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Abstract: This paper revisits the issue of stability analysis of neural networks subjected to time-
varying delays. A novel approach, termed a compound-matrix-based integral inequality (CPBII),
which accounts for delay derivatives using two adjustable parameters, is introduced. By appropriately
adjusting these parameters, the CPBII efficiently incorporates coupling information along with delay
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neural networks with time-varying delays. The effectiveness of this approach is demonstrated through
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1. Introduction

Over recent decades, neural networks (NNs) have garnered significant attention and demonstrated
success across various engineering and research domains, thereby encompassing image processing,
pattern recognition, optimization problems, and associative memory [1-3]. Stability properties, which
are crucial for effective neural network deployment, include asymptotic and exponential stability.
Time delays which are prevalent in numerous control systems [4], poses challenges by potentially
destabilizing systems. Consequently, stability analysis, particularly regarding NNs with time delays, is
imperative due to the substantial impact of equilibrium point dynamics on practical applications [5, 6].
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The Lyapunov-Krasovskii functional (LKF) method is a powerful tool for examining the stability of
a system. Its effectiveness lies in its ability to identify a positive definite function whose derivative is
negative definite along the trajectory of the system [7-9]. The choice of an appropriate LKF is crucial
to establish the stability criteria. In a notable study [10], a potent methodology known as the delay-
product-type functional (DPTF) method was introduced. This method is distinguished by its inclusion
of variables that are dependent on the amplitude of the delay. For example, a DPTF V(¢) is formulated
as V(1) = d()v{ (OPvi(1) + (h — d(®))V) (t)Pva(t), where d(t)P > 0, (h — d(1))P, > 0 are delay
amplitude-dependent matrices, and v, (), v»(#) denote augmented terms related to the state. Importantly,
the derivative of V(¢) unveils the interconnection among terms related to the state, delay amplitude,
and delay derivative, which is subsequently integrated into the final linear matrix inequalities (LMIs).
Afterwards, in [11], by using Wirtinger-based integral inequality, the nonintegral terms are connected
to the integral terms. As shown in [12], it is efficient for reduction of the conservatism if some
double integral terms are introduced in Lyapunov functionals. Nevertheless, there exists an intrinsic
conservatism in the LKF due to incomplete state vectors v;(f) and v,(¢). Various bounding methods
have been developed for the stability analysis, including Jensen-based and Wirtinger-based integral
inequalities [13, 14], as well as slack-matrix-based integral inequalities [15-19], such as the Bessel-
Legendre inequality (BLI) [20, 21] and the Jacobi-Bessel inequality (JLI) [22]. While BLI offers
analytical solutions for constant delay systems, its applicability to time-varying systems is limited due
to a reliance on estimated boundaries [23-25]. In contrast, affine bessel-Legendre inequality (ABLI)
addresses time-varying delay amplitude but suffers from conservatism due to incomplete vectors [26].
To overcome this, generalized free matrix-based integral inequality (GFMBII) was introduced to
complement ABLI; however, it still lacked the full incorporation of delay amplitude-dependent slack
variables [27]. Although the delay derivative-dependent integral inequality was first introduced in [28],
further investigation is warranted as the decision matrices are fixed, thus limiting their flexibility and
utilization. This highlights the need for continued research in this area to fully leverage the potential
benefits of such integral inequalities.

With the above analysis, this paper focuses on investigating the stability of time-varying delayed
NNs. Two kinds of slack matrices with two tunable parameters, which are dependent on both a delay
amplitude and a delay derivative, are proposed. These advancements culminate in the formulation of a
compound-matrix-based integral inequality (CPBII). By utilizing CPBII, a stability condition tailored
for time-varying delayed NNs is developed. Compared to existing literature such as [6, 17, 19, 27],
the most significant contribution of this paper is the successful incorporation of both delay amplitude
and derivative information into the inequality with the help of a couple of convex parameters. This
innovative approach enhances the robustness and accuracy of the analysis. The feasibility of the
proposed criterion is demonstrated through a numerical example.

Notation: In this paper, R" represents the n-dimensional Euclidean space; N represents the nature
number; He[X]represents X + X7 ; Cof-- -} represents a set of points; col[X, Y] represents [XT,YT]";
diag{...} represents a block diagonal matrix; and X represents the transposition of X.

2. Problem formation and preliminaries

Let’s take the NNs characterized by a time-dependent delays, as depicted by the following equation:

w(t) = —Au(t) + Fog(Fou()) + F18(Fou(t — (1)), 2.1)
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where u(t) = collu;(t), ux (1), us(t), us(t), us(t), ..., u,(t)] € R" represents the state vector, and g(Fru(t)) =
col[g1(F2u(t)), g2(Fau(t)), ..., g.(F,u(t))] is the activation function. A = diag{a,, a, ..a,} is a positive
definite diagonal matrix, and F, F'y, F, are the appropriately dimensional constant matrices. The delay
amplitude 7(¢) and the delay derivative 7(¢) are bounded by constants d and p, respectively, satisfying
the following

0<7()<d, —p<i(t)<p. (2.2)

The activation functions g; satisfy g;(0) = O for all i. Define H~ and H* as diagonal matrices with
known constants h; and k!, respectively, which can be either positive, negative, or zero. Similarly, let
G~ and G™ be positive definite diagonal matrices. Given these definitions and m, m;,m, € R, we can
deduce the following inequalities from the previously mentioned activation function properties:

iy < 2010

1

<h',a#b. (2.3)

a —

We can directly acheive the following inequalities from (2.3) with m, m,, m, € R:
gl (m’ G_) 2 O’ 52(m17 my, G+) = Oa (24)
where

£1(m,G") 2[g(Fau(s)) — H Fou(s)]"G~

[H Fyx(s) — g(Fau(s))]
2[g(Fyu(my)) — g(Fou(my))

—H™ Fou(m;) — u(my)1" G*[H* F(x(s)

—u(my)) — g(Fou(my)) + g(Fau(my))].

X

fz(ml,mz,GJr)

For simplicity, we use the following notations for § € N:

T = 1t),d;=d-1,7=1-1
fila,B) = f ( ) u(s)ds
a ﬁ_ a
vi(t) filt,t =1),vy(t) = filt —7,t = d)

col

u(a) u(B) ],ifh =0
(@), u(B), o, , YWy |Lif h>0
Y, = f Li(s)u(s)ds

—d

comer e

o I -I|.ifh=0
T,im) =
" L1, 60 1 gl |Lif h>0

I —QI+ DA = (=)™, if l<m
S = N 0,if I=m+1

Ha, B) =

col

—
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o(t)
00(s)

01(s)
02(5)

non(?)
nn(1)

n2i()
n3n(t, 8)

Nan(t, 8)
ns(0)

n6(1)
1n7,(1)
nu(0)

CjN

In the existing body of work,

diag{Q',1/307",..,1/Qh + DO}
diag{Q,30,...,2h + 1)Q}

col[ry(0), m, (1), ..., mu(d)]

Yt —71,0), P =0¢—-1,t—d)
gi(s)—1;s,g; = H's - gj(s)
collu(t), u(t — 1), u(t — d)]

collu(s), u(s), g(Fru(s))]

col[f u(v)dv, fs u(v)dv]

s t—d

col[f Tu(v)dv, fs u(v)dv]
s t—d

collo(1), vio(1), v20(), ..., Via(D), var(t)]
vio(®) vi1(2) vin(t)
collo(t), P ]
vao(t) vo1(2)  vau(D)
collo(?), T 4 d
{ 0(0)(s),h =0
QO(S)’ QI(S)’ h > 1

{ 0(0)(s),h =0

]

00(s), 05(5),h > 1
col[g(Fou(1)), g(Fru(t — 1)), g(Fou(t — d))
f g(FzM(S))dS,f 8(Fou(s))ds]

-7 t—d

collu(t — 1), u(t — d)]

COZ[VIi_(t), VZ(I)]

COl[O(t)9 T]S(t), 776(t)’ 7770(t)’ n7l(t)a ceey 777h(t)]
[Onx(j—l)na Ianu Onx(N—j)n], ] € 1, 2, ) N.

such as [18,26,27], the final LMISs often incorporate information about

the delay derivative, which is typically derived from the derivatives of the LKFs. Despite this, there
has been a noticeable absence of integral inequalities that directly pertain to the delay derivative in the
context of time-varying delayed NNs. To address this deficiency, we introduce a novel approach in the
form of a CPBII, which is outlined below.

Lemma 1. For any continuously differentiable function u : [-d, 0] — R", the subsequent inequality

is valid for any given parameters vy, and y,, R > 0, any vector 7, and slack variables M and N:

- fl il (s)Riu(s)ds
t—d

(0 +7y1 +yt)p"

n
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+(pd - (y1 + D)7 + (y1 + )12
pd pd*
+ Yot A b

_—(71pdzﬂ) {dTﬁlTr,{Rrhﬂl + 795 F,{Rrhﬁz}. (25)

)He[(ﬁ{r§M + 91 TE N3]

Proof: For any parameters €, €, € [0, 1] that satisfy € + & = 1, the following relationship holds:

f il (s)Riu(s)ds
t—d

= g f il (s)Ri(s)ds + € f _TL'tT(s)Ru(s)ds

—d

+6 f il (s)Ri(s)ds + & f - il (s)Ri(s)ds.

—d

By using the inequalities in [20,27], for free matrices M and N, we have the following

!
- f il (s)Riu(s)ds
t—d
< elnT[TMTRM + dTNTRN]n
+e He[(9{T) M + 95T N)n)

T IR
—ez{;ﬂlTFZRth‘}] + 0] r{Rrhﬁz}. 2.6)

From tM"RM + d.NTRN > 0, it yields

!
- f i (s)Ri(s)ds
t—d
< n'|tM"RM + dTNTRN]n
+e He[(W1T] M + 95T N)nl
1 N 1 N
—eg{gﬁlTl“;RFhﬁl + d—ﬁgr{RrhﬁZ} (27)
From the fact
d — + 7 + )72 d‘r + ‘
Pty ity rdin +yah) (2.8)
od pd2 de

onchas0<¢ <1,0<e<l,g+6=1.

Substituting (2.8) into (2.6), we have

- f il (s)Ri(s)ds
t—d

< (Pd —(y1 + D)7 . (y1 + Yzf)Tz)
- od pd?
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x ' [dMTieM ; dTNTf?N]n

+(pd ~ntyhr O+ Y1)
od pd?

_ (1 +721)
pd?

)He[(ﬁfr,{M + 91T Nl

{d,ﬁ{r,{krhﬂl - r,{ferhﬂz} 2.9)

Considering tM"RM + d.N"RN > 0,d > 7> 0,0 < % <1,and 0 < “%W < 1, we obtain the
following:

pd — (y1 + y20)7T N (y1 + Y207

od pd?
o pAd-n+yDr N (y1 +y21)d
B pd pd
_opd+(y1+y0)d-1)

od
. pdt Oty
< o
_ PEYVi YT (2.10)
o

By combining this inequality with the one from the previous lemma, (2.5) is derived. This completes
the proof.

Remark 1. In Lemma 1, we present a unique integral inequality, termed as CPBII, which
amalgamates slack matrices that are dependent on both the delay amplitude and the delay derivative.
This is a pioneering approach in the literature where the delay derivative is factored in [28]. The
advantages of CPBII are manifold:

e Through the integration of slack matrices that are influenced by both the delay amplitude and the
derivative, the successfully forms a link between vectors related to the system states, the delay
amplitude, and the delay derivative. This approach facilitates the retrieval of more interconnected
data compared to DPTF, ABLI, and GFMBII, all without the need for extra decision variables.

e The inclusion of parameters y; and 7y, aid in circumventing certain incomplete terms. For
example, when y; = 0 and y, = 0, the last term d,9" 1Td” RT 9, + 79" 2ThT RT;,1%, is eliminated.
Similarly, when v, = 0, y, = 1, and d = p, the first term TM"RM + d.N"RN disappears.
Furthermore, this parameter enhances the systems adaptability.

Remark 2. As noted from [10], there exist two strategies to mitigate the conservatism. The first
involves striving to get as close to the left side of the inequality as possible, while the second entails
introducing an adequate number of cross terms to ensure sufficient system information within the final
conditions. Therefore, this paper opts for the second strategy, albeit at the expense of the first to a
certain degree. The most significant challenge resides in the assignment of values to € and €. If
these values are not assigned appropriately, it becomes evidently impossible to counterbalance the
discrepancy caused by the first strategy.
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3. Main results

In the study [27], it is noted that the delay derivative 7 is present in I'y(7, 7), I'1(7, 7), and I'5(7), where
it is exclusively coupled with positive definite matrices such as Py, Py, Q1, and Q,. Interestingly, the
slack matrices that are dependent on the delay derivative are not considered. To exploit the information
offered by the delay derivative to its fullest extent, a stability condition for system (2.1) is formulated

based on CPBII.

Theorem 1. Provided that there exist positive-definite symmetric matrices P, Qy, Q,, and R,
and matrices H,, H,, M, and N, in conjunction with specific scalars vy, v,, d, and p, that meet the

subsequent inequalities, it can be concluded that system (2.1) exhibits asymptotic stability:

\ij(o ‘i‘) (p+y1+y21) deTHT (p+y1+y21) dNT ]
’ p 8772y p
* -7 0 <0
k ES —R ]
[ \i](d 7-.) (P+)’1+72"F)dCTHT (P+)’1+72"F)dMT 1
’ P 7771y p
* -Z 0 <0
. ; R
[ \i](o 7-.) (o+y1+y21) deTHT (o+y1+y21) dNT
’ P 8772y p
* -7 0 <0,
. * R
where
$0,7) = —d*ar(t) +¥(0,7)
a(t) = ¥ 0y -y, Q12 + Hely; 0174
+TY5 Qa5 — Ve Qa6 + Hely) 0as]
3
+y—dTHe[E1ThF£M +ETTTN
0
+C;—H1C7 + CZ;HQCE;]
{I:’(T’ T) = \Pl(T’ T) + \PZ(T9 T) + l113 (T9 T)
+\P4(T) + l115(‘1', T) + \P6
Y\ (r,7) = He[ll[(d)Py,Ily(1)] + 7115 Py, 115
+Hel[IT} Py, T14(t, 7)] — 111 Py, s
Yy(1,7) = vy Q1y1 — Tys Q1ys + Hely; Q1y4]
+7y1 Qrys — ¥¢ Q2 + Helys Qrys]
d — (y1 + ¥t + Yo 1) T2
Wi(r,4) = dchRca 4 (P (y1 +y20)7 4 (y1 +y20)T )
p pd
X HelE|,T}M + ELTTN)]
+ Vo1 « «
—(ylp—th){dTElThF,fRFhCm + TE,{QF,{RF,,CM}

AIMS Mathematics

(3.1)

(3.2)

(3.3)

Volume 9, Issue 7, 19345-19360.



19352

AIMS Mathematics

Yu(7)

Ys(r,7)

A (7)
Ao (7)

A4 (T, T)

As
As

He[Pgl Faeq + %P3T2F209 +P3T3F2€10]
pd = (y1 + y21)T N (1 + )’27)72)
p pd
He[c?ch7 + CSTHzcg]
1+ 7e0)
pd
+(Pd = (Y1 + 20T N (r + 72*)72)
P pd
He[C$H107 + CSTH2C8]
_ 1 +720)
od

d*ctZc, + (

(ch7T Zcr + Tcg Zcg)

{ch7T Zcy + TC§ZC8}.

3
> Hel(esus = H Fac)! Uy (H" Fac
i=1

2
—03+,-)] + Z H e[[63+,- — Cayi
i=1
—H F>(¢c; — cx )" U}
[H"Fy(c; — Civ1) — €34 + C4+i]]
+He[[c4 ~co— H Fa(c) — )" G

[H'Fy(ci —c3) —ca + 06]]

col[c,, Cups Crys =+ 5 Cuys Cy ]

colléy, ey, €yys -+ 5 €45 €,

col[cy, c13,+++ 5 Copy11]

col[t¢y, ¢,y — TC11, €4, — TC13,
+ ey, — deapent]

col[cy, 12, Clay -+ 5 Cons14]

colld;¢o, é,, + TC12, €y, + TC14,

cee 8y, F TOu2]

collcy, c1,¢4,0,TC) 1]

collcy, ¢, c5,7TC11, 0]

col[0,0,0, ¢y, —7c,, 0]

collc) — ¢, Teqy, €7, T2C13, T(C11 — €13)]

col[cg, 1, ¢5,0,d-c15]

col[cyg, 3, C6, d-C12, 0]

col[0,0,0, Tc,, —c3]

2 2
col[cy — ¢3,d:c1p, c8,d;C14,d7(C1o — C1a)]

Volume 9, Issue 7, 19345-19360.
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co0l[0,0,0,0, c11]
c0l[0,0,0, c1,0]
col[0,0,0, c13, (c11 — ¢13)]
c0l[0,0,0,0, c»]
col[cy9, 0,0, c12,0]
c0l[0,0,0, c14, (c12 — c14)]
M, (cy — H Facy) + My(H" Facy — c4)
M;(cs — H Fycy) + My(H" Facy — c5)
Ms(cs — H Fac3) + Mg(H" Facs — c6)
collcy, ¢z, 11,213, (h + 1)cir4on]
collcy, c3,C12,2¢14, (h + 1)ci401]
TC11+2is Cy; = d-C1242
c1—Tei=1
{ €1 — ITC11426-1) — TCl142i, 1 > 1
—Ac, + Focs + Fcs
[c1, 2, C2], o = col[cy, Teo, C10]
Tcy—c3,i=1
{ TCy — iC14n(i=1) — ITC1242i1 2 1
Ci,10+2(h+1)-

Proof: An LKF candidate is formulated as follows:

AIMS Mathematics

Vi(®)

Va(1)

V3(2)

Va(t)

5
V(= >0
i=1

Mo OPornon(t) + 101, () P1amin(t)
+d.m5, () Panan(t)

!
f '73Th(t’ $)Quman(t, s)ds
-7

=T
+ f Nan(t, $)Qannan(t, 5)
t

—d

d f f i’ (V)Ri(v)dvds
t—-d Js

n Fou(r)
2Zf‘|mgw+m@ww
=1

0
n Fou(t—d)
-ﬂZj\ [maig; (v) + mag! (v
=1 Y0

n

=1

Fou(t—h)
-QZJN [msig; (v) + meg (»)1dv
0

(3.4)
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Vs() = d f f 8" (Fau(v)Zg(Fou(v))dvds.
t—-d Js

Setting
b b b
Si = fff dS,'"'dSQdSl
a s si—1
b lb b
Yo = f f f u(s;)ds; - - -ds»rdsy,
a S1 si—1
one has
1 I
E‘Pof = 5= g8y

Setting a = t — 7, b = t, it yields the following:

So(t) 251(0 (bt l)uh(f)]

P = collu(®), u(t — 1), st

d d

= epnnu(1).
Ifa=1t—-d,b=1t-7,one has the following:
= pamu(D).
Furthermore, from V/(f), we have the following:

Vit)y = 2n8,@)Poiton(® + 11, (OP1mia(t)
+2700 (OP () — digh (O Poman(t)

+2d.175, () Payipan(t)
= L) (x, D)
Va(t) = my(t,)01m3(t, 1)
—tn5,(t,t = T)Qupn(t, t — d)
+2f o )Q1dn3h(t S)
+11y,(t, t — T)Qoman(t, t — T)
it t = d)Qoman(t, t — d)
+2f oL, s )Q27'774h(f S)
t—d
= 0, (O)Pa(r, Dmu(t)
Vi(t) = d*T(ORu(t) —d f il (s)Ri(s)ds
t—d
Vu®) = n@OYa(d)n(0)
Vs(t) = d*g" (Fou(t)Zg(Fu(t))

(3.5)

(3.6)
(3.7)
(3.8)
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—d f 8" (Fou(s))Zg(Fau(s))ds, (3.9)
t—d

where the terms ¥,(7, ), W»(7, 7), and W4(7) remain consistent with those outlined in previous part.
Upon differentiating vy;(¢) and v,;(¢) in 1y;,(¢) and 1,,(#), the following results are obtained:

bu(b) — au(a),i =0

bu(b) — L it - D> 1.

ﬁmm={
Utilizing Lemma 1, we obtain the following:
Va(1) < 1, O[Ps(7, 1) + 3(7, D1a (). (3.10)

where P5(t, 1) = Wd[TM TRM + d,NTRN]. Applying Lemma 1 with 4 = 0, one has

V() < i (O[Ws(r, 1) + Ws(z, DI (), (3.11)

where Ws(t, 1) = Wd[TchlTZ_lHl cr + chgHZTZ‘lHZCg;].
From the fact (2.4)

f](I,Gl_) >0

6Lt -1,G;) =0
6(t-d,G3) =0

Ot t—1,G7) >0
Ot -1,t-d,G;)>0
Ot t—d,GY) > 0,

one has
1, (0)Pe(t) > 0. (3.12)
Based on the discussions above, we can deduce
V() < 1, (O (. D)), (3.13)
where ¥(1,7) = ¥(1, 7) + ¥5(7) + ¥5(1). Define
¥(r, 1) = T?ar(t) + Tay + ap

Here a,(7) has been defined in Theorem 1, and a,, a, are the appropriate dimensional matrices. By the
Schur complement lemma, the inequalities are equivalent to P(0,7) < 0, P(d, 1) < 0, and —d?a, (1) +
$(0,7) < 0. These correspond to the three conditions f(0) < 0, f(d) < 0, and —d*a, + f(0) < 0 in
Lemma 2 of Ref. [4]. Therefore, ¥(r, 7) < 0 is ensured for any 7 € [0, d].

Additionally, W(x, 7) is affine with respect to 7. Therefore, P(t, ¥) < 0 is ensured for any 7 € [p;, 0]
by ¥(z,p;) < 0 and ¥(r, p;) < 0.

In conclusion, based on Theorem 1, for a small positive scalar e, it follows that V(¢) < —€|lu(?)|| < O
for u(t) # 0. This implies the asymptotical stability of NNs (2.1).
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Remark 3. In earlier research such as [6, 27, 28], the inclusion of the delay derivative T has
predominantly been dependent on the derivative of the LKFs. Yet, the full integration of the delay
derivative 7 remains unaccomplished. In contrast to the LKFs, CPBII effectively incorporates the delay
derivative 7. This methodology facilitates the concurrent introduction of 7, the delay amplitude p, slack
matrices M, N, and the augmented vector 7,(f) along with positive definite matrices. As a result, the
system information can be efficiently interconnected. Additionally, the inclusion of parameters y; and
v, assists in circumventing zero terms, thereby enabling the extraction of more coupling information.
For example, consider pd(p — vy, — y,1) in (3.1). If y; = 0, v, = 1, and d = p are set, the interrelation
between T and 7,(¢) is connected via N would vanish. Furthermore, permitting any parameters where
y1 < 0andy, < 1 (since p — y; — y»d > 0) enhances the adaptability of Theorem 1, in which
demonstrates reduced conservatism.

4. Numerical example

In this section, we will demonstrate the effectiveness of the proposed stability condition.

We scrutinize NN that is characterized by the structure (2.1), where F, = I. The parameters
employed in this analysis are derived from the study [27]:

A = diag{1.2769,0.6231,0.9230, 0.4480}
[ -0.0373 0.4852 -0.3351 0.2336
F, = -1.6033 0.5988 -0.3224 1.2352
0.3394 -0.086 -0.3824 -0.5785
| —-0.1311 0.3253 -0.9534 -0.5015
[ 0.8674 —-1.2405 -0.5325 0.022
F = 0.0474 -0.9164 0.0360 0.9816
1.8495 2.6117 -0.3788 0.8428
| -2.0413 0.5179  1.1734 -0.2775
H™ = diag{0,0,0,0}
H" = diag{0.1137,0.1279,0.7994,0.2368}.

As depicted in Table 1, with the same LKF in [27], the maximum allowable upper bound of the
delay amplitude is presented for a range of p values. A clear observation from the table is that the
conservatism in the results derived in this study is less pronounced compared to previous studies
[6,17,19,27]. A comparative analysis between Theorem 1 of this paper and the results of [27]
underscores the efficacy of CPBII in mitigating conservatism. Moreover, it is discerned that the
parameters y; and y, augment the adaptability of the stability condition. It should be highlighted
that the values of y; and y, in Table 1 are random under y; < 0 and y, < 1. Thus, the maximum

allowable upper bounds of d may be larger by choosing more suitable values, which deserves a further
study in the future.
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Table 1. The maximum allowable upper bounds of d for different p.

Je 0.1 0.5 0.9 NVs
Theorem 3, [19] 44167 3.5986 3.3755 79n° + 15n
Propositionl [17] 45382 3.9313 3.4763 60n® + 22n
Proposition 3, [6](N = 3) 45468 4.0253 3.6246 198n> + 26n
Theorem 1, [27](h = 1) 45426 3.9438 3.4688 83.51n> +26.5n
Theorem 1, [27](h = 2) 4.5470 3.9749 3.5052 112.5n% +28.5n

Theorem 1(h = 2,7y, = —=0.06,y, = 0.7) 4.8507 4.2714 3.8139 112.5n* + 28.5n
Theorem 1(h = 2,7, = =0.02, 7, = 0.6) 4.8601 4.2823 3.8244 112.51*> +28.5n

On the other hand, by setting u(f) = [0.50.3-0.3-0.5]7, 7(¢) = 4.7601+0.1sin(t), g(t) = 0.1tanh(u),
it can be seen from Figure 1 that the state response is stable, which shows the effectiveness of proposed
method.

0.5

0.4

03 uy®) |4

0.2

0.1F

—

5 10 15 20 25 30

0 5 10 15 20 25 30
time(s)

Figure 1. The state responses of system (2.1) under 7(¢) = 4.7601 + 0.1sin(z).

5. Conclusions

This study addresseed stability analysis of neural networks with time-varying delays. We introduced
to CPBII to incorporate delay derivatives into integral inequalities. Then, a novel stability criterion
for such neural networks was derived using CPBII. Notably, CPBII encompassed all augmented
vectors and their derivatives from the LKF, thus facilitating comprehensive coupling with the delay
amplitude and the delayderivative via slack matrices and tunable parameters. This integration led to
less conservative outcomes. The effectiveness of our approach was demonstrated through numerical
examples.
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