Processing math: 83%
Research article

Stability analysis of delayed neural networks via compound-parameter -based integral inequality

  • This paper revisits the issue of stability analysis of neural networks subjected to time-varying delays. A novel approach, termed a compound-matrix-based integral inequality (CPBII), which accounts for delay derivatives using two adjustable parameters, is introduced. By appropriately adjusting these parameters, the CPBII efficiently incorporates coupling information along with delay derivatives within integral inequalities. By using CPBII, a novel stability criterion is established for neural networks with time-varying delays. The effectiveness of this approach is demonstrated through a numerical illustration.

    Citation: Wenlong Xue, Zhenghong Jin, Yufeng Tian. Stability analysis of delayed neural networks via compound-parameter -based integral inequality[J]. AIMS Mathematics, 2024, 9(7): 19345-19360. doi: 10.3934/math.2024942

    Related Papers:

    [1] Wei Xue, Pengcheng Wan, Qiao Li, Ping Zhong, Gaohang Yu, Tao Tao . An online conjugate gradient algorithm for large-scale data analysis in machine learning. AIMS Mathematics, 2021, 6(2): 1515-1537. doi: 10.3934/math.2021092
    [2] Yiyuan Cheng, Yongquan Zhang, Xingxing Zha, Dongyin Wang . On stochastic accelerated gradient with non-strongly convexity. AIMS Mathematics, 2022, 7(1): 1445-1459. doi: 10.3934/math.2022085
    [3] Yassamine Chellouf, Banan Maayah, Shaher Momani, Ahmad Alawneh, Salam Alnabulsi . Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method. AIMS Mathematics, 2021, 6(4): 3465-3485. doi: 10.3934/math.2021207
    [4] Kasamsuk Ungchittrakool, Natthaphon Artsawang . A generalized viscosity forward-backward splitting scheme with inertial terms for solving monotone inclusion problems and its applications. AIMS Mathematics, 2024, 9(9): 23632-23650. doi: 10.3934/math.20241149
    [5] Suthep Suantai, Pronpat Peeyada, Andreea Fulga, Watcharaporn Cholamjiak . Heart disease detection using inertial Mann relaxed CQ algorithms for split feasibility problems. AIMS Mathematics, 2023, 8(8): 18898-18918. doi: 10.3934/math.2023962
    [6] Junaid Ahmad, Kifayat Ullah, Reny George . Numerical algorithms for solutions of nonlinear problems in some distance spaces. AIMS Mathematics, 2023, 8(4): 8460-8477. doi: 10.3934/math.2023426
    [7] Chibueze C. Okeke, Abubakar Adamu, Ratthaprom Promkam, Pongsakorn Sunthrayuth . Two-step inertial method for solving split common null point problem with multiple output sets in Hilbert spaces. AIMS Mathematics, 2023, 8(9): 20201-20222. doi: 10.3934/math.20231030
    [8] Raweerote Suparatulatorn, Wongthawat Liawrungrueang, Thanasak Mouktonglang, Watcharaporn Cholamjiak . An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction. AIMS Mathematics, 2025, 10(2): 2541-2561. doi: 10.3934/math.2025118
    [9] Yali Zhao, Qixin Dong, Xiaoqing Huang . A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem. AIMS Mathematics, 2025, 10(2): 4504-4523. doi: 10.3934/math.2025208
    [10] Puntita Sae-jia, Suthep Suantai . A new two-step inertial algorithm for solving convex bilevel optimization problems with application in data classification problems. AIMS Mathematics, 2024, 9(4): 8476-8496. doi: 10.3934/math.2024412
  • This paper revisits the issue of stability analysis of neural networks subjected to time-varying delays. A novel approach, termed a compound-matrix-based integral inequality (CPBII), which accounts for delay derivatives using two adjustable parameters, is introduced. By appropriately adjusting these parameters, the CPBII efficiently incorporates coupling information along with delay derivatives within integral inequalities. By using CPBII, a novel stability criterion is established for neural networks with time-varying delays. The effectiveness of this approach is demonstrated through a numerical illustration.



    The objective of this paper is to investigate the existence and uniqueness of invariant measures for the stochastic FitzHugh-Nagumo delay lattice system with long-range interactions on the integer set Z:

    {dun(t)=(mZJ(nm)um(t)αvn(t)+fn(un(t))+an)dt+j=1(gj,n(un(t),un(tρ))+bj,n)dWj(t),dvn(t)=(βun(t)λvn(t)+cn)dt+j=1(hj,n(vn(t),vn(tρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s[ρ,0], (1.1)

    where un,vnR, t>0, α,ρ,β,λ>0, the coupling parameters J(m) are real numbers satisfying J(m)=J(m) for all positive integer m, a=(an)nZ, c=(cn)nZ, b=(bj,n)jN,nZ, and l=(lj,n)jN,nZ are given deterministic sequences in 2η, fn,gj,n,hj,n are Lipschitz continuous functions for all jN,nZ, and (Wj(t))jN is a sequence of independent two-sided real-valued Wiener processes defined on a complete filtered probability space (Ω,F,{F}tR,P).

    The subsequent changes should be observed while considering the transformation of J(m),

    J(m)=2kj=0(2kj)(1)jδm,jk,

    where k is any positive integer and δm,n is the Kronecker's delta. Then, lattice system (1.1) can be changed into

    {dun(t)=(kun(t)αvn(t)+fn(un(t))+an)dt+j=1(gj,n(un(t),un(tρ))+bj,n)dWj(t),dvn(t)=(βun(t)λvn(t)+cn)dt+j=1(hj,n(vn(t),vn(tρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s[ρ,0],

    where t>0,nZ, k=,k times, and is defined by un=un+1+un12un.

    The emergence of lattice equations from spatial discretization of partial differential equations is widely acknowledged. Lattice systems exhibiting long-range interactions have garnered significant attention in the literature. Of those, the dynamics of the DNA molecule were described by Schrödinger lattice systems in [1]. Subsequently, Pereira investigated the asymptotic behavior of Schrödinger lattice systems in [2] and delay lattice systems in [3], respectively. Recently, Chen et al. considered the long-term dynamics of stochastic complex Ginzburg-Landau systems in their study [4], and Wong-Zakai approximations of stochastic lattice systems in another study [5].

    The FitzHugh-Nagumo systems were used to describe the transmission of signals across axons in neurobiology in [6]. The asymptotic behavior of FitzHugh-Nagumo systems were studied in both deterministic [7] and stochastic scenarios [8,9,10,11,12]. The FitzHugh-Nagumo lattice systems were employed to stimulate the propagation of action potentials in myelinated nerve axons in [13]. The attractors of FitzHugh-Nagumo lattice systems were investigated in the deterministic case by [7,14], and in the stochastic case by [11,12,15,16,17,18]. Among these studies, Wang et al. [11] derived the existence and upper semi-continuity of random attractors for FitzHugh-Nagumo lattice systems in 2×2, while Chen et al. [15] obtained the existence and uniqueness of weak pullback mean random attractors for FitzHugh-Nagumo lattice systems with nonlinear noises in weighted spaces 2σ×2σ.

    Furthermore, time delays are a common occurrence in various systems, and can lead to instability, oscillation, and other changes in dynamical systems. Due to their practical and theoretical significance, there has been an increasing emphasis on the study of time-delay systems. Recent studies have delved into the exploration of random attractors for stochastic lattice systems featuring fixed delays in [18,19,20,21,22]. Additionally, investigations have also been carried out concerning systems with varying delays over time as documented in [3,12,23,24,25].

    Currently, there has been a significant amount of research conducted on the dynamical behavior of differential equations driven by linear noise. In order to effectively handle stochastic systems with nonlinear noise, Kloeden[26] and Wang[27,28] introduced the concept of weak pullback mean random attractors. The work described above has subsequently been widely applied in numerous studies on stochastic systems by a multitude of scholars in [15,16,17,19,20,21,25,27,28,29,30,31,32,33,34,35,36,37,38]. Among them, Wang et al [25] studied the stochastic delay modified Swift-Hohenberg lattice systems, as well as Chen et al.[19] and Li et al.[20] considered the stochastic delay lattice systems. However, to the best of our knowledge, the current state of literature on the invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions driven by nonlinear noise in weighted space is regrettably scarce.

    The lattice system (1.1) is defined on Z, which represents a spatially discrete analogue to stochastic partial differential equations (PDEs) defined on R. Proving the existence of invariant measures for PDEs on unbounded domains poses a major challenge, primarily due to establishing the tightness of distribution laws of solutions caused by non-compactness in usual Sobolev embeddings on unbounded domains. Various approaches have been developed in literature to address the tightness of solution distributions for PDEs on unbounded domains, such as using weighted spaces in [39,40], weak Feller property of solutions in [41,42], and cut-off techniques in [43,44]. In this paper, the cut-off method will be employed to establish the existence of invariant measures for the stochastic lattice system (1.1) in C([ρ,0],2η×2η). Specifically, we will demonstrate that when time is sufficiently large, the mean square of solution tails in C([ρ,0],2η×2η) becomes uniformly small; based on this result, we can establish tightness in distribution laws for solutions in C([ρ,0],2η×2η). The tail-estimates method has previously been used to prove existence of global attractors for deterministic PDEs [45,46] and stochastic PDEs with additive or linear multiplicative noise in [47,48]. In this paper, we will apply the tail-estimates approach to handle nonlinear noise involved in (1.1) in C([ρ,0],2η×2η). For further information regarding existence of invariant measures for stochastic PDEs defined within bounded domains, please refer to [49] and its references.

    The structure of this paper is organized as follows: Section 2 introduces the notations and discusses the well-posedness of lattice system (1.1). The subsequent section establishes necessary uniform estimates of solutions, which play a crucial role in demonstrating the main results in the following section. Sections 4 and 5 focus on establishing the existence and uniqueness of invariant measures for lattice system (1.1). Finally, we provide a summary and closing remarks in the last section.

    In this section, we will investigate the well-posedness of the stochastic Fitzhugh-Nagumo delay lattice system (1.1) in weighted space 2η×2η, where 2η is defined by

    2η={u=(un)nZ|unR,nZηn|un|2<}.

    2η is a Hilbert space with the inner product and norm given by

    (u,v)η=nZηnunvn,u2η=(u,u)η,u,v2η.

    We further assume that weights η=(ηn)nZ satisfy the conditions

    ηn>0,nZ,nZηn<, (2.1)

    and

    αm:=supnZηn+m+ηnη1/2n+mη1/2n<,mN. (2.2)

    To get the existence of invariant measures for lattice system (1.1) in 2η, the interaction J(m) should decrease at a sufficiently rapid rate such that

    ˜α:=m=0αm|J(m)|<. (2.3)

    For sequences a=(an)nZ, c=(cn)nZ, b=(bj,n)jN,nZ, and l=(lj,n)jN,nZ in lattice system (1.1), we assume

    a2η=nZηn|an|2<,b2η=jNnZηn|bj,n|2<,c2η=nZηn|cn|2<,l2η=jNnZηn|lj,n|2<. (2.4)

    For the nonlinear term fn in lattice system (1.1), we assume that fn is a smooth function satisfying that there exists κR such that for all zR and nZ,

    fn(0)=0,fn(z)κ. (2.5)

    Moreover, for each nZ and zR, we assume that there are positive constants ιn and δ such that

    fn(z)zδ|z|2+ιn, (2.6)

    where ι=(ιn)nZ belongs to 1η and its norm is denoted by ι1,η.

    For every jN and nZ, we assume that gj,n,hj,n:RR is globally Lipschitz continuous; that is, there is a constant L>0 such that for all z1,z2,z1,z2R,

    |gj,n(z1,z2)gj,n(z1,z2)||hj,n(z1,z2)hj,n(z1,z2)|L(|z1z1|+|z2z2|). (2.7)

    We further assume that for each z,zR, jN, and nZ,

    |gj,n(z,z)||hj,n(z,z)|γj,n(1+|z|+|z|), (2.8)

    where γj,n>0, γ2=jNnZ|γj,n|2<, and γ2η=jNnZηn|γj,n|2<.

    For any u=(un)nZ2η and v=(vn)nZ2η, denote by f(u)=(fn(un))nZ and f(v)=(fn(vn))nZ. By (2.5), we get

    (f(u)f(v),uv)η=nZηn(fn(un)fn(vn))(unvn)=nZηnfn(ξn)|unvn|2κuv2η, (2.9)

    where ξn=θnun+(1θn)vn for some θn(0,1). Moreover, we can obtain that f is locally Lipschitz continuous from 2η to 2η; that is, there exists LC>0 such that for any u,v2η with u2ηC and v2ηC,

    f(u)f(v)2ηL2Cuv2η. (2.10)

    For each u1=(u1n)nZ,u2=(u2n)nZ,v1=(v1n)nZ,v2=(v2n)nZ2η, and jN, denote by gj(u1,v1)=(gj,n(u1n,v1n))nZ and hj(u1,v1)=(hj,n(u1n,v1n))nZ. It follows from (2.7) and (2.8) that

    jNgj(u1,v1)2ηjNhj(u1,v1)2η2γ2η+4γ2(u12η+v12η) (2.11)

    and

    jNgj(u1,v1)gj(u2,v2)2ηjNhj(u1,v1)gj(u2,v2)2η2L2(u1u22η+v1v22η). (2.12)

    The system (1.1) can be reformulated as an abstract system in 2, for u=(un)nZ2, and we set

    (Au)n=mZJ(nm)um. (2.13)

    By Lemma 3.1 of [4], we have

    Au22|J(0)|2u2+8(m=1|J(m)|)2u2. (2.14)

    By the above notation, system (1.1) can be rewritten as follows: For all t>0,

    {du(t)=(Au(t)αv(t)+f(u(t))+a)dt+j=1(gj(u(t),u(tρ))+bj)dWj(t),dv(t)=(βu(t)λv(t)+c)dt+j=1(hj(v(t),v(tρ))+lj)dWj(t),u(s)=ϕ(s),v(s)=φ(s),s[ρ,0]. (2.15)

    Let (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)) be F0 -measurable. Then, a continuous 2η×2η -valued Ft -adapted stochastic process (u(t),v(t)) is called a solution of stochastic lattice system (2.15) if (u0,v0)=(ϕ,φ), (u(t),v(t))L2(Ω,C([ρ,T],2η×2η)) for all T>ρ, t0 and for almost all ωΩ,

    {u(t)=ϕ(0)+t0(Au(r)αv(r)+f(u(r))+a)dr+j=1t0(gj(u(r),u(rρ))+bj)dWj(r),v(t)=φ(0)+t0(βu(r)λv(r)+c)dr+j=1t0(hj(v(r),v(rρ))+lj)dWj(r).

    By (2.1)–(2.8) and the theory of the functional differential equation, we can get that for any (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)), stochastic lattice system (2.15) has a solution (u(t),v(t))L2(Ω,C([ρ,T],2η×2η)) for every Tρ. Moreover, this solution is unique if (u(t),v(t)) is any other solution of system (2.15), then

    P({(u(t),v(t))=(u(t),v(t))for alltρ})=1.

    Actually, the stochastic lattice system (2.15) has a unique solution defined for t[t0ρ,), regardless of any initial time t00 and any Ft0 -measurable (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)).

    Hereafter, for tR, (ut,vt) is defined by

    (ut,vt)(s)=(un,t(s),vn,t(s))nZ=(un(t+s),vn(t+s))nZ=(u(t+s),v(t+s)),s[ρ,0],

    and let Cρ,η=C([ρ,0],2η) with the norm χρ,η=supρs0χ(s)η, χCρ,η.

    The establishment of Lipschitz continuity for solutions to stochastic lattice system (2.15) in relation to initial data will now be undertaken, which shall subsequently be employed.

    Lemma 2.1. Suppose (2.1)–(2.8) hold and (ϕ1,φ1),(ϕ2,φ2)L2(Ω,C([ρ,0],2η×2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of stochastic lattice system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any t0,

    E[supρrtu(r,ϕ1)u(r,ϕ2)2η+supρrtv(r,φ1)v(r,φ2)2η]M1(1+eM1t)E[ϕ1ϕ22Cρ,η+φ1φ22Cρ,η],

    where M1 is a positive constant independent of (ϕ1,φ1), (ϕ2,φ2), and t.

    Proof. By (2.15), we get that for all t0,

    d(u(t,ϕ1)u(t,ϕ2))=A(u(t,ϕ1)u(t,ϕ2))dtα(v(t,φ1)v(t,φ2))dt+(f(u(t,ϕ1))f(u(t,ϕ2)))dt+j=1(gj(u(t,ϕ1),u(tρ,ϕ1))gj(u(t,ϕ2),u(tρ,ϕ2)))dWj(t), (2.16)

    and

    d(v(t,φ1)v(t,φ2))=β(u(t,ϕ1)u(t,ϕ2))dtλ(v(t,φ1)v(t,φ2))dt+j=1(hj(v(t,φ1),v(tρ,φ1))hj(v(t,φ2),v(tρ,φ2)))dWj(t),

    which along with (2.16) and Itô's formula shows that for all t0,

    12(βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2η)=12(βϕ1(0)ϕ2(0)2η+αφ1(0)φ2(0)2η)λαt0v(s,φ1)v(s,φ2)2ηds+βt0(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds+βt0(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds+β2j=1t0gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds+α2j=1t0hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2ηds+βj=1t0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)+αj=1t0(hj,v(s,φ1)v(s,φ2))ηdWj(s), (2.17)

    where

    gj=gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))

    and

    hj=hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2)).

    By (2.13) and the fact of J(m)=J(m), we have

    (A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η=J(0)u(s,ϕ1)u(s,ϕ2)2η+nZηnm=1J(m)(un(s,ϕ1)un(s,ϕ2))×(unm(s,ϕ1)unm(s,ϕ2)+un+m(s,ϕ1)un+m(s,ϕ2))=J(0)u(s,ϕ1)u(s,ϕ2)2η+nZm=1J(m)ηn+m(un+m(s,ϕ1)un+m(s,ϕ2))(un(s,ϕ1)un(s,ϕ2))+nZm=1J(m)ηn(un(s,ϕ1)un(s,ϕ2))(un+m(s,ϕ1)un+m(s,ϕ2))=J(0)u(s,ϕ1)u(s,ϕ2)2η+nZm=1J(m)(ηn+ηn+m)(un(s,ϕ1)un(s,ϕ2))(un+m(s,ϕ1)un+m(s,ϕ2)), (2.18)

    which along with (2.2) and (2.3) implies that

    βt0(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηdsβJ(0)t0u(s,ϕ1)u(s,ϕ2)2ηds+βt0nZm=1|J(m)|αmη12nη12n+m|un(s,ϕ1)un(s,ϕ2)||un+m(s,ϕ1)un+m(s,ϕ2)|dsβ˜αt0u(s,ϕ1)u(s,ϕ2)2ηds. (2.19)

    By (2.9), we obtain

    βt0(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηdsβκt0u(s,ϕ1)u(s,ϕ2)2ηds. (2.20)

    By (2.12), we get

    β2j=1t0gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds+α2j=1t0hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2ηds2βL2t0u(s,ϕ1)u(s,ϕ2)2ηds+βL20ρϕ1(s)ϕ2(s)2ηds+2αL2t0v(s,φ1)v(s,φ2)2ηds+αL20ρφ1(s)φ2(s)2ηds. (2.21)

    It follows from (2.17)–(2.21) that for all t0,

    βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2ηβϕ1(0)ϕ2(0)2η+αφ1(0)φ2(0)2η+2βL20ρϕ1(s)ϕ2(s)2ηds+2αL20ρφ1(s)φ2(s)2ηds+4αL2t0v(s,φ1)v(s,φ2)2ηds+2β(˜α+|κ|+2L2)t0u(s,ϕ1)u(s,ϕ2)2ηds+2β|j=1t0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|+2α|j=1t0(hj,v(s,φ1)v(s,φ2))ηdWj(s)|,

    which implies that for all t0,

    E[βsup0rtu(r,ϕ1)u(r,ϕ2)2η+αsup0rtv(r,φ1)v(r,φ2)2η](1+2ρL2)(E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η])+2β(˜α+|κ|+2L2)t0E[sup0rsu(r,ϕ1)u(r,ϕ2)2η]ds+4αL2t0E[sup0rsv(r,φ1)v(r,φ2)2η]ds+2βE[sup0rt|j=1r0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|]+2αE[sup0rt|j=1r0(hj,v(s,φ1)v(s,φ2))ηdWj(s)|]. (2.22)

    For the last two terms of (2.22), by (2.12), the Burkholder-Davis-Gundy (BDG) inequality, and the Minkowski inequality, we have

    2βE[sup0rt|j=1r0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|]βC12E[(t0j=1gj2ηu(s,ϕ1)u(s,ϕ2)2ηds)12]βC12E[sup0stu(s,ϕ1)u(s,ϕ2)η×(t0j=1gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds)12]βC1LE[sup0stu(s,ϕ1)u(s,ϕ2)η(t0u(s,ϕ1)u(s,ϕ2)2ηds)12]+βC1LE[sup0stu(s,ϕ1)u(s,ϕ2)η(t0u(sρ,ϕ1)u(sρ,ϕ2)2ηds)12]β2E[sup0rtu(r,ϕ1)u(r,ϕ2)2η]+2βC21L2t0E[sup0rsu(r,ϕ1)u(r,ϕ2)2η]ds+ρβC21L2E[ϕ1ϕ22Cρ,η], (2.23)

    and

    2αE[sup0rt|j=1r0(hj,v(s,φ1)v(s,φ2))ηdWj(s)|]α2E[sup0rtv(r,φ1)v(r,φ2)2η]+2αC21L2t0E[sup0rsv(r,φ1)v(r,φ2)2η]ds+ραC21L2E[φ1φ22Cρ,η],

    which along with (2.22) and (2.23) shows that

    E[βsup0rtu(r,ϕ1)u(r,ϕ2)2η+αsup0rtv(r,φ1)v(r,φ2)2η]C2E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]+C3t0E[βsup0rsu(r,ϕ1)u(r,ϕ2)2η+αsup0rsv(r,φ1)v(r,φ2)2η]ds, (2.24)

    where C2=2(1+2ρL2+ρC21L2), C3=4(˜α+2L2+|κ|+C21L2). It follows from (2.24) and the Gronwall inequality that for all t0,

    E[βsup0rtu(r,ϕ1)u(r,ϕ2)2η+αsup0rtv(r,φ1)v(r,φ2)2η]C2eC3tE[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η].

    This completes the proof.

