Research article Special Issues

The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters

  • Received: 15 March 2024 Revised: 02 May 2024 Accepted: 14 May 2024 Published: 24 May 2024
  • MSC : 11L03, 11L05

  • In this paper, the fourth power mean values of the generalized quadratic Gauss sums associated with the $ 3 $-order and $ 4 $-order Dirichlet characters are given by using the properties of the Dirichlet characters and Gauss sums.

    Citation: Xuan Wang, Li Wang, Guohui Chen. The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters[J]. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864

    Related Papers:

  • In this paper, the fourth power mean values of the generalized quadratic Gauss sums associated with the $ 3 $-order and $ 4 $-order Dirichlet characters are given by using the properties of the Dirichlet characters and Gauss sums.



    加载中


    [1] T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.
    [2] N. Bag, R. Barman, Higher order moments of generalized quadratic Gauss sums weighted by $L$-functions, Asian J. Math., 25 (2021), 413–430.
    [3] N. Bag, A. Rojas-León, W. P. Zhang, An explicit evaluation of $10$-th power moment of quadratic Gauss sums and some applications, Funct. Approx. Comment. Math., 66 (2022), 253–274. http://dx.doi.org/10.7169/facm/1995 doi: 10.7169/facm/1995
    [4] N. Bag, A. Rojas-León, W. P. Zhang, On some conjectures on generalized quadratic Gauss sums and related problems, Finite Fields Appl., 86 (2023), 102131. https://doi.org/10.1016/j.ffa.2022.102131 doi: 10.1016/j.ffa.2022.102131
    [5] B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc., 5 (1981), 107–128.
    [6] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [7] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104
    [8] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer-Verlag, 1982.
    [9] X. X. Li, X. F. Xu, The fourth power mean of the generalized two-term exponential sums and its upper and lower bound estimates, J. Inequal. Appl., 2013 (2013), 504. https://doi.org/10.1186/1029-242X-2013-504 doi: 10.1186/1029-242X-2013-504
    [10] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907
    [11] X. X. Lv, W. P. Zhang, The generalized quