 and s∈[−ρ,0],
∑|n|≥kE[ηn(|ϕn(s)|2+|φn(s)|2)]≤ε, |
which along with (3.39) implies the desired result.
The tail estimates given by Lemma 3.4 have been enhanced to obtain uniform estimates on the tails of solutions, which are crucial for achieving tightness in the probability distributions of solution segments in the space C([−ρ,0],ℓ2η×ℓ2η).
Lemma 3.5. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset E⊂L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies
lim supn→∞sup(ϕ,φ)∈Esupt≥ρE[supt−ρ≤r≤t∑|n|≥kηn(|un(r,ϕ)|2+|vn(r,φ)|2)]=0. |
Proof. Let ϑ be the function defined in Lemma 3.4. For all t≥ρ and t−ρ≤r≤t, it follows from (3.24) that
β‖ϑku(r)‖2η+α‖ϑkv(r)‖2η+2λα∫rt−ρ‖ϑkv(s)‖2ηds=β‖ϑku(t−ρ)‖2η+α‖ϑkv(t−ρ)‖2η+2β∫rt−ρ(ϑkAu(s),ϑku(s))ηds+2β∫rt−ρ(ϑkf(u(s)),ϑku(s))ηds+2β∫rt−ρ(ϑka,ϑku(s))ηds+2α∫rt−ρ(ϑkc,ϑkv(s))ηds+β∞∑j=1∫rt−ρ‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2ηds+2β∞∑j=1∫rt−ρ(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))ηdWj(s)+α∞∑j=1∫rt−ρ‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2ηds+2α∞∑j=1∫rt−ρ(ϑkhj(v(s),v(s−ρ))+ϑklj,ϑkv(s))ηdWj(s), |
which shows that for all t≥ρ,
E[supt−ρ≤r≤t(β‖ϑku(r)‖2η+α‖ϑkv(r)‖2η)]+2λαE[∫tt−ρ‖ϑkv(s)‖2ηds]≤E[β‖ϑku(t−ρ)‖2η+α‖ϑkv(t−ρ)‖2η]+2βE[∫tt−ρ|(ϑkAu(s),ϑku(s))η|ds]+2βE[∫tt−ρ|(ϑkf(u(s)),ϑku(s))η|ds]+2βE[∫tt−ρ‖ϑka‖η‖ϑku(s)‖ηds]+2αE[∫tt−ρ‖ϑkc‖‖ϑkv(s)‖ηds]+βE[∞∑j=1∫tt−ρ‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2ηds]+αE[∞∑j=1∫tt−ρ‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2ηds]+2βE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkhj(v(s),v(s−ρ))+ϑklj,ϑkv(s))ηdWj(s)|]. | (3.42) |
For any ε>0, by Lemma 3.4, we get that there is a K5=K5(ε,E)≥1 such that for all k≥K5 and t≥−ρ,
∑|n|≥kE[ηn(β|un(t)|2+α|vn(t)|2)]≤ε, |
which shows that for all k≥K5 and t≥−ρ,
E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]=∑|n|≥kE[ηn(β|ϑkun(t)|2+α|ϑkvn(t)|2)]≤∑|n|≥kE[ηn(β|un(t)|2+α|vn(t)|2)]≤ε. | (3.43) |
Then, for all k≥K5 and t≥ρ,
E[β‖ϑku(t−ρ)‖2η+α‖ϑkv(t−ρ)‖2η]≤ε. | (3.44) |
Proceeding as in (3.30), we have
2βE[∫tt−ρ|(ϑkAu(s),ϑku(s))η|ds]≤2β˜α∫tt−ρE[‖ϑku(s)‖2η]ds+6βC8kp∑m=1mαm|J(m)|∫tt−ρE[‖u(s)‖2η]ds+4β∞∑m=p+1αm|J(m)|∫tt−ρE[‖u(s)‖2η]ds. | (3.45) |
Then, by (3.43), we get that for all k≥K5 and t≥−ρ,
2β˜α∫tt−ρE[‖ϑku(s)‖2η]ds≤2˜αρε. | (3.46) |
Furthermore, it follows from (2.3) and Lemma 3.1 that there is a K6=K6(ε,E)≥K5, such that for all k≥K6 and t≥ρ,
6βC8kp∑m=1mαm|J(m)|∫tt−ρE[‖u(s)‖2η]ds≤ρε. | (3.47) |
By (2.3) and Lemma 3.1 again, we can choose p=p(ε) large enough such that for all t≥ρ,
4β∞∑m=p+1αm|J(m)|∫tt−ρE[‖u(s)‖2η]ds≤ρε. | (3.48) |
Since ι=(ιn)n∈Z∈ℓ1η, we get that there exists K7=K7(ε,E)≥K6 such that for all k≥K7,
2β∫tt−ρE[|(ϑkf(u(s)),ϑku(s))η|]ds≤−2βδ∫tt−ρE[‖ϑku(s)‖2]ds+2βρ∑|n|>kηn|ιn|≤ρε. | (3.49) |
By (3.43), we get for all k≥K5 and t≥ρ,
2βE[∫tt−ρ‖ϑka‖‖ϑku(s)‖ηds]+2αE[∫tt−ρ‖ϑkc‖‖ϑkv(s)‖ηds]≤∫tt−ρE[β‖ϑku(s)‖2η+α‖ϑkv(s)‖2η]ds+∫tt−ρE[β‖ϑka‖2η+α‖ϑkc‖2η]ds≤ρε+ρ∑|n|≥kηn(β|an|2+α|cn|2). | (3.50) |
Since a=(an)n∈Z,c=(cn)n∈Z∈ℓ2η, it follows from (3.50) that there exists K8=K8(ε,E)≥K7 such that for all k≥K8 and t≥ρ,
2βE[∫tt−ρ(ϑka,ϑku(s))ηds]+2αE[∫tt−ρ(ϑkc,ϑkv(s))ηds]≤2ρε. | (3.51) |
By (2.8), (3.43), and Lemma 3.4, we get for all t≥ρ and k≥K5,
β∞∑j=1∫tt−ρE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds≤2β∞∑j=1∫tt−ρE[‖ϑkgj(u(s),u(s−ρ))‖2η]ds+2β∞∑j=1∫tt−ρE[‖ϑkbj‖2η]ds≤2ρβ∞∑j=1∑|n|≥kηn(b2j,n+2γ2j,n)+8β‖γ‖2∫tt−ρE[‖ϑku(s)‖2η+‖ϑku(s−ρ)‖2η]ds≤2ρβ∞∑j=1∑|n|≥kηn(b2j,n+2γ2j,n)+8β‖γ‖2∫tt−ρE[‖ϑku(s)‖2η]ds+8β‖γ‖2∫t−ρt−2ρE[‖ϑku(s)‖2η]ds≤2ρβ∞∑j=1∑|n|≥kηn(b2j,n+2γ2j,n)+16β‖γ‖2ρε, | (3.52) |
and
α∞∑j=1∫tt−ρE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds≤2ρα∞∑j=1∑|n|≥kηn(l2j,n+2γ2j,n)+16α‖γ‖2ρε. | (3.53) |
Since b=(bj,n)j∈N,n∈Z, l=(lj,n)j∈N,n∈Z, and γ=(γj,n)j∈N,n∈Z belong to ℓ2η, we infer from (3.52) and (3.53) that there exists K9=K9(ε,E)≥K8 such that for all k≥K9 and t≥ρ,
β∞∑j=1∫tt−ρE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds+α∞∑j=1∫tt−ρE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds≤ρ(β+α)(2+16‖γ‖2)ε. | (3.54) |
For the last two terms of (3.42), by the BDG inequality, (2.8), and (3.54), we have for all k≥K9 and t≥ρ,
2βE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkhj(v(s),v(s−ρ))+ϑklj,ϑkv(s))ηdWj(s)|]≤2βC9E[(∫tt−ρ∞∑j=1|(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))η|2ds)12]+2αC9E[(∫tt−ρ∞∑j=1|(ϑkhj(v(s),v(s−ρ))+ϑkcj,ϑkv(s))η|2ds)12]≤β2E[supt−ρ≤r≤t‖ϑku(r)‖2η]+2βC29E[∫tt−ρ∞∑j=1‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2ηds]+α2E[supt−ρ≤r≤t‖ϑkv(r)‖2η]+2αC29E[∫tt−ρ∞∑j=1‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2ηds]≤β2E[supt−ρ≤r≤t‖ϑku(r)‖2η]+α2E[supt−ρ≤r≤t‖ϑkv(r)‖2η]+2C29ρ(β+α)(2+16‖γ‖2)ε. | (3.55) |
By (3.42)–(3.55), we get that for all t≥ρ and k≥K9,
E[supt−ρ≤r≤t∑|n|≥2kηn(β|un(r)|2+α|vn(r)|2)]≤E[supt−ρ≤r≤t(β‖ϑku(r)‖2+α‖ϑkv(r)‖2)]≤C10ε, |
where C10=2(1+2˜αρ+5ρ+ρ(β+α)(2+16‖γ‖2)(1+2C29))ε. This completes the proof.
The focus of this section is to establish the existence of invariant measures for lattice system (2.15) in C([−ρ,0],ℓ2η×ℓ2η). Initially, we introduce the transition operators of the lattice system and subsequently demonstrate the tightness of a family of probability distributions for solutions of the lattice system.
Given every t0≥0 and Ft0 -measurable (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), lattice system (2.15) possesses a distinct solution that is valid for all t≥t0−ρ. Given t≥t0 and (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), we use (ut(t0,ϕ),vt(t0,ϕ)) to represent the segment of the solution (u(t,t0,ϕ),v(t,t0,φ)) which is given by
(ut(t0,ϕ),vt(t0,φ))(s)=(u(s+t,t0,ϕ),v(s+t,t0,φ)),∀s∈[−ρ,0]. |
Then, we have (ut(t0,ϕ),vt(t0,φ))∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)) for all t≥t0.
Suppose ψ:C([−ρ,0],ℓ2η×ℓ2η)→R is a bounded Borel function. For 0≤r≤t, we set
(pr,tψ)(ϕ,φ)=E[ψ((ut(r,ϕ),vt(r,φ)))],∀(ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η). |
In addition, for G∈B(C([−ρ,0],ℓ2η×ℓ2η)), 0≤r≤t, and (ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η), we set
p(r,ϕ,φ;t,G)=(pr,t1G)(ϕ,φ)=P{ω∈Ω:(ut(r,ϕ),vt(r,φ))∈G}, |
where 1G is the characteristic function of G. Then, we can get that p(r,ϕ,φ;t,⋅) is the probability distribution of (ut(r,ϕ),vt(r,φ)) in C([−ρ,0],ℓ2η×ℓ2η). Furthermore, the transition operator p0,t is denoted as pt for the sake of convenience.
Definition 4.1. A probability measure μ on C([−ρ,0],ℓ2η×ℓ2η) is called an invariant measure of lattice system (2.15) if
∫C([−ρ,0],ℓ2η×ℓ2η)(ptψ)(ϕ,φ)dμ(ϕ,φ)=∫C([−ρ,0],ℓ2η×ℓ2η)ψ(ϕ,φ)dμ(ϕ,φ),∀t≥0. |
Now, we show the properties of transition operators {pr,t}0≤r≤t as follows.
Lemma 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, we have
(i) The family {pr,t}0≤r≤t is Feller; that is, if ψ:C([−ρ,0],ℓ2η×ℓ2η)→R is bounded and continuous, then pr,tψ:C([−ρ,0],ℓ2η×ℓ2η)→R is bounded and continuous.
(ii) The family {pr,t}0≤r≤t is homogeneous; that is,
p(r,ϕ,φ;t,⋅)=p(0,ϕ,φ;t−r,⋅),∀r∈[0,t],(ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η). |
(iii) Given r≥0 and (ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η), the process {(ut(r,ϕ),vt(r,φ))}t≥r is a C([−ρ,0],ℓ2η×ℓ2η) -value Markov process. Consequently, if ψ:C([−ρ,0],ℓ2η×ℓ2η)→R is a bounded Borel function, then for any 0≤s≤r≤t, P-a.s.
(ps,tψ)(ϕ,φ)=(ps,t(pr,tψ))(ϕ,φ),∀(ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η), |
for all (ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η) and G∈B(C([−ρ,0],ℓ2η×ℓ2η)), the Chapman-Kolmogorov equation is valid:
p(s,ϕ,φ;t,G)=∫C([−ρ,0],ℓ2η×ℓ2η)p(s,ϕ,φ;r,dy)p(r,y;t,G). |
Proof. By Lemma 2.1 and the standard arguments as in [49], we can get the Feller property (ⅰ)–(ⅲ).
Lemma 4.2. Suppose (2.1)–(2.8) and (2.25) hold. Then, the distribution laws of the process {(ut(0,0),vt(0,0))}t≥0 is tight on C([−ρ,0],ℓ2η×ℓ2η).
Proof. For all t≥0, by Lemma 3.1 and Chebyshev's inequality, we have
P{‖ut(0)‖η+‖vt(0)‖η≥R}≤2R2E[‖ut(0)‖2η+‖vt(0)‖2η]≤C11R2→0,asR→∞. |
Then, for each ε>0, there exists a constant R1=R1(ε)>0 such that
P{‖ut(0)‖η+‖vt(0)‖η≥R1}≤ε3,∀t≥0. | (4.1) |
By Lemma 3.3, we get that for all r,s∈[−ρ,0] and t≥ρ,
E[‖u(t+r)−u(t+s)‖4η+‖v(t+r)−v(t+s)‖4η]≤C12(1+|t−s|2)|r−s|2≤C12(1+ρ2)|r−s|2 | (4.2) |
for some C12>0. Given ε>0, it follows from the usual technique of diadic division and (4.2) that there exists a constant R2=R2(ε)>0 such that for all t≥0,
P({sup−ρ≤s<r≤0‖ut(r)−ut(s)‖η+‖vt(r)−vt(s)‖η|r−s|18≤R2})>1−13ε. | (4.3) |
By Lemma 3.5, we obtain that for every ε>0 and m∈N, there exists an integer km=km(ε,m)≥1 such that for all t≥0,
E[supt−ρ≤r≤t∑|n|≥kmηn(|un(r)|2+|vn(r)|2)]≤ε22m+2. | (4.4) |
Then, for all t≥0 and m∈N,
P(∞⋃m=1{supt−ρ≤r≤t∑|n|≥kmηn(|un(r)|2+|vn(r)|2)≥12m})≤∞∑m=12mE[supt−ρ≤r≤t∑|n|≥kmηn(|un(r)|2+|vn(r)|2)]≤ε4, |
which shows that for all t\geq0 ,
\begin{equation} \begin{split} P\Big(\Big\{\sup\limits_{t-\rho\leq r\leq t}\sum\limits_{|n|\geq k_{m}}\eta_{n}\big(|u_{n}(r)|^{2}+|v_{n}(r)|^{2}\big)\leq \frac{1}{2^{m}},\forall m\in\mathbb{N}\Big\}\Big) > 1-\frac{1}{3}\varepsilon. \end{split} \end{equation} | (4.5) |
For \varepsilon > 0 , set \mathcal{Z}_{\varepsilon} = \mathcal{Z}_{1, \varepsilon}\bigcap\mathcal{Z}_{2, \varepsilon}\bigcap\mathcal{Z}_{3, \varepsilon} , where
\begin{equation} \begin{split} \mathcal{Z}_{1,\varepsilon} = \{(u,v)\in C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2}):\|u(0)\|_{\eta}+\|v(0)\|_{\eta}\leq R_{1}(\varepsilon)\}, \end{split} \end{equation} | (4.6) |
\begin{equation} \begin{split} \mathcal{Z}_{2,\varepsilon} = \Big\{(u,v)\in C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2}):\sup\limits_{-\rho\leq s < r\leq0}\frac{\|u(r)-u(s)\|_{\eta}+\|v(r)-v(s)\|_{\eta}}{|r-s|^{\frac{1}{8}}}\leq R_{2}(\varepsilon)\Big\}, \end{split} \end{equation} | (4.7) |
\begin{equation} \begin{split} \mathcal{Z}_{3,\varepsilon} = \Big\{(u,v)\in C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2}):\sup\limits_{-\rho\leq r\leq0}\sum\limits_{|n|\geq k_{m}}\eta_{n}\big(|u_{n}(r)|^{2}+|v_{n}(r)|^{2})\leq \frac{1}{2^{m}},\forall m\in\mathbb{N}\Big\}. \end{split} \end{equation} | (4.8) |
It follows from (4.1), (4.3), and (4.5)–(4.8) that for all t\geq0 ,
\begin{equation} \begin{split} P(\{(u_{t},v_{t})\in\mathcal{Z}_{\varepsilon}\}) > 1-\varepsilon. \end{split} \end{equation} | (4.9) |
By Arzela-Ascoli theorem, we can establish the pre-compactness of \mathcal{Z}_{\varepsilon} in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) . Specifically, by (4.7), we get that \mathcal{Z}_{\varepsilon} is equi-continuous in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) . On the other hand, by (4.6) and (4.7), we have for every r\in[-\rho, 0] ,
\begin{equation} \begin{split} \label{202315-12.1}\nonumber \|u(r)\|_{\eta}+\|v(r)\|_{\eta}&\leq\|u(r)-u(0)\|_{\eta}+\|u(0)\|_{\eta}+\|v(r)-v(0)\|_{\eta}+\|v(0)\|_{\eta}\\ &\leq R_{2}(\varepsilon)|r|^{\frac{1}{8}}+R_{1}(\varepsilon)\leq \rho^{\frac{1}{8}}R_{2}(\varepsilon)+R_{1}(\varepsilon), \end{split} \end{equation} |
which along with (4.8) shows that \{(u(r), v(r)), (u, v)\in\mathcal{Z}_{\varepsilon}\} is pre-compact in \ell_{\eta}^{2}\times\ell_{\eta}^{2} . This completes the proof.
Now, the main outcome of this paper has been showed: The existence of invariant measures for lattice system (2.15) on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .
Theorem 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, lattice system (2.15) has an invariant measure on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .
Proof. By using Krylov-Bogolyubov's method, for each n\in\mathbb{N} , the probability measure \mu_{n} is defined by
\begin{equation} \begin{split} \mu_{n} = \frac{1}{n}\int_{0}^{n}p(0,0;t,\cdot)dt. \end{split} \end{equation} | (4.10) |
It follows from Lemma 4.2 that the sequence (\mu_{n})_{n = 1}^{\infty} is tight on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) . Consequently, there exists a probability measure \mu on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) and a subsequence (still denoted by (\mu_{n})_{n = 1}^{\infty} ) such that
\begin{equation} \begin{split} \mu_{n}\rightarrow \mu,\; as\; n\rightarrow \infty. \end{split} \end{equation} | (4.11) |
By (4.10)–(4.11) and Lemma 4.1, we can get for every t\geq0 and every bounded and continuous function \psi:C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})\rightarrow \mathbb{R} ,
\begin{equation} \begin{split}\nonumber &\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)d\mu(y)\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,0;s,dy)\Big)ds\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{-t}^{n-t}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,0;s+t,dy)\Big)ds\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,0;s+t,dy)\Big)ds\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(s,\phi,\varphi;s+t,dy)\Big)p(0,0;s,d(\phi,\varphi))\Big)ds\\ \end{split} \end{equation} |
\begin{equation} \begin{split}\nonumber & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,\phi,\varphi;t,dy)\Big)p(0,0;s,d(\phi,\varphi))\Big)ds\\ & = \int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,\phi,\varphi;t,dy)\Big)d\mu(\phi,\varphi)\\ & = \int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}(p_{0,t}\psi)(\phi,\varphi)d\mu(\phi,\varphi), \end{split} \end{equation} |
which implies that \mu is an invariant measure of lattice system (2.15). This completes the proof.
In this section, we examine the uniqueness of invariant measures for system (2.15) under additional constraints on the diffusion and drift terms. Specifically, we impose the following assumption:
\begin{equation} \begin{split} 2L^{2} < \max\{\lambda,-\tilde{\alpha}-\kappa\}, \end{split} \end{equation} | (5.1) |
which implies that there exists a small number \varsigma > 0 such that
\begin{equation} \begin{split} \max\{4 L^{2}+2\tilde{\alpha}+ 2\kappa+\varsigma,4L^{2}-2\lambda+\varsigma\}\leq0. \end{split} \end{equation} | (5.2) |
From now on, we fix such a \varsigma > 0 satisfying (5.2). We will demonstrate that, subject to condition (5.2), any two solutions of Eq (2.15) converge toward each other at an exponential rate, which immediately implies the uniqueness of invariant measures. To begin with, we establish uniform estimates in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .
Lemma 5.1. Suppose (2.1)–(2.8) and (5.1) hold, and (\phi_{1}, \varphi_{1}), (\phi_{2}, \varphi_{2})\in L^{2}(\Omega, C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})) . If (u(t, \phi_{1}), v(t, \varphi_{1})) and (u(t, \phi_{2}), v(t, \varphi_{2})) are the solutions of system (2.15) with initial data (\phi_{1}, \varphi_{1}) and (\phi_{2}, \varphi_{2}) , respectively, then for any t\geq-\rho ,
\begin{equation} \begin{split}\nonumber &\mathbb{E}\big[\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big] \leq M_{5}\mathbb{E}\big[\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}, \end{split} \end{equation} |
where M_{5} is a positive constant depending on (\phi, \varphi) .
Proof. By (2.17), we get that for t\geq0 ,
\begin{equation} \begin{split} &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq\mathbb{E}\big[\beta\|\phi_{1}(0)-\phi_{2}(0)\|^{2}_{\eta}+\alpha\|\varphi_{1}(0)-\varphi_{2}(0)\|^{2}_{\eta}\big] -2\lambda\alpha\int_{0}^{t}\mathbb{E}\Big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\Big]ds\\ &\quad+2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds\\ &\quad+2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds\\ &\quad+\beta\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\mathbb{E}\big[\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}\big]ds\\ &\quad+\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\mathbb{E}\big[\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}\big]ds. \end{split} \end{equation} | (5.3) |
Similar to (2.18) and (2.19), we obtain
\begin{equation} \begin{split} 2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds \leq 2\beta \tilde{\alpha}\int_{0}^{t}\mathbb{E}\big[\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}^{2}\big]ds. \end{split} \end{equation} | (5.4) |
By (2.9), we have
\begin{equation} \begin{split} 2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds \leq 2\beta \kappa\int_{0}^{t}\mathbb{E}\big[\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}^{2}\big]ds. \end{split} \end{equation} | (5.5) |
By (2.12), we get
\begin{equation} \begin{split} &\beta\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\big[\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}\big]ds\\ &\quad+\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\big[\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}\big]ds\\ &\leq 4\beta L^{2}\int_{0}^{t}\big[\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\big]ds+2\beta L^{2}\int_{-\rho}^{0}\big[\|\phi_{1}(s)-\phi_{2}(s)\|^{2}_{\eta}\big]ds\\ &\quad+ 4\alpha L^{2}\int_{0}^{t}\big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\big]ds+2\alpha L^{2}\int_{-\rho}^{0}\big[\|\varphi_{1}(s)-\varphi_{2}(s)\|^{2}_{\eta}\big]ds. \end{split} \end{equation} | (5.6) |
It follows from (5.2)–(5.6) that for all t\geq0 ,
\begin{equation} \begin{split}\nonumber &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq (1+2\rho L^{2})\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big]\\ &\quad-\varsigma\int_{0}^{t}\mathbb{E}\big[\beta\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}+\alpha\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\big]ds, \end{split} \end{equation} |
which implies that for all t\geq0 ,
\begin{equation} \begin{split} &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq (1+2\rho L^{2})\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}. \end{split} \end{equation} | (5.7) |
On the other hand, for t\in[-\rho, 0] , we have
\begin{equation} \begin{split}\nonumber &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ & = \mathbb{E}\big[\beta\|\phi_{1}(t)-\phi_{2}(t)\|^{2}_{\eta}+\alpha\|\varphi_{1}(t)-\varphi_{2}(t)\|^{2}_{\eta}\big] \\ &\leq \mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ - \varsigma t}, \end{split} \end{equation} |
which along with (5.7) concludes the proof.
Lemma 5.2. Suppose (2.1)–(2.8) and (5.1) hold, and (\phi_{1}, \varphi_{1}), (\phi_{2}, \varphi_{2})\in L^{2}(\Omega, C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})) . If (u(t, \phi_{1}), v(t, \varphi_{1})) and (u(t, \phi_{2}), v(t, \varphi_{2})) are the solutions of system (2.15) with initial data (\phi_{1}, \varphi_{1}) and (\phi_{2}, \varphi_{2}) , respectively, then for any t\geq\rho ,
\begin{equation} \begin{split}\nonumber \mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\big(\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}+\|v(r,\varphi_{1})-u(r,\varphi_{2})\|^{2}\big)\Big] \leq M_{6}\mathbb{E}\big[\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ - \varsigma t}, \end{split} \end{equation} |
where M_{6} is a positive constant independent of (\phi_{1}, \varphi_{1}) and (\phi_{2}, \varphi_{2}) .
Proof. By (2.17), we get that for t\geq\rho and r\geq t-\rho ,
\begin{equation} \begin{split} &\beta\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}_{\eta}+\alpha\|v(r,\varphi_{1})-v(r,\varphi_{2})\|^{2}_{\eta} +2\lambda\alpha \int_{t-\rho}^{r}\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}ds\\ & = \beta\|u(t-\rho,\phi_{1})-u(t-\rho,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t-\rho,\varphi_{1})-v(t-\rho,\varphi_{2})\|^{2}_{\eta} \\ &\quad+2\beta\int_{t-\rho}^{r}\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\\ &\quad+2\beta\int_{t-\rho}^{r}\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\\ &\quad+\beta\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}ds\\ &\quad+\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}ds\\ &\quad+2\beta\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}dW_{j}(s)\\ &\quad+2\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}dW_{j}(s), \end{split} \end{equation} | (5.8) |
where
\mathbf{g}_{j} = g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2})), |
and
\mathbf{h}_{j} = h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2})). |
By (5.8), we get that for all t\geq\rho ,
\begin{equation} \begin{split} &\mathbb{E}\big[\beta\sup\limits_{t-\rho\leq r\leq t}\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}_{\eta}+\alpha\sup\limits_{t-\rho\leq r\leq t}\|v(r,\varphi_{1})-v(r,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq\mathbb{E}\big[\beta\|u(t-\rho,\phi_{1})-u(t-\rho,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t-\rho,\varphi_{1})-v(t-\rho,\varphi_{2})\|^{2}_{\eta}\big] \\ &\quad+2\beta\mathbb{E}\Big[\int_{t-\rho}^{t}\Big|\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big|ds\Big]\\ &\quad+2\beta\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\int_{t-\rho}^{r}\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\Big]\\ &\quad+\beta\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}ds\Big]\\ &\quad+\alpha\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}ds\Big]\\ &\quad+2\beta\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\Big|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}dW_{j}(s)\Big|\Big]\\ &\quad+2\alpha\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\Big|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}dW_{j}(s)\Big|\Big]. \end{split} \end{equation} | (5.9) |
By Lemma 5.1, we see that for all t\geq\rho ,
\begin{equation} \begin{split} &\mathbb{E}\big[\beta\|u(t-\rho,\phi_{1})-u(t-\rho,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t-\rho,\varphi_{1})-v(t-\rho,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq (1+2\rho L^{2})\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma(t-\rho)}. \end{split} \end{equation} | (5.10) |
Similar to (2.18) and (2.19), we obtain
\begin{equation} \begin{split}\nonumber 2\beta\mathbb{E}\Big[\int_{t-\rho}^{t}\Big|\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big|ds\Big] \leq 2\beta \tilde{\alpha}\int_{t-\rho}^{t}\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}^{2}ds, \end{split} \end{equation} |
which along with Lemma 5.1 implies that
\begin{equation} \begin{split} &2\beta\mathbb{E}\Big[\int_{t-\rho}^{t}\Big|\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big|ds\Big]\\ &\leq \frac{2\tilde{\alpha}(1+2\rho L^{2})}{\varsigma}\mathbb{E}[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}]e^{-\varsigma(t-\rho)}. \end{split} \end{equation} | (5.11) |
By (2.9) and (5.1), we have
\begin{equation} \begin{split} 2\beta\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\int_{t-\rho}^{r}\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\Big]\leq0. \end{split} \end{equation} | (5.12) |
By (2.12) and Lemma 5.1 we get
\begin{equation} \begin{split} &\beta\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}\Big]ds\\ &\quad+\alpha\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}\Big]ds\\ &\leq 4\beta L^{2}\int_{t-\rho}^{t}\mathbb{E}\Big[\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\Big]ds+2\beta L^{2}\int_{t-2\rho}^{t-\rho}\mathbb{E}\Big[\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\Big]ds\\ &\quad+ 4\alpha L^{2}\int_{t-\rho}^{t}\mathbb{E}\Big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\Big]ds+2\alpha L^{2}\int_{t-2\rho}^{t-\rho}\mathbb{E}\Big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\Big]ds\\ &\leq \frac{4L^{2}(1+2\rho L^{2})}{\varsigma}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big]e^{-\varsigma(t-\rho)}\\ &\quad+\frac{2L^{2}(1+2\rho L^{2})}{\varsigma}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma(t-2\rho)}\\ &\leq \frac{6L^{2}(1+2\rho L^{2})}{\varsigma}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big]e^{-\varsigma(t-\rho)}. \end{split} \end{equation} | (5.13) |
For the last two terms of (5.9), by the BDG inequality and (5.13), we get
\begin{equation} \begin{split} &2\beta\mathbb{E}\bigg[\sup\limits_{t-\rho\leq r\leq t}\bigg|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}dW_{j}(s)\bigg|\bigg]\\ &\quad+2\alpha\mathbb{E}\bigg[\sup\limits_{t-\rho\leq r\leq t}\bigg|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}dW_{j}(s)\bigg|\bigg]\\ &\leq C_{13}\beta\mathbb{E}\bigg[\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\bigg|\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\bigg|^{2}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\quad+C_{13}\alpha\mathbb{E}\bigg[\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\bigg|\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}\bigg|^{2}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\leq C_{13}\beta\mathbb{E}\bigg[\sup\limits_{t-\rho\leq s\leq t}\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{g}_{j}\|^{2}_{\eta}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\quad+C_{13}\alpha\mathbb{E}\bigg[\sup\limits_{t-\rho\leq s\leq t}\|v(s,\varphi_{1})-v(s,\varphi_{2})\|_{\eta}\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{h}_{j}\|^{2}_{\eta}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\leq \frac{\beta}{2}\mathbb{E}\Big[\sup\limits_{t-\rho\leq s\leq t}\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\Big]+\frac{\beta}{2}C_{13}^{2}\mathbb{E}\bigg[\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{g}_{j}\|^{2}_{\eta}ds\bigg]\\ &\quad+\frac{\alpha}{2}\mathbb{E}\Big[\sup\limits_{t-\rho\leq s\leq t}\|v(s,\varphi_{1})-v(s,\varphi_{2})\|_{\eta}^{2}+\frac{\alpha}{2}C_{13}^{2}\mathbb{E}\bigg[\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{h}_{j}\|^{2}_{\eta}ds\bigg]\\ &\leq \frac{1}{2}\mathbb{E}\Big[\sup\limits_{t-\rho\leq s\leq t}\big(\beta\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}+\alpha \|v(s,\varphi_{1})-v(s,\varphi_{2})\|_{\eta}^{2}\big)\Big]\\ &\quad+C_{14}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma(t-\rho)}, \end{split} \end{equation} | (5.14) |
where C_{14} = \frac{3C_{13}^{2}L^{2}(1+2\rho L^{2})}{\varsigma} . It follows from (5.9)–(5.14) that for all t\geq0 ,
\begin{equation} \begin{split}\nonumber \mathbb{E}\bigg[\sup\limits_{t-\rho\leq r\leq t}(\beta\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}_{\eta}+\alpha\|v(r,\varphi_{1})-v(r,\varphi_{2})\|^{2}_{\eta})\bigg] \leq C_{15}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}, \end{split} \end{equation} |
where C_{15} = 2\big((1+2\rho L^{2})(1+\frac{2\tilde{\alpha}+6L^{2}}{\varsigma})+C_{14}\big) . This completes the proof.
Theorem 5.1. Suppose (2.1)–(2.8) and (5.1) hold. Then, stochastic lattice system (2.15) has a unique invariant measure in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .
Proof. For any (\phi_{1}, \varphi_{1}), (\phi_{2}, \varphi_{2})\in L^{2}(\Omega, C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})) , by Lemma 5.2, we see that the segments of the solutions (u_{t}(\phi_{1}), v_{t}(\varphi_{1})) and (u_{t}(\phi_{2}), v_{t}(\varphi_{2})) of (2.15) satisfy, for all t\geq\rho ,
\begin{equation} \begin{split}\nonumber \mathbb{E}\big[\|u_{t}(\phi_{1})-u_{t}(\phi_{2})\|^{2}_{C_{\rho,\eta}}+\|v_{t}(\varphi_{1})-v_{t}(\varphi_{2})\|^{2}_{C_{\rho,\eta}}\big] \leq M_{7}\mathbb{E}\big[\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}, \end{split} \end{equation} |
which along with the standard arguments (see, e.g., [50]) implies the uniqueness of invariant measures for the lattice system (2.15). This completes the proof.
The current focus lies in the theoretical proof of the well-posedness of solutions and the existence and uniqueness of invariant measures for these stochastic delay lattice systems. In the future, our research group will investigate the convergence and approximation of invariant measures for the systems under noise perturbation, as well as explore large deviation principles for the systems. Additionally, we will employ finite-dimensional numerical approximation methods to address both the existence of numerical solutions and numerical invariant measures.
Xintao Li and Lianbing She: Conceptualization, Writing original draft and writing-review and editing; Rongrui Lin: Writing original draft and writing-review and editing. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the Scientific Research and Cultivation Project of Liupanshui Normal University (LPSSY2023KJYBPY14).
The authors declare no conflict of interest.
[1] |
N. Huo, B. Li, Y. Li, Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays, AIMS Math., 7 (2022), 3653–3679. http://dx.doi.org/10.3934/math.2022202 doi: 10.3934/math.2022202
![]() |
[2] |
H. Qiu, L. Wan, Z. Zhou, Q. Zhang, Q. Zhou, Global exponential periodicity of nonlinear neural networks with multiple time-varying delays, AIMS Math., 8 (2023), 12472–12485. http://dx.doi.org/10.3934/math.2023626 doi: 10.3934/math.2023626
![]() |
[3] |
R. Wei, J. Cao, W. Qian, C. Xue, X. Ding, Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method, AIMS Math., 6 (2021), 6915–6932. http://dx.doi.org/10.3934/math.2021405 doi: 10.3934/math.2021405
![]() |
[4] |
J. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121–125. https://doi.org/10.1016/j.automatica.2015.08.025 doi: 10.1016/j.automatica.2015.08.025
![]() |
[5] |
O. M. Kwon, M. J. Park, S. M. Lee, J. H. Park, E. J. Cha, Stability for neural networks with time-varying delays via some new approaches, IEEE T. Neur. Net. Lear., 24 (2013), 181–193. https://doi.org/10.1109/TNNLS.2012.2224883 doi: 10.1109/TNNLS.2012.2224883
![]() |
[6] |
X. M. Zhang, Q. L. Han, Z. Zeng, Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities, IEEE T. Cybern., 48 (2018), 1660–1671. https://doi.org/10.1109/TCYB.2017.2776283 doi: 10.1109/TCYB.2017.2776283
![]() |
[7] |
T. Wu, S. Gorbachev, H. Lam, J. Park, L. Xiong, J. Cao, Adaptive event-triggered space-time sampled-data synchronization for fuzzy coupled RDNNs under hybrid random cyberattacks, IEEE T. Fuzzy Syst., 31 (2023), 1855–1869. https://doi.org/10.1109/TFUZZ.2022.3215747 doi: 10.1109/TFUZZ.2022.3215747
![]() |
[8] |
T. Wu, J. Cao, J. Park, K. Shi, L. Xiong, T. Huang, Attack-resilient dynamic event-triggered synchronization of fuzzy reaction-diffusion dynamic networks with multiple cyberattacks, IEEE T. Fuzzy Syst., 32 (2024), 498–509. https://doi.org/10.1109/TFUZZ.2023.3300882 doi: 10.1109/TFUZZ.2023.3300882
![]() |
[9] |
T. Wu, J. Cao, L. Xiong, J. Park, X. Tan, Adaptive event-triggered mechanism to synchronization of reaction-diffusion CVNNs and its application in image secure communication, IEEE T. Syst. Man Cy-S., 53 (2023), 5307–5320. https://doi.org/10.1109/TSMC.2023.3258222 doi: 10.1109/TSMC.2023.3258222
![]() |
[10] |
C. K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE T. Autom. Control, 62 (2017), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381
![]() |
[11] |
W. Lin, Y. He, C. Zhang, M. Wu, J. Shen, Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals, IEEE T. Neur. Net. Lear., 30 (2019), 2528–2537. https://doi.org/10.1109/TNNLS.2018.2885115 doi: 10.1109/TNNLS.2018.2885115
![]() |
[12] |
Y. Tian, Z. Wang, Extended dissipativity analysis for Markovian jump neural networks via double-integral-based delay-product-type Lyapunov functional, IEEE T. Neur. Net. Lear., 32 (2020), 3240–3246. https://doi.org/10.1109/TNNLS.2020.3008691 doi: 10.1109/TNNLS.2020.3008691
![]() |
[13] | K. Gu, V. L. Kharitonov, J. Chen, Stability of Time-Delay Systems, 2003. |
[14] |
A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
![]() |
[15] |
H.B. Zeng, Y. He, M. Wu, J. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE T. Autom. Control, 60 (2015), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
![]() |
[16] |
H.B. Zeng, Y. He, M. Mu, J. She, New results on stability analysis for systems with discrete distributed delay, Automatica, 60 (2015), 189–192. https://doi.org/10.1016/j.automatica.2015.07.017 doi: 10.1016/j.automatica.2015.07.017
![]() |
[17] |
X. M. Zhang, W. J. Lin, Q. L. Han, Y. He, M. Wu, Global asymptotic stability for delayed neural networks using an integral inequality based on nonorthogonal polynomials, IEEE T. Neur. Net. Lear., 29 (2018), 4487–4493. https://doi.org/10.1109/TNNLS.2017.2750708 doi: 10.1109/TNNLS.2017.2750708
![]() |
[18] |
J. Chen, S. Xu, B. Zhang, Single/Multiple integral inequalities with applications to stability analysis of time-delay systems, IEEE T. Autom. Control, 62 (2017), 3488–3493. https://doi.org/10.1109/TAC.2016.2617739 doi: 10.1109/TAC.2016.2617739
![]() |
[19] |
C. K. Zhang, Y. He, L. Jiang, W. J. Lin, M. Wu, Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach, Appl. Math. Comput., 294 (2017), 102–120. https://doi.org/10.1016/j.amc.2016.08.043 doi: 10.1016/j.amc.2016.08.043
![]() |
[20] |
A. Seuret, F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett., 81 (2015), 1–8. https://doi.org/10.1016/j.sysconle.2015.03.007 doi: 10.1016/j.sysconle.2015.03.007
![]() |
[21] |
A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, IEEE T. Autom. Control, 63 (2018), 225–232. https://doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485
![]() |
[22] |
Y. Huang, Y. He, J. An, M. Wu, Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: Further results on stability analysis of time-delay systems, IEEE Trans. Autom. Control, 66 (2021), 2905–2912. https://doi.org/10.1109/TAC.2020.3013930 doi: 10.1109/TAC.2020.3013930
![]() |
[23] |
P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
![]() |
[24] |
X. M. Zhang, Q. L. Han, A. Seuret, F. Gouaisbaut, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84 (2017), 221–226. https://doi.org/10.1016/j.automatica.2017.04.048 doi: 10.1016/j.automatica.2017.04.048
![]() |
[25] |
C. Zhang, Y. He, L. Jiang, M. Wu, Q. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. https://doi.org/10.1016/j.automatica.2017.07.056 doi: 10.1016/j.automatica.2017.07.056
![]() |
[26] |
W. I. Lee, S. Y. Lee, P. G. Park, Affine Bessel-Legendre inequality: Application to stability analysis for systems with time-varying delays, Automatica, 93 (2018), 535–539. https://doi.org/10.1016/j.automatica.2018.03.073 doi: 10.1016/j.automatica.2018.03.073
![]() |
[27] |
J. Chen, J. H. Park, S. Xu, Stability analysis for delayed neural networks with an improved general free-matrix-based integral inequality, IEEE T. Neur. Net. Lear. Syst., 31 (2020), 675–684. https://doi.org/10.1109/TNNLS.2019.2909350 doi: 10.1109/TNNLS.2019.2909350
![]() |
[28] |
Y. Tian, Y. Yang, X. Ma, X. Su, Stability of discrete-time delayed systems via convex function-based summation inequality, Appl. Math. Lett., 145 (2023), 108764, https://doi.org/10.1016/j.aml.2023.108764 doi: 10.1016/j.aml.2023.108764
![]() |
1. | Lin Liu, Xiaoling Pan, Baohuai Sheng, Jun Fan, Theory Analysis for the Convergence of Kernel-Regularized Online Binary Classification Learning Associated with RKBSs, 2023, 2023, 2314-4785, 1, 10.1155/2023/6566375 |