    The existence of invariant measures of the stochastic lattice system (2.15) in the subsequent analysis necessitates the fulfillment of the following inequality.

    γ2<196eρνmax{2δ4˜α27β4λ38,2λ27α4δ36}, (2.25)

    where ν>0,2δ4˜α27β4λ38>0,2λ27α4δ36>0.

    In this section, we obtain uniform estimates of the solutions to stochastic lattice system (2.15), which play a pivotal role in proving the existence of invariant measures. More specifically, we will showcase the compactness of a family of probability distributions pertaining to (ut,vt) in C([ρ,0],2η×2η). Initially, our focus lies on discussing uniform estimates of solutions to stochastic lattice system (2.15) in C([ρ,0],2η×2η) for all t0.

    Lemma 3.1. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies

    suptρE[u(t)2η+v(t)2η]M2(1+E[ϕ2Cρ,η+φ2Cρ,η]),

    where M2 is a positive constant independent of (ϕ,φ).

    Proof. By (2.15) and Itô's formula, we get that for all t0,

    {du(t)2η=2((Au(t),u(t))ηα(v(t),u(t))η+(f(u(t)),u(t))η+(a,u(t))η)dt+j=1gj(u(t),u(tρ))+bj2ηdt+2j=1(gj(u(t),u(tρ))+bj,u(t))ηdWj(t),dv(t)2η=2(β(u(t),v(t))ηλv(t)2η+(c,v(t))η)dt+j=1hj(v(t),v(tρ))+lj2ηdt+2j=1(hj(v(t),v(tρ))+lj,v(t))ηdWj(t). (3.1)

    Let ν be a positive constant which will be specified later. We get from (3.1) that for all t0,

    eνt(βu(t)2η+αv(t)2η)νβt0eνsu(s)2ηds(ν2λ)αt0eνsv(s)2ηds=βϕ(0)2η+αφ(0)2η+2βt0eνs(Au(s),u(s))ηds+2βt0eνs(a,u(s))ηds+2βt0eνs(f(u(s)),u(s))ηds+βj=1t0eνsgj(u(s),u(sρ))+bj2ηds+2αt0eνs(c,v(s))ηds+αj=1t0eνshj(v(s),v(sρ))+lj2ηds+2βj=1t0eνs(gj(u(s),u(sρ))+bj,u(s))ηdWj(s)+2αj=1t0eνs(hj(v(s),v(sρ))+lj,v(s))ηdWj(s). (3.2)

    Taking the expectation, we obtain that for t0,

    eνtE[βu(t)2η+αv(t)2η]νβt0eνsE[u(s)2η]ds(ν2λ)αt0eνsE[v(s)2η]ds=E[βϕ(0)2η+αφ(0)2η]+2βt0eνsE[(Au(s),u(s))η]ds+2βt0eνsE[(a,u(s))η]ds+2βt0eνsE[(f(u(s)),u(s))η]ds+2αt0eνsE[(c,v(s))η]ds+βj=1t0eνsE[gj(u(s),u(sρ))+bj2η]ds+αj=1t0eνsE[hj(v(s),v(sρ))+lj2η]ds. (3.3)

    Similar to (2.18) and (2.19), we get

    2βt0eνsE[(Au(s),u(s))η]ds2β˜αt0eνsE[u(s)2η]ds. (3.4)

    By (2.6), we have

    2βt0eνsE[(f(u(s)),u(s))η]ds2βδt0eνsE[u(s)2η]ds+2βι1,ηνeνt. (3.5)

    Note that

    2βt0eνsE[(a,u(s))η]ds+2αt0eνsE[(c,v(s))η]dsβδt0eνsE[u(s)2η]ds+λαt0eνsE[v(s)2η]ds+βδνa2ηeνt+αλνc2ηeνt. (3.6)

    By (2.11), we obtain

    βj=1t0eνsE[gj(u(s),u(sρ))+bj2η]ds2βj=1t0eνsE[gj(u(s),u(sρ))2η]ds+2βj=1t0eνsE[bj2η]ds8βγ2t0eνsE[u(s)2η+u(sρ)2η]ds+4βνγ2ηeνt+2βνb2ηeνt8βρeρνγ2E[ϕ2Cρ,η]+16βeρνγ2t0eνsE[u(s)2η]ds+4βνγ2ηeνt+2βνb2ηeνt, (3.7)

    and

    αj=1t0eνsE[hj(v(s),v(sρ))+lj2η]ds8αρeρνγ2E[φ2Cρ,η]+16αeρνγ2t0eνsE[v(s)2η]ds+4ανγ2ηeνt+2ανl2ηeνt. (3.8)

    For t0, it follows from (3.3)–(3.8) that

    eνtE[βu(t)2η+αv(t)2η](1+8ρeρνγ2)E[βϕ2Cρ,η+αφ2Cρ,η]+eνtν(4(β+α)γ2η+βδa2η+αλc2η+2βb2η+2αl2η+2βι1,η)+β(νδ+2˜α+16eρνγ2)t0eνsE[u(s)2η]ds+α(νλ+16eρνγ2)t0eνsE[v(s)2η]ds. (3.9)

    For t0, by (2.25) and (3.9), we get that there exists ν1>0 such that for all ν(0,ν1),

    E[βu(t)2η+αv(t)2η](1+8ρeρνγ2)E[βϕ2Cρ,η+αφ2Cρ,η]eνt+1ν(4(β+α)γ2η+βδa2η+αλc2η+2βb2η+2αl2η+2βι1,η). (3.10)

    Note that

    supρt0E[βu(t)2η+αv(t)2η]E[βϕ2Cρ,η+αφ2Cρ,η],

    which along with (3.10) implies the desired result.

    Lemma 3.2. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)L4(Ω,C([ρ,0],2η×2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies

    suptρE[u(t)4η+v(t)4η]M3(1+E[ϕ4Cρ,η+φ4Cρ,η]),

    where M3 is a positive constant independent of (ϕ,φ).

    Proof. Given nN, define τn by

    τn=inf{t0:u(t)η+v(t)η>n},

    and τn= if the set {t0:u(t)η+v(t)η>n}=. By (3.1) and Itô's formula, we get for all t0,

    d(u(t)4η+v(t)4η)+4λv(t)4ηdt4(βv(t)2ηαu(t)2η)(u(t),v(t))ηdt=4u(t)2η(Au(t),u(t))ηdt+4u(t)2η(f(u(t)),u(t))ηdt+4u(t)2η(a,u(t))ηdt+2u(t)2ηj=1gj(u(t),u(tρ))+bj2ηdt+4j=1|(gj(u(t),u(tρ))+bj,u(t))η|2dt+4u(t)2ηj=1(gj(u(t),u(tρ))+bj,u(t))ηdWj(t)+4v(t)2η(c,v(t))ηdt+2v(t)2ηj=1hj(v(t),v(tρ))+lj2ηdt+4j=1|(hj(v(t),v(tρ))+lj,v(t))η|2dt+4v(t)2ηj=1(hj(v(t),v(tρ))+lj,v(t))ηdWj(t). (3.11)

    Let ν be a positive constant which will be specified later, and we get from (3.11) that for all t0,

    E[eν(tτn)(u(tτn)4η+v(tτn)4η)]+4λE[tτn0eνsv(s)4ηds]=E[ϕ(0)4η+φ(0)4η]+νE[tτn0eνs(u(s)4η+v(s)4η)ds]+4E[tτn0eνs(βv(s)2ηαu(s)2η)(u(s),v(s))ηds]+4E[tτn0eνsu(s)2η(A(u(s)),u(s))ηds]+4E[tτn0eνsu(s)2η(a,u(s))ηds]+4E[tτn0eνsu(s)2η(f(u(s)),u(s))ηds]+4E[tτn0eνsv(s)2η(c,v(s))ηds]+2E[tτn0eνsu(s)2ηj=1gj(u(s),u(sρ))+bj2ηds]+4E[tτn0eνsj=1|(gj(u(s),u(sρ))+bj,u(s))η|2ds]+2E[tτn0eνsv(s)2ηj=1hj(v(s),v(sρ))+lj2ηds]+4E[tτn0eνsj=1|(hj(v(s),v(sρ))+lj,v(s))η|2ds]. (3.12)

    Similar to (2.18) and (2.19), we get

    4tτn0eνsE[u(s)2η(Au(s),u(s))η]ds4˜αtτn0eνsE[u(s)4η]ds. (3.13)

    By (2.6) and Young's inequality, we have

    4E[tτn0eνsu(s)2η(f(u(s)),u(s))ηds]4E[tτn0eνsu(s)2η(δu(s)2η+ι1,η)ds]2(12δ)E[tτn0eνsu(s)4ηds]+2ι21,ηνeνt. (3.14)

    Note that

    4E[tτn0eνsu(s)2η(a,u(s))ηds]+4E[tτn0eνsv(s)2η(c,v(s))ηds]δE[tτn0eνsu(s)4ηds]+λE[tτn0eνsv(s)4ηds]+27δ3νa4ηeνt+27λ3νc4ηeνt, (3.15)

    and

    4E[tτn0eνs(βv(s)2ηαu(s)2η)(u(s),v(s))ηds]4βE[tτn0eνsv(s)3ηu(s)ηds]+4αE[tτn0eνsu(s)3ηv(s)ηds](λ+27α4δ3)E[tτn0eνsv(s)4ηds]+(δ+27β4λ3)E[tτn0eνsu(s)4ηds]. (3.16)

    By (2.8), we get

    2E[j=1tτn0eνsu(s)2ηgj(u(s),u(sρ))+bj2ηds]+4E[j=1tτn0eνs|(gj(u(s),u(sρ))+bj,u(s))η|2ds]6E[j=1tτn0eνsu(s)2ηgj(u(s),u(sρ))+bj2ηds]12E[tτn0eνsu(s)2η(j=1bj2η+2γ2η)ds]+72γ2E[tτn0eνsu(s)4ηds]+24γ2E[tτn0eνsu(sρ)4ηds](96eρνγ2+6)E[tτn0eνsu(s)4ηds]+6(b2η+2γ2η)2eνtν+24ρeρνγ2E[ϕ4Cρ,η], (3.17)

    and

    2E[j=1tτn0eνsv(s)2ηhj(v(s),v(sρ))+lj2ηds]+4E[j=1tτn0eνs|(hj(v(s),v(sρ))+lj,v(s))η|2ds](96eρνγ2+6)E[tτn0eνsv(s)4ηds]+6(l2η+2γ2η)2eνtν+24ρeρνγ2E[φ4Cρ,η]. (3.18)

    For t0, it follows from (3.12)–(3.18) that

    E[eν(tτn)(u(tτn)4η+v(tτn)4η)](1+24ρeρνγ2)E[ϕ4Cρ,η+φ4Cρ,η]+(ν2δ+4˜α+96eρνγ2+27β4λ3+8)E[tτn0eνsu(s)4ηds]+(ν2λ+96eρνγ2+27α4δ3+6)E[tτn0eνsv(s)4ηds]+(2ι21,η+6(b2η+2γ2η)2+6(l2η+2γ2η)2+27δ3a4η+27λ3c4η)eνtν,

    which along with (2.25) implies that there exists ν2>0 such that for all ν(0,ν2),

    E[eν(tτn)(u(tτn)4η+v(tτn)4η)](1+24ρeρνγ2)E[ϕ4Cρ,η+φ4Cρ,η]+(2ι21,η+6(b2η+2γ2η)2+6(l2η+2γ2η)2+27δ3a4η+27λ3c4η)eνtν.

    Letting n, we obtain from the above inequality that for all t0,

    E[u(t)4η+v(t)4η](1+24ρeρνγ2)E[ϕ4Cρ,η+φ4Cρ,η]eνt+(2ι21,η+6(b2η+2γ2η)2+6(l2η+2γ2η)2+27δ3a4η+27λ3c4η)1ν. (3.19)

    Note that for all t[ρ,0],

    E[u(t)4η+v(t)4η]E[ϕ4Cρ,η+φ4Cρ,η],

    which along with (3.19) concludes the proof.

    Lemma 3.3. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)L4(Ω,C([ρ,0],2η×2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies, for any t>r0,

    E[u(t)u(r)4η+v(t)v(r)4η]M4(|tr|2+|tr|4),

    where M4 is a positive constant depending on (ϕ,φ), but is independent of t and r.

    Proof. For t>r0, by (2.15), we get

    {u(t)u(r)=tr(Au(s)αv(s)+f(u(s))+a)ds+j=1tr(gj(u(s),u(sρ))+bj)dWj(s),v(t)v(r)=tr(βu(s)λv(s)+c)dt+j=1tr(hj(v(s),v(tρ))+lj)dWj(s),

    which together with (2.5), (2.10), and (2.14) implies that, for t>r0,

    {u(t)u(r)ηtr(C4u(s)η+αv(s)η)ds+aη|tr|+j=1tr(gj(u(s),u(sρ))+bj)dWj(s)η,v(t)v(r)ηtr(βu(s)η+λv(s)η)ds+cη|tr|+j=1tr(hj(v(s),v(tρ))+lj)dWj(s)η, (3.20)

    where C4=2|J(0)|2+8(m=1|J(m)|)2+LC. By (3.20), we get

    E[u(t)u(r)4η+v(t)v(r)4η]64(C44+β4)E[(tru(s)ηds)4]+64(α4+λ4)E[(trv(s)ηds)4]+64(a4η+c4η)|tr|4+64E[j=1tr(gj(u(s),u(sρ))+bj)dWj(s)4η]+64E[j=1tr(hj(v(s),v(sρ))+lj)dWj(s)4η]. (3.21)

    By Schwarz's inequality and Lemma 3.2, we have

    64(C44+β4)E[(tru(s)ηds)4]+64(α4+λ4)E[(trv(s)ηds)4]64(C44+β4+α4+λ4)|tr|3trE[u(s)4η+v(s)4η]dsC5|tr|4. (3.22)

    For the last two terms of (3.21), by (2.11), Lemma 3.2, and the BDG inequality, we get

    64E[j=1tr(gj(u(s),u(sρ))+bj)dWj(s)4η]C6E[(trj=1gj(u(s),u(sρ))+bj2ηds)2]8C6(2γ2η+b2η)2|tr|2+128C6γ4E[(tr(u(s)2η+u(sρ)2η)ds)2]C7|tr|2, (3.23)

    and

    64E[j=1tr(hj(v(s),v(sρ))+lj)dWj(s)4η]C7|tr|2,

    which along with (3.21)–(3.23) implies the desired result.

    The subsequent step entails acquiring uniform estimates on the tails of solutions to stochastic lattice system (2.15), which play a pivotal role in proving the tightness of a family of solution distributions.

    Lemma 3.4. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset EL2(Ω,C([ρ,0],2η×2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies

    lim supksup(ϕ,φ)Esuptρ|n|kE[ηn(|un(t,ϕ)|2+|vn(t,φ)|2)]=0.

    Proof. Let ϑ be a smooth function which is defined on R+ such that 0ϑ(z)1 for all zR+, and

    ϑ(z)={0,0z1;1,z2.

    For kN, set ϑk=(ϑ(|n|k))nZ, ϑku=(ϑ(|n|k)un)nZ, and ϑkv=(ϑ(|n|k)vn)nZ. By (2.15), we have

    {d(ϑku(t))=(ϑkAu(t)αϑkv(t)+ϑkf(u(t))+ϑka)dt+j=1(ϑkgj(u(t),u(tρ))+ϑkbj)dWj(t),d(ϑkv(t))=(βϑku(t)λϑkv(t)+ϑkc)dt+j=1(ϑkhj(v(t),v(tρ))+ϑklj)dWj(t),

    which along with Itô's formula implies that

    d(βϑku(t)2η+αϑkv(t)2η)=2β(ϑkAu(t),ϑku(t))ηdt+2β(ϑkf(u(t)),ϑku(t))ηdt+2β(ϑka,ϑku(t))ηdt+βj=1ϑkgj(u(t),u(tρ))+ϑkbj2ηdt2λαϑkv(t)2ηdt+2α(ϑkc,ϑkv(t))ηdt+αj=1ϑkhj(v(t),v(tρ))+ϑklj2ηdt+2βj=1(ϑkgj(u(t),u(tρ))+ϑkbj,ϑku(t))ηdWj(t)+2αj=1(ϑkhj(v(t),v(tρ))+ϑklj,ϑkv(t))ηdWj(t). (3.24)

    Then, we get that for all t0,

    eνtE[βϑku(t)2η+αϑkv(t)2η]+(2λν)αt0eνsE[ϑkv(s)2η]ds=E[βϑkϕ(0)2η+αϑkφ(0)2η]+νβt0eνsE[ϑku(s)2η]ds+2βt0eνsE[(ϑkAu(s),ϑku(s))η]ds+2βt0eνsE[(ϑkf(u(s)),ϑku(s))η]ds+2βt0eνsE[(ϑka,ϑku(s))η]ds+2αt0eνsE[(ϑkc,ϑkv(s))η]ds+βj=1t0eνsE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds+αj=1t0eνsE[ϑkhj(v(s),v(sρ))+ϑklj2η]ds, (3.25)

    where ν is a positive constant which will be specified later. Furthermore, we find that

    (ϑkAu,ϑku)η=nZηnmZJ(m)ϑ2(|n|k)unmun=J(0)nZϑ2(|n|k)ηn|un|2+nZm=1J(m)ϑ2(|n|k)ηnun+mun+nZm=1J(m)ϑ2(|n+m|k)ηn+munun+m=J(0)nZϑ2(|n|k)ηn|un|2+nZm=1J(m)(ϑ2(|n+m|k)ηn+m+ϑ2(|n|k)ηn)unun+m=J(0)nZϑ2(|n|k)ηn|un|2+J1+J2, (3.26)

    where

    J1=nZm=1J(m)(ϑ2(|n+m|k)ϑ2(|n|k))ηn+munun+m,

    and

    J2=nZm=1J(m)ϑ2(|n|k)(ηn+m+ηn)unun+m.

    For any nZ and mN+, by the definition of ϑ(z) we can get that there exists a constant C8>0 such that

    |ϑ(|n+m|k)ϑ(|n|k)|mkC8. (3.27)

    By (2.2), we have

    η1/2n+mαmη1/2n,nZ,m1,

    which together with (3.27) implies that for any p>1,

    |J1|nZm=1|J(m)||ϑ2(|n+m|k)ϑ2(|n|k)|ηn+m|un+m||un|2C8kpm=1mαm|J(m)|nZη1/2n+mη1/2n|un+m||un|+m=p+1αm|J(m)|nZη1/2n+mη1/2n|un+m||un|2C8kpm=1mαm|J(m)|u2η+m=p+1αm|J(m)|u2η. (3.28)

    By (2.2), we obtain

    |J2|m=1αm|J(m)|nZϑ2(|n|k)η1/2n+mη1/2n|un+m||un|12m=1αm|J(m)|(nZϑ2(|n|k)ηn+m|un+m|2+nZϑ2(|n|k)ηn|un|2),

    which together with (3.27) and (2.3) implies that for any p>1,

    |J2|m=1αm|J(m)|nZϑ2(|n|k)ηn|un|2+12pm=1αm|J(m)|nZηn+m|ϑ2(|n+m|k)ϑ2(|n|k)||un+m|2+12m=p+1αm|J(m)|nZηn+m|ϑ2(|n+m|k)ϑ2(|n|k)||un+m|2m=1αm|J(m)|nZϑ2(|n|k)ηn|un|2+C8kpm=1mαm|J(m)|u2η+m=p+1αm|J(m)|u2η. (3.29)

    For any p>1, it follows from (3.26), (3.28), and (3.29) that

    2β|(ϑkAu,ϑku)η|2β˜αnZϑ2(|n|k)ηn|un|2+6βC8kpm=1mαm|J(m)|u2η+4βm=p+1αm|J(m)|u2η. (3.30)

    By (2.6) and Young's inequality, we have

    2βt0eνsE[(ϑkf(u(s)),ϑku(s))η]ds2βδt0eνsE[ϑku(s)2η]ds+2βeνtν|n|kηn|ιn|. (3.31)

    Note that

    2βt0eνsE[(ϑka,ϑku(s))η]ds+2αt0eνsE[(ϑkc,ϑkv(s))η]dsβδt0eνsE[ϑku(s)2η]ds+βeνtδν|n|kηn|an|2+λαt0eνsE[ϑkv(s)2η]ds+αeνtλν|n|kηn|cn|2. (3.32)

    For the last two terms of (3.25), by (2.8), we get

    βj=1t0eνsE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds+αj=1t0eνsE[ϑkhj(v(s),v(sρ))+ϑklj2η]ds2βνeνt|n|kj=1ηn(b2j,n+2γ2j,n)+8βγ2t0eνsE[ϑku(s)2η+ϑku(sρ)2η]ds+2ανeνt|n|kj=1ηn(l2j,n+2γ2j,n)+8αγ2t0eνsE[ϑkv(s)2η+ϑkv(sρ)2η]ds2βνeνt|n|kj=1ηn(b2j,n+2γ2j,n)+16βeρνγ2t0eνsE[ϑku(s)2η]ds+2ανeνt|n|kj=1ηn(l2j,n+2γ2j,n)+16αeρνγ2t0eνsE[ϑkv(s)2η]ds+8βeρνγ20ρeνsE[ϑkϕ(s)2η]ds+8αeρνγ20ρeνsE[ϑkφ(s)2η]ds. (3.33)

    Then, it follows from (3.25) and (3.30)–(3.33) that for p>1,

    E[βϑku(t)2η+αϑkv(t)2η](1+8ρeρνγ2)E[βϑkϕ(0)2η+αϑkφ(0)2η]eνt+β(νδ+16eρνγ2+2˜α+6C8kpm=1mαm|J(m)|+4+m=p+1αm|J(m)|)t0eν(st)E[u(s)2η]ds+α(νλ+16eρνγ2)t0eν(st)E[v(s)2η]ds+βδν|n|kηn|an|2+αλν|n|kηn|cn|2+2βν|n|kj=1ηn(b2j,n+2γ2j,n)+2αν|n|kj=1ηn(l2j,n+2γ2j,n)+2βν|n|kηn|ιn|. (3.34)

    Furthermore, it follows from (2.3) that there is a K1=K1(ν)>0 such that for all kK1,

    6C8kpm=1mαm|J(m)|ν2. (3.35)

    By (2.3) again, we can choose p=p(ν) large enough such that

    4m=p+1αm|J(m)|ν2,

    which along with (3.35) and (2.25) implies that there exists ν3>0 such that for all ν(0,ν3),

    νδ+16eρνγ2+2˜α+6C8kpm=1mαm|J(m)|+4+m=p+1αm|J(m)|2νδ+16eρνγ20,

    which together with (3.34) and (2.25) shows that for all t0 and kK1,

    E[βϑku(t)2η+αϑkv(t)2η](1+8ρeρνγ2)E[βϑkϕ(0)2η+αϑkφ(0)2η]eνt+βδν|n|kηn|an|2+αλν|n|kηn|cn|2+2βν|n|kj=1ηn(b2j,n+2γ2j,n)+2αν|n|kj=1ηn(l2j,n+2γ2j,n)+2βν|n|kηn|ιn|. (3.36)

    Note that (ϕ,φ)E and E is a compact subset in L2(Ω,C([ρ,0],2η×2η)). Then, for each ε>0, there exists K2=K2(ε,ϕ,φ)1 such that for all kK2,

    |n|kE[ηn(β|ϕn(0)|2+α|φn(0)|2)]ε. (3.37)

    It follows from (3.37) that for all kK2,

    (1+8ρeρνγ2)E[βϑkϕ(0)2η+αϑkφ(0)2η]=(1+8ρeρνγ2)nZE[ηn(β|ϑ(|n|k)ϕn(0)|2+α|ϑ(|n|k)φn(0)|2)](1+8ρeρνγ2)|n|kE[ηn(β|ϕn(0)|2+α|φn(0)|2)](1+8ρeρνγ2)ε. (3.38)

    Since a=(an)nZ, c=(cn)nZ,b=(bj,n)jN,nZ,l=(lj,n)jN,nZ,γ=(γj,n)jN,nZ2η and ι=(ιn)nZ1η, we get that there exists K3=K3(ε)1 such that for all t0 and kK3,

    βδν|n|kηn|an|2+αλν|n|kηn|cn|2+2βν|n|kj=1ηn(b2j,n+2γ2j,n)+2αν|n|kj=1ηn(l2j,n+2γ2j,n)+2βν|n|kηn|ιn|ε,

    which along with (3.36) and (3.38) implies that for all t0, kmax{K1,K2,K3}, and (ϕ,φ)E,

    |n|2kE[ηn(β|un(t)|2η+α|vn(t)|2η)]E[βϑku(t)2η+αϑkv(t)2η](2+8ρeρνγ2)ε. (3.39)

    Observe that {(ϕ(s),φ(s))L2(Ω,2η×2η):s[ρ,0]} is a compact subset in L2(Ω,2η×2η). Then, for each ε>0, there are s1,s2,sm[ρ,0] such that

    {(ϕ(s),φ(s))L2(Ω,2η×2η):s[ρ,0]}mj=1B((ϕ(sj),φ(sj)),12ε), (3.40)

    where B((ϕ(sj),φ(sj)),12ε) is an open ball in L2(Ω,2η×2η) centered at (ϕ(sj),φ(sj)) with radius 12ε. Since (ϕ(sj),φ(sj))L2(Ω,2η×2η), for j=1,,m, there exists K4=K4(ε,ϕ,φ)1, such that for all kK4,

    |n|kE[ηn(|ϕn(sj)|2+|φn(sj)|2)]14ε,j=1,2,,m. (3.41)

    It follows from (3.40) and (3.41) that for all kK4 and s[ρ,0],

    |n|kE[ηn(|ϕn(s)|2+|φn(s)|2)]ε,

    which along with (3.39) implies the desired result.

    The tail estimates given by Lemma 3.4 have been enhanced to obtain uniform estimates on the tails of solutions, which are crucial for achieving tightness in the probability distributions of solution segments in the space C([ρ,0],2η×2η).

    Lemma 3.5. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset EL2(Ω,C([ρ,0],2η×2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies

    lim supnsup(ϕ,φ)EsuptρE[suptρrt|n|kηn(|un(r,ϕ)|2+|vn(r,φ)|2)]=0.

    Proof. Let ϑ be the function defined in Lemma 3.4. For all tρ and tρrt, it follows from (3.24) that

    βϑku(r)2η+αϑkv(r)2η+2λαrtρϑkv(s)2ηds=βϑku(tρ)2η+αϑkv(tρ)2η+2βrtρ(ϑkAu(s),ϑku(s))ηds+2βrtρ(ϑkf(u(s)),ϑku(s))ηds+2βrtρ(ϑka,ϑku(s))ηds+2αrtρ(ϑkc,ϑkv(s))ηds+βj=1rtρϑkgj(u(s),u(sρ))+ϑkbj2ηds+2βj=1rtρ(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))ηdWj(s)+αj=1rtρϑkhj(v(s),v(sρ))+ϑklj2ηds+2αj=1rtρ(ϑkhj(v(s),v(sρ))+ϑklj,ϑkv(s))ηdWj(s),

    which shows that for all tρ,

    E[suptρrt(βϑku(r)2η+αϑkv(r)2η)]+2λαE[ttρϑkv(s)2ηds]E[βϑku(tρ)2η+αϑkv(tρ)2η]+2βE[ttρ|(ϑkAu(s),ϑku(s))η|ds]+2βE[ttρ|(ϑkf(u(s)),ϑku(s))η|ds]+2βE[ttρϑkaηϑku(s)ηds]+2αE[ttρϑkcϑkv(s)ηds]+βE[j=1ttρϑkgj(u(s),u(sρ))+ϑkbj2ηds]+αE[j=1ttρϑkhj(v(s),v(sρ))+ϑklj2ηds]+2βE[suptρrt|j=1rtρ(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[suptρrt|j=1rtρ(ϑkhj(v(s),v(sρ))+ϑklj,ϑkv(s))ηdWj(s)|]. (3.42)

    For any ε>0, by Lemma 3.4, we get that there is a K5=K5(ε,E)1 such that for all kK5 and tρ,

    |n|kE[ηn(β|un(t)|2+α|vn(t)|2)]ε,

    which shows that for all kK5 and tρ,

    E[βϑku(t)2η+αϑkv(t)2η]=|n|kE[ηn(β|ϑkun(t)|2+α|ϑkvn(t)|2)]|n|kE[ηn(β|un(t)|2+α|vn(t)|2)]ε. (3.43)

    Then, for all kK5 and tρ,

    E[βϑku(tρ)2η+αϑkv(tρ)2η]ε. (3.44)

    Proceeding as in (3.30), we have

    2βE[ttρ|(ϑkAu(s),ϑku(s))η|ds]2β˜αttρE[ϑku(s)2η]ds+6βC8kpm=1mαm|J(m)|ttρE[u(s)2η]ds+4βm=p+1αm|J(m)|ttρE[u(s)2η]ds. (3.45)

    Then, by (3.43), we get that for all kK5 and tρ,

    2β˜αttρE[ϑku(s)2η]ds2˜αρε. (3.46)

    Furthermore, it follows from (2.3) and Lemma 3.1 that there is a K6=K6(ε,E)K5, such that for all kK6 and tρ,

    6βC8kpm=1mαm|J(m)|ttρE[u(s)2η]dsρε. (3.47)

    By (2.3) and Lemma 3.1 again, we can choose p=p(ε) large enough such that for all tρ,

    4βm=p+1αm|J(m)|ttρE[u(s)2η]dsρε. (3.48)

    Since ι=(ιn)nZ1η, we get that there exists K7=K7(ε,E)K6 such that for all kK7,

    2βttρE[|(ϑkf(u(s)),ϑku(s))η|]ds2βδttρE[ϑku(s)2]ds+2βρ|n|>kηn|ιn|ρε. (3.49)

    By (3.43), we get for all kK5 and tρ,

    2βE[ttρϑkaϑku(s)ηds]+2αE[ttρϑkcϑkv(s)ηds]ttρE[βϑku(s)2η+αϑkv(s)2η]ds+ttρE[βϑka2η+αϑkc2η]dsρε+ρ|n|kηn(β|an|2+α|cn|2). (3.50)

    Since a=(an)nZ,c=(cn)nZ2η, it follows from (3.50) that there exists K8=K8(ε,E)K7 such that for all kK8 and tρ,

    2βE[ttρ(ϑka,ϑku(s))ηds]+2αE[ttρ(ϑkc,ϑkv(s))ηds]2ρε. (3.51)

    By (2.8), (3.43), and Lemma 3.4, we get for all tρ and kK5,

    βj=1ttρE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds2βj=1ttρE[ϑkgj(u(s),u(sρ))2η]ds+2βj=1ttρE[ϑkbj2η]ds2ρβj=1|n|kηn(b2j,n+2γ2j,n)+8βγ2ttρE[ϑku(s)2η+ϑku(sρ)2η]ds2ρβj=1|n|kηn(b2j,n+2γ2j,n)+8βγ2ttρE[ϑku(s)2η]ds+8βγ2tρt2ρE[ϑku(s)2η]ds2ρβj=1|n|kηn(b2j,n+2γ2j,n)+16βγ2ρε, (3.52)

    and

    αj=1ttρE[ϑkhj(v(s),v(sρ))+ϑklj2η]ds2ραj=1|n|kηn(l2j,n+2γ2j,n)+16αγ2ρε. (3.53)

    Since b=(bj,n)jN,nZ, l=(lj,n)jN,nZ, and γ=(γj,n)jN,nZ belong to 2η, we infer from (3.52) and (3.53) that there exists K9=K9(ε,E)K8 such that for all kK9 and tρ,

    βj=1ttρE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds+αj=1ttρE[ϑkhj(v(s),v(sρ))+ϑklj2η]dsρ(β+α)(2+16γ2)ε. (3.54)

    For the last two terms of (3.42), by the BDG inequality, (2.8), and (3.54), we have for all kK9 and tρ,

    2βE[suptρrt|j=1rtρ(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[suptρrt|j=1rtρ(ϑkhj(v(s),v(sρ))+ϑklj,ϑkv(s))ηdWj(s)|]2βC9E[(ttρj=1|(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))η|2ds)12]+2αC9E[(ttρj=1|(ϑkhj(v(s),v(sρ))+ϑkcj,ϑkv(s))η|2ds)12]β2E[suptρrtϑku(r)2η]+2βC29E[ttρj=1ϑkgj(u(s),u(sρ))+ϑkbj2ηds]+α2E[suptρrtϑkv(r)2η]+2αC29E[ttρj=1ϑkhj(v(s),v(sρ))+ϑklj2ηds]β2E[suptρrtϑku(r)2η]+α2E[suptρrtϑkv(r)2η]+2C29ρ(β+α)(2+16γ2)ε. (3.55)

    By (3.42)–(3.55), we get that for all tρ and kK9,

    E[suptρrt|n|2kηn(β|un(r)|2+α|vn(r)|2)]E[suptρrt(βϑku(r)2+αϑkv(r)2)]C10ε,

    where C10=2(1+2˜αρ+5ρ+ρ(β+α)(2+16γ2)(1+2C29))ε. This completes the proof.

    The focus of this section is to establish the existence of invariant measures for lattice system (2.15) in C([ρ,0],2η×2η). Initially, we introduce the transition operators of the lattice system and subsequently demonstrate the tightness of a family of probability distributions for solutions of the lattice system.

    Given every t00 and Ft0 -measurable (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)), lattice system (2.15) possesses a distinct solution that is valid for all tt0ρ. Given tt0 and (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)), we use (ut(t0,ϕ),vt(t0,ϕ)) to represent the segment of the solution (u(t,t0,ϕ),v(t,t0,φ)) which is given by

    (ut(t0,ϕ),vt(t0,φ))(s)=(u(s+t,t0,ϕ),v(s+t,t0,φ)),s[ρ,0].

    Then, we have (ut(t0,ϕ),vt(t0,φ))L2(Ω,C([ρ,0],2η×2η)) for all tt0.

    Suppose ψ:C([ρ,0],2η×2η)R is a bounded Borel function. For 0rt, we set

    (pr,tψ)(ϕ,φ)=E[ψ((ut(r,ϕ),vt(r,φ)))],(ϕ,φ)C([ρ,0],2η×2η).

    In addition, for GB(C([ρ,0],2η×2η)), 0rt, and (ϕ,φ)C([ρ,0],2η×2η), we set

    p(r,ϕ,φ;t,G)=(pr,t1G)(ϕ,φ)=P{ωΩ:(ut(r,ϕ),vt(r,φ))G},

    where 1G is the characteristic function of G. Then, we can get that p(r,ϕ,φ;t,) is the probability distribution of (ut(r,ϕ),vt(r,φ)) in C([ρ,0],2η×2η). Furthermore, the transition operator p0,t is denoted as pt for the sake of convenience.

    Definition 4.1. A probability measure μ on C([ρ,0],2η×2η) is called an invariant measure of lattice system (2.15) if

    C([ρ,0],2η×2η)(ptψ)(ϕ,φ)dμ(ϕ,φ)=C([ρ,0],2η×2η)ψ(ϕ,φ)dμ(ϕ,φ),t0.

    Now, we show the properties of transition operators {pr,t}0rt as follows.

    Lemma 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, we have

    (i) The family {pr,t}0rt is Feller; that is, if ψ:C([ρ,0],2η×2η)R is bounded and continuous, then pr,tψ:C([ρ,0],2η×2η)R is bounded and continuous.

    (ii) The family {pr,t}0rt is homogeneous; that is,

    p(r,ϕ,φ;t,)=p(0,ϕ,φ;tr,),r[0,t],(ϕ,φ)C([ρ,0],2η×2η).

    (iii) Given r0 and (ϕ,φ)C([ρ,0],2η×2η), the process {(ut(r,ϕ),vt(r,φ))}tr is a C([ρ,0],2η×2η) -value Markov process. Consequently, if ψ:C([ρ,0],2η×2η)R is a bounded Borel function, then for any 0srt, P-a.s.

    (ps,tψ)(ϕ,φ)=(ps,t(pr,tψ))(ϕ,φ),(ϕ,φ)C([ρ,0],2η×2η),

    for all (ϕ,φ)C([ρ,0],2η×2η) and GB(C([ρ,0],2η×2η)), the Chapman-Kolmogorov equation is valid:

    p(s,ϕ,φ;t,G)=C([ρ,0],2η×2η)p(s,ϕ,φ;r,dy)p(r,y;t,G).

    Proof. By Lemma 2.1 and the standard arguments as in [49], we can get the Feller property (ⅰ)–(ⅲ).

    Lemma 4.2. Suppose (2.1)–(2.8) and (2.25) hold. Then, the distribution laws of the process {(ut(0,0),vt(0,0))}t0 is tight on C([ρ,0],2η×2η).

    Proof. For all t0, by Lemma 3.1 and Chebyshev's inequality, we have

    P{ut(0)η+vt(0)ηR}2R2E[ut(0)2η+vt(0)2η]C11R20,asR.

    Then, for each ε>0, there exists a constant R1=R1(ε)>0 such that

    P{ut(0)η+vt(0)ηR1}ε3,t0. (4.1)

    By Lemma 3.3, we get that for all r,s[ρ,0] and tρ,

    E[u(t+r)u(t+s)4η+v(t+r)v(t+s)4η]C12(1+|ts|2)|rs|2C12(1+ρ2)|rs|2 (4.2)

    for some C12>0. Given ε>0, it follows from the usual technique of diadic division and (4.2) that there exists a constant R2=R2(ε)>0 such that for all t0,

    P({supρs<r0ut(r)ut(s)η+vt(r)vt(s)η|rs|18R2})>113ε. (4.3)

    By Lemma 3.5, we obtain that for every ε>0 and mN, there exists an integer km=km(ε,m)1 such that for all t0,

    E[suptρrt|n|kmηn(|un(r)|2+|vn(r)|2)]ε22m+2. (4.4)

    Then, for all t0 and mN,

    P(m=1{suptρrt|n|kmηn(|un(r)|2+|vn(r)|2)12m})m=12mE[suptρrt|n|kmηn(|un(r)|2+|vn(r)|2)]ε4,

    which shows that for all t\geq0 ,

    \begin{equation} \begin{split} P\Big(\Big\{\sup\limits_{t-\rho\leq r\leq t}\sum\limits_{|n|\geq k_{m}}\eta_{n}\big(|u_{n}(r)|^{2}+|v_{n}(r)|^{2}\big)\leq \frac{1}{2^{m}},\forall m\in\mathbb{N}\Big\}\Big) > 1-\frac{1}{3}\varepsilon. \end{split} \end{equation} (4.5)

    For \varepsilon > 0 , set \mathcal{Z}_{\varepsilon} = \mathcal{Z}_{1, \varepsilon}\bigcap\mathcal{Z}_{2, \varepsilon}\bigcap\mathcal{Z}_{3, \varepsilon} , where

    \begin{equation} \begin{split} \mathcal{Z}_{1,\varepsilon} = \{(u,v)\in C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2}):\|u(0)\|_{\eta}+\|v(0)\|_{\eta}\leq R_{1}(\varepsilon)\}, \end{split} \end{equation} (4.6)
    \begin{equation} \begin{split} \mathcal{Z}_{2,\varepsilon} = \Big\{(u,v)\in C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2}):\sup\limits_{-\rho\leq s < r\leq0}\frac{\|u(r)-u(s)\|_{\eta}+\|v(r)-v(s)\|_{\eta}}{|r-s|^{\frac{1}{8}}}\leq R_{2}(\varepsilon)\Big\}, \end{split} \end{equation} (4.7)
    \begin{equation} \begin{split} \mathcal{Z}_{3,\varepsilon} = \Big\{(u,v)\in C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2}):\sup\limits_{-\rho\leq r\leq0}\sum\limits_{|n|\geq k_{m}}\eta_{n}\big(|u_{n}(r)|^{2}+|v_{n}(r)|^{2})\leq \frac{1}{2^{m}},\forall m\in\mathbb{N}\Big\}. \end{split} \end{equation} (4.8)

    It follows from (4.1), (4.3), and (4.5)–(4.8) that for all t\geq0 ,

    \begin{equation} \begin{split} P(\{(u_{t},v_{t})\in\mathcal{Z}_{\varepsilon}\}) > 1-\varepsilon. \end{split} \end{equation} (4.9)

    By Arzela-Ascoli theorem, we can establish the pre-compactness of \mathcal{Z}_{\varepsilon} in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) . Specifically, by (4.7), we get that \mathcal{Z}_{\varepsilon} is equi-continuous in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) . On the other hand, by (4.6) and (4.7), we have for every r\in[-\rho, 0] ,

    \begin{equation} \begin{split} \label{202315-12.1}\nonumber \|u(r)\|_{\eta}+\|v(r)\|_{\eta}&\leq\|u(r)-u(0)\|_{\eta}+\|u(0)\|_{\eta}+\|v(r)-v(0)\|_{\eta}+\|v(0)\|_{\eta}\\ &\leq R_{2}(\varepsilon)|r|^{\frac{1}{8}}+R_{1}(\varepsilon)\leq \rho^{\frac{1}{8}}R_{2}(\varepsilon)+R_{1}(\varepsilon), \end{split} \end{equation}

    which along with (4.8) shows that \{(u(r), v(r)), (u, v)\in\mathcal{Z}_{\varepsilon}\} is pre-compact in \ell_{\eta}^{2}\times\ell_{\eta}^{2} . This completes the proof.

    Now, the main outcome of this paper has been showed: The existence of invariant measures for lattice system (2.15) on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .

    Theorem 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, lattice system (2.15) has an invariant measure on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .

    Proof. By using Krylov-Bogolyubov's method, for each n\in\mathbb{N} , the probability measure \mu_{n} is defined by

    \begin{equation} \begin{split} \mu_{n} = \frac{1}{n}\int_{0}^{n}p(0,0;t,\cdot)dt. \end{split} \end{equation} (4.10)

    It follows from Lemma 4.2 that the sequence (\mu_{n})_{n = 1}^{\infty} is tight on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) . Consequently, there exists a probability measure \mu on C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) and a subsequence (still denoted by (\mu_{n})_{n = 1}^{\infty} ) such that

    \begin{equation} \begin{split} \mu_{n}\rightarrow \mu,\; as\; n\rightarrow \infty. \end{split} \end{equation} (4.11)

    By (4.10)–(4.11) and Lemma 4.1, we can get for every t\geq0 and every bounded and continuous function \psi:C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})\rightarrow \mathbb{R} ,

    \begin{equation} \begin{split}\nonumber &\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)d\mu(y)\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,0;s,dy)\Big)ds\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{-t}^{n-t}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,0;s+t,dy)\Big)ds\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,0;s+t,dy)\Big)ds\\ & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(s,\phi,\varphi;s+t,dy)\Big)p(0,0;s,d(\phi,\varphi))\Big)ds\\ \end{split} \end{equation}
    \begin{equation} \begin{split}\nonumber & = \lim\limits_{n\rightarrow \infty}\frac{1}{n}\int_{0}^{n}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,\phi,\varphi;t,dy)\Big)p(0,0;s,d(\phi,\varphi))\Big)ds\\ & = \int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\Big(\int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}\psi(y)p(0,\phi,\varphi;t,dy)\Big)d\mu(\phi,\varphi)\\ & = \int_{C([-\rho,0],\ell_{\eta}^{2}\times\ell_{\eta}^{2})}(p_{0,t}\psi)(\phi,\varphi)d\mu(\phi,\varphi), \end{split} \end{equation}

    which implies that \mu is an invariant measure of lattice system (2.15). This completes the proof.

    In this section, we examine the uniqueness of invariant measures for system (2.15) under additional constraints on the diffusion and drift terms. Specifically, we impose the following assumption:

    \begin{equation} \begin{split} 2L^{2} < \max\{\lambda,-\tilde{\alpha}-\kappa\}, \end{split} \end{equation} (5.1)

    which implies that there exists a small number \varsigma > 0 such that

    \begin{equation} \begin{split} \max\{4 L^{2}+2\tilde{\alpha}+ 2\kappa+\varsigma,4L^{2}-2\lambda+\varsigma\}\leq0. \end{split} \end{equation} (5.2)

    From now on, we fix such a \varsigma > 0 satisfying (5.2). We will demonstrate that, subject to condition (5.2), any two solutions of Eq (2.15) converge toward each other at an exponential rate, which immediately implies the uniqueness of invariant measures. To begin with, we establish uniform estimates in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .

    Lemma 5.1. Suppose (2.1)–(2.8) and (5.1) hold, and (\phi_{1}, \varphi_{1}), (\phi_{2}, \varphi_{2})\in L^{2}(\Omega, C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})) . If (u(t, \phi_{1}), v(t, \varphi_{1})) and (u(t, \phi_{2}), v(t, \varphi_{2})) are the solutions of system (2.15) with initial data (\phi_{1}, \varphi_{1}) and (\phi_{2}, \varphi_{2}) , respectively, then for any t\geq-\rho ,

    \begin{equation} \begin{split}\nonumber &\mathbb{E}\big[\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big] \leq M_{5}\mathbb{E}\big[\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}, \end{split} \end{equation}

    where M_{5} is a positive constant depending on (\phi, \varphi) .

    Proof. By (2.17), we get that for t\geq0 ,

    \begin{equation} \begin{split} &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq\mathbb{E}\big[\beta\|\phi_{1}(0)-\phi_{2}(0)\|^{2}_{\eta}+\alpha\|\varphi_{1}(0)-\varphi_{2}(0)\|^{2}_{\eta}\big] -2\lambda\alpha\int_{0}^{t}\mathbb{E}\Big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\Big]ds\\ &\quad+2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds\\ &\quad+2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds\\ &\quad+\beta\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\mathbb{E}\big[\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}\big]ds\\ &\quad+\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\mathbb{E}\big[\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}\big]ds. \end{split} \end{equation} (5.3)

    Similar to (2.18) and (2.19), we obtain

    \begin{equation} \begin{split} 2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds \leq 2\beta \tilde{\alpha}\int_{0}^{t}\mathbb{E}\big[\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}^{2}\big]ds. \end{split} \end{equation} (5.4)

    By (2.9), we have

    \begin{equation} \begin{split} 2\beta\int_{0}^{t}\mathbb{E}\Big[\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big]ds \leq 2\beta \kappa\int_{0}^{t}\mathbb{E}\big[\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}^{2}\big]ds. \end{split} \end{equation} (5.5)

    By (2.12), we get

    \begin{equation} \begin{split} &\beta\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\big[\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}\big]ds\\ &\quad+\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{0}^{t}\big[\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}\big]ds\\ &\leq 4\beta L^{2}\int_{0}^{t}\big[\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\big]ds+2\beta L^{2}\int_{-\rho}^{0}\big[\|\phi_{1}(s)-\phi_{2}(s)\|^{2}_{\eta}\big]ds\\ &\quad+ 4\alpha L^{2}\int_{0}^{t}\big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\big]ds+2\alpha L^{2}\int_{-\rho}^{0}\big[\|\varphi_{1}(s)-\varphi_{2}(s)\|^{2}_{\eta}\big]ds. \end{split} \end{equation} (5.6)

    It follows from (5.2)–(5.6) that for all t\geq0 ,

    \begin{equation} \begin{split}\nonumber &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq (1+2\rho L^{2})\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big]\\ &\quad-\varsigma\int_{0}^{t}\mathbb{E}\big[\beta\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}+\alpha\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\big]ds, \end{split} \end{equation}

    which implies that for all t\geq0 ,

    \begin{equation} \begin{split} &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq (1+2\rho L^{2})\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}. \end{split} \end{equation} (5.7)

    On the other hand, for t\in[-\rho, 0] , we have

    \begin{equation} \begin{split}\nonumber &\mathbb{E}\big[\beta\|u(t,\phi_{1})-u(t,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t,\varphi_{1})-v(t,\varphi_{2})\|^{2}_{\eta}\big]\\ & = \mathbb{E}\big[\beta\|\phi_{1}(t)-\phi_{2}(t)\|^{2}_{\eta}+\alpha\|\varphi_{1}(t)-\varphi_{2}(t)\|^{2}_{\eta}\big] \\ &\leq \mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ - \varsigma t}, \end{split} \end{equation}

    which along with (5.7) concludes the proof.

    Lemma 5.2. Suppose (2.1)–(2.8) and (5.1) hold, and (\phi_{1}, \varphi_{1}), (\phi_{2}, \varphi_{2})\in L^{2}(\Omega, C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})) . If (u(t, \phi_{1}), v(t, \varphi_{1})) and (u(t, \phi_{2}), v(t, \varphi_{2})) are the solutions of system (2.15) with initial data (\phi_{1}, \varphi_{1}) and (\phi_{2}, \varphi_{2}) , respectively, then for any t\geq\rho ,

    \begin{equation} \begin{split}\nonumber \mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\big(\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}+\|v(r,\varphi_{1})-u(r,\varphi_{2})\|^{2}\big)\Big] \leq M_{6}\mathbb{E}\big[\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ - \varsigma t}, \end{split} \end{equation}

    where M_{6} is a positive constant independent of (\phi_{1}, \varphi_{1}) and (\phi_{2}, \varphi_{2}) .

    Proof. By (2.17), we get that for t\geq\rho and r\geq t-\rho ,

    \begin{equation} \begin{split} &\beta\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}_{\eta}+\alpha\|v(r,\varphi_{1})-v(r,\varphi_{2})\|^{2}_{\eta} +2\lambda\alpha \int_{t-\rho}^{r}\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}ds\\ & = \beta\|u(t-\rho,\phi_{1})-u(t-\rho,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t-\rho,\varphi_{1})-v(t-\rho,\varphi_{2})\|^{2}_{\eta} \\ &\quad+2\beta\int_{t-\rho}^{r}\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\\ &\quad+2\beta\int_{t-\rho}^{r}\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\\ &\quad+\beta\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}ds\\ &\quad+\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}ds\\ &\quad+2\beta\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}dW_{j}(s)\\ &\quad+2\alpha\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}dW_{j}(s), \end{split} \end{equation} (5.8)

    where

    \mathbf{g}_{j} = g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2})),

    and

    \mathbf{h}_{j} = h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2})).

    By (5.8), we get that for all t\geq\rho ,

    \begin{equation} \begin{split} &\mathbb{E}\big[\beta\sup\limits_{t-\rho\leq r\leq t}\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}_{\eta}+\alpha\sup\limits_{t-\rho\leq r\leq t}\|v(r,\varphi_{1})-v(r,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq\mathbb{E}\big[\beta\|u(t-\rho,\phi_{1})-u(t-\rho,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t-\rho,\varphi_{1})-v(t-\rho,\varphi_{2})\|^{2}_{\eta}\big] \\ &\quad+2\beta\mathbb{E}\Big[\int_{t-\rho}^{t}\Big|\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big|ds\Big]\\ &\quad+2\beta\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\int_{t-\rho}^{r}\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\Big]\\ &\quad+\beta\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}ds\Big]\\ &\quad+\alpha\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}ds\Big]\\ &\quad+2\beta\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\Big|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}dW_{j}(s)\Big|\Big]\\ &\quad+2\alpha\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\Big|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}dW_{j}(s)\Big|\Big]. \end{split} \end{equation} (5.9)

    By Lemma 5.1, we see that for all t\geq\rho ,

    \begin{equation} \begin{split} &\mathbb{E}\big[\beta\|u(t-\rho,\phi_{1})-u(t-\rho,\phi_{2})\|^{2}_{\eta}+\alpha\|v(t-\rho,\varphi_{1})-v(t-\rho,\varphi_{2})\|^{2}_{\eta}\big]\\ &\leq (1+2\rho L^{2})\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma(t-\rho)}. \end{split} \end{equation} (5.10)

    Similar to (2.18) and (2.19), we obtain

    \begin{equation} \begin{split}\nonumber 2\beta\mathbb{E}\Big[\int_{t-\rho}^{t}\Big|\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big|ds\Big] \leq 2\beta \tilde{\alpha}\int_{t-\rho}^{t}\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}^{2}ds, \end{split} \end{equation}

    which along with Lemma 5.1 implies that

    \begin{equation} \begin{split} &2\beta\mathbb{E}\Big[\int_{t-\rho}^{t}\Big|\Big(A\big(u(s,\phi_{1})-u(s,\phi_{2})\big),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\Big|ds\Big]\\ &\leq \frac{2\tilde{\alpha}(1+2\rho L^{2})}{\varsigma}\mathbb{E}[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}]e^{-\varsigma(t-\rho)}. \end{split} \end{equation} (5.11)

    By (2.9) and (5.1), we have

    \begin{equation} \begin{split} 2\beta\mathbb{E}\Big[\sup\limits_{t-\rho\leq r\leq t}\int_{t-\rho}^{r}\Big(f(u(s,\phi_{1}))-f(u(s,\phi_{2})),u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}ds\Big]\leq0. \end{split} \end{equation} (5.12)

    By (2.12) and Lemma 5.1 we get

    \begin{equation} \begin{split} &\beta\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|g_{j}(u(s,\phi_{1}),u(s-\rho,\phi_{1}))-g_{j}(u(s,\phi_{2}),u(s-\rho,\phi_{2}))\|^{2}_{\eta}\Big]ds\\ &\quad+\alpha\mathbb{E}\Big[\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{t}\|h_{j}(v(s,\varphi_{1}),v(s-\rho,\varphi_{1}))-h_{j}(v(s,\varphi_{2}),v(s-\rho,\varphi_{2}))\|^{2}_{\eta}\Big]ds\\ &\leq 4\beta L^{2}\int_{t-\rho}^{t}\mathbb{E}\Big[\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\Big]ds+2\beta L^{2}\int_{t-2\rho}^{t-\rho}\mathbb{E}\Big[\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\Big]ds\\ &\quad+ 4\alpha L^{2}\int_{t-\rho}^{t}\mathbb{E}\Big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\Big]ds+2\alpha L^{2}\int_{t-2\rho}^{t-\rho}\mathbb{E}\Big[\|v(s,\varphi_{1})-v(s,\varphi_{2})\|^{2}_{\eta}\Big]ds\\ &\leq \frac{4L^{2}(1+2\rho L^{2})}{\varsigma}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big]e^{-\varsigma(t-\rho)}\\ &\quad+\frac{2L^{2}(1+2\rho L^{2})}{\varsigma}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma(t-2\rho)}\\ &\leq \frac{6L^{2}(1+2\rho L^{2})}{\varsigma}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big]e^{-\varsigma(t-\rho)}. \end{split} \end{equation} (5.13)

    For the last two terms of (5.9), by the BDG inequality and (5.13), we get

    \begin{equation} \begin{split} &2\beta\mathbb{E}\bigg[\sup\limits_{t-\rho\leq r\leq t}\bigg|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}dW_{j}(s)\bigg|\bigg]\\ &\quad+2\alpha\mathbb{E}\bigg[\sup\limits_{t-\rho\leq r\leq t}\bigg|\sum\limits^{\infty}\limits_{j = 1}\int_{t-\rho}^{r}\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}dW_{j}(s)\bigg|\bigg]\\ &\leq C_{13}\beta\mathbb{E}\bigg[\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\bigg|\Big(\mathbf{g}_{j},u(s,\phi_{1})-u(s,\phi_{2})\Big)_{\eta}\bigg|^{2}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\quad+C_{13}\alpha\mathbb{E}\bigg[\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\bigg|\Big(\mathbf{h}_{j},v(s,\varphi_{1})-v(s,\varphi_{2})\Big)_{\eta}\bigg|^{2}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\leq C_{13}\beta\mathbb{E}\bigg[\sup\limits_{t-\rho\leq s\leq t}\|u(s,\phi_{1})-u(s,\phi_{2})\|_{\eta}\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{g}_{j}\|^{2}_{\eta}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\quad+C_{13}\alpha\mathbb{E}\bigg[\sup\limits_{t-\rho\leq s\leq t}\|v(s,\varphi_{1})-v(s,\varphi_{2})\|_{\eta}\bigg(\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{h}_{j}\|^{2}_{\eta}ds\bigg)^{\frac{1}{2}}\bigg]\\ &\leq \frac{\beta}{2}\mathbb{E}\Big[\sup\limits_{t-\rho\leq s\leq t}\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}\Big]+\frac{\beta}{2}C_{13}^{2}\mathbb{E}\bigg[\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{g}_{j}\|^{2}_{\eta}ds\bigg]\\ &\quad+\frac{\alpha}{2}\mathbb{E}\Big[\sup\limits_{t-\rho\leq s\leq t}\|v(s,\varphi_{1})-v(s,\varphi_{2})\|_{\eta}^{2}+\frac{\alpha}{2}C_{13}^{2}\mathbb{E}\bigg[\int_{t-\rho}^{t}\sum\limits^{\infty}\limits_{j = 1}\|\mathbf{h}_{j}\|^{2}_{\eta}ds\bigg]\\ &\leq \frac{1}{2}\mathbb{E}\Big[\sup\limits_{t-\rho\leq s\leq t}\big(\beta\|u(s,\phi_{1})-u(s,\phi_{2})\|^{2}_{\eta}+\alpha \|v(s,\varphi_{1})-v(s,\varphi_{2})\|_{\eta}^{2}\big)\Big]\\ &\quad+C_{14}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma(t-\rho)}, \end{split} \end{equation} (5.14)

    where C_{14} = \frac{3C_{13}^{2}L^{2}(1+2\rho L^{2})}{\varsigma} . It follows from (5.9)–(5.14) that for all t\geq0 ,

    \begin{equation} \begin{split}\nonumber \mathbb{E}\bigg[\sup\limits_{t-\rho\leq r\leq t}(\beta\|u(r,\phi_{1})-u(r,\phi_{2})\|^{2}_{\eta}+\alpha\|v(r,\varphi_{1})-v(r,\varphi_{2})\|^{2}_{\eta})\bigg] \leq C_{15}\mathbb{E}\big[\beta\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\alpha\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}, \end{split} \end{equation}

    where C_{15} = 2\big((1+2\rho L^{2})(1+\frac{2\tilde{\alpha}+6L^{2}}{\varsigma})+C_{14}\big) . This completes the proof.

    Theorem 5.1. Suppose (2.1)–(2.8) and (5.1) hold. Then, stochastic lattice system (2.15) has a unique invariant measure in C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2}) .

    Proof. For any (\phi_{1}, \varphi_{1}), (\phi_{2}, \varphi_{2})\in L^{2}(\Omega, C([-\rho, 0], \ell_{\eta}^{2}\times\ell_{\eta}^{2})) , by Lemma 5.2, we see that the segments of the solutions (u_{t}(\phi_{1}), v_{t}(\varphi_{1})) and (u_{t}(\phi_{2}), v_{t}(\varphi_{2})) of (2.15) satisfy, for all t\geq\rho ,

    \begin{equation} \begin{split}\nonumber \mathbb{E}\big[\|u_{t}(\phi_{1})-u_{t}(\phi_{2})\|^{2}_{C_{\rho,\eta}}+\|v_{t}(\varphi_{1})-v_{t}(\varphi_{2})\|^{2}_{C_{\rho,\eta}}\big] \leq M_{7}\mathbb{E}\big[\|\phi_{1}-\phi_{2}\|^{2}_{C_{\rho,\eta}}+\|\varphi_{1}-\varphi_{2}\|^{2}_{C_{\rho,\eta}}\big] e^{ -\varsigma t}, \end{split} \end{equation}

    which along with the standard arguments (see, e.g., [50]) implies the uniqueness of invariant measures for the lattice system (2.15). This completes the proof.

    The current focus lies in the theoretical proof of the well-posedness of solutions and the existence and uniqueness of invariant measures for these stochastic delay lattice systems. In the future, our research group will investigate the convergence and approximation of invariant measures for the systems under noise perturbation, as well as explore large deviation principles for the systems. Additionally, we will employ finite-dimensional numerical approximation methods to address both the existence of numerical solutions and numerical invariant measures.

    Xintao Li and Lianbing She: Conceptualization, Writing original draft and writing-review and editing; Rongrui Lin: Writing original draft and writing-review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Scientific Research and Cultivation Project of Liupanshui Normal University (LPSSY2023KJYBPY14).

    The authors declare no conflict of interest.



    [1] N. Huo, B. Li, Y. Li, Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays, AIMS Math., 7 (2022), 3653–3679. http://dx.doi.org/10.3934/math.2022202 doi: 10.3934/math.2022202
    [2] H. Qiu, L. Wan, Z. Zhou, Q. Zhang, Q. Zhou, Global exponential periodicity of nonlinear neural networks with multiple time-varying delays, AIMS Math., 8 (2023), 12472–12485. http://dx.doi.org/10.3934/math.2023626 doi: 10.3934/math.2023626
    [3] R. Wei, J. Cao, W. Qian, C. Xue, X. Ding, Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method, AIMS Math., 6 (2021), 6915–6932. http://dx.doi.org/10.3934/math.2021405 doi: 10.3934/math.2021405
    [4] J. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121–125. https://doi.org/10.1016/j.automatica.2015.08.025 doi: 10.1016/j.automatica.2015.08.025
    [5] O. M. Kwon, M. J. Park, S. M. Lee, J. H. Park, E. J. Cha, Stability for neural networks with time-varying delays via some new approaches, IEEE T. Neur. Net. Lear., 24 (2013), 181–193. https://doi.org/10.1109/TNNLS.2012.2224883 doi: 10.1109/TNNLS.2012.2224883
    [6] X. M. Zhang, Q. L. Han, Z. Zeng, Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities, IEEE T. Cybern., 48 (2018), 1660–1671. https://doi.org/10.1109/TCYB.2017.2776283 doi: 10.1109/TCYB.2017.2776283
    [7] T. Wu, S. Gorbachev, H. Lam, J. Park, L. Xiong, J. Cao, Adaptive event-triggered space-time sampled-data synchronization for fuzzy coupled RDNNs under hybrid random cyberattacks, IEEE T. Fuzzy Syst., 31 (2023), 1855–1869. https://doi.org/10.1109/TFUZZ.2022.3215747 doi: 10.1109/TFUZZ.2022.3215747
    [8] T. Wu, J. Cao, J. Park, K. Shi, L. Xiong, T. Huang, Attack-resilient dynamic event-triggered synchronization of fuzzy reaction-diffusion dynamic networks with multiple cyberattacks, IEEE T. Fuzzy Syst., 32 (2024), 498–509. https://doi.org/10.1109/TFUZZ.2023.3300882 doi: 10.1109/TFUZZ.2023.3300882
    [9] T. Wu, J. Cao, L. Xiong, J. Park, X. Tan, Adaptive event-triggered mechanism to synchronization of reaction-diffusion CVNNs and its application in image secure communication, IEEE T. Syst. Man Cy-S., 53 (2023), 5307–5320. https://doi.org/10.1109/TSMC.2023.3258222 doi: 10.1109/TSMC.2023.3258222
    [10] C. K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE T. Autom. Control, 62 (2017), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381
    [11] W. Lin, Y. He, C. Zhang, M. Wu, J. Shen, Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals, IEEE T. Neur. Net. Lear., 30 (2019), 2528–2537. https://doi.org/10.1109/TNNLS.2018.2885115 doi: 10.1109/TNNLS.2018.2885115
    [12] Y. Tian, Z. Wang, Extended dissipativity analysis for Markovian jump neural networks via double-integral-based delay-product-type Lyapunov functional, IEEE T. Neur. Net. Lear., 32 (2020), 3240–3246. https://doi.org/10.1109/TNNLS.2020.3008691 doi: 10.1109/TNNLS.2020.3008691
    [13] K. Gu, V. L. Kharitonov, J. Chen, Stability of Time-Delay Systems, 2003.
    [14] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [15] H.B. Zeng, Y. He, M. Wu, J. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE T. Autom. Control, 60 (2015), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
    [16] H.B. Zeng, Y. He, M. Mu, J. She, New results on stability analysis for systems with discrete distributed delay, Automatica, 60 (2015), 189–192. https://doi.org/10.1016/j.automatica.2015.07.017 doi: 10.1016/j.automatica.2015.07.017
    [17] X. M. Zhang, W. J. Lin, Q. L. Han, Y. He, M. Wu, Global asymptotic stability for delayed neural networks using an integral inequality based on nonorthogonal polynomials, IEEE T. Neur. Net. Lear., 29 (2018), 4487–4493. https://doi.org/10.1109/TNNLS.2017.2750708 doi: 10.1109/TNNLS.2017.2750708
    [18] J. Chen, S. Xu, B. Zhang, Single/Multiple integral inequalities with applications to stability analysis of time-delay systems, IEEE T. Autom. Control, 62 (2017), 3488–3493. https://doi.org/10.1109/TAC.2016.2617739 doi: 10.1109/TAC.2016.2617739
    [19] C. K. Zhang, Y. He, L. Jiang, W. J. Lin, M. Wu, Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach, Appl. Math. Comput., 294 (2017), 102–120. https://doi.org/10.1016/j.amc.2016.08.043 doi: 10.1016/j.amc.2016.08.043
    [20] A. Seuret, F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett., 81 (2015), 1–8. https://doi.org/10.1016/j.sysconle.2015.03.007 doi: 10.1016/j.sysconle.2015.03.007
    [21] A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, IEEE T. Autom. Control, 63 (2018), 225–232. https://doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485
    [22] Y. Huang, Y. He, J. An, M. Wu, Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: Further results on stability analysis of time-delay systems, IEEE Trans. Autom. Control, 66 (2021), 2905–2912. https://doi.org/10.1109/TAC.2020.3013930 doi: 10.1109/TAC.2020.3013930
    [23] P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [24] X. M. Zhang, Q. L. Han, A. Seuret, F. Gouaisbaut, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84 (2017), 221–226. https://doi.org/10.1016/j.automatica.2017.04.048 doi: 10.1016/j.automatica.2017.04.048
    [25] C. Zhang, Y. He, L. Jiang, M. Wu, Q. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. https://doi.org/10.1016/j.automatica.2017.07.056 doi: 10.1016/j.automatica.2017.07.056
    [26] W. I. Lee, S. Y. Lee, P. G. Park, Affine Bessel-Legendre inequality: Application to stability analysis for systems with time-varying delays, Automatica, 93 (2018), 535–539. https://doi.org/10.1016/j.automatica.2018.03.073 doi: 10.1016/j.automatica.2018.03.073
    [27] J. Chen, J. H. Park, S. Xu, Stability analysis for delayed neural networks with an improved general free-matrix-based integral inequality, IEEE T. Neur. Net. Lear. Syst., 31 (2020), 675–684. https://doi.org/10.1109/TNNLS.2019.2909350 doi: 10.1109/TNNLS.2019.2909350
    [28] Y. Tian, Y. Yang, X. Ma, X. Su, Stability of discrete-time delayed systems via convex function-based summation inequality, Appl. Math. Lett., 145 (2023), 108764, https://doi.org/10.1016/j.aml.2023.108764 doi: 10.1016/j.aml.2023.108764
  • This article has been cited by:

    1. Lin Liu, Xiaoling Pan, Baohuai Sheng, Jun Fan, Theory Analysis for the Convergence of Kernel-Regularized Online Binary Classification Learning Associated with RKBSs, 2023, 2023, 2314-4785, 1, 10.1155/2023/6566375
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(984) PDF downloads(60) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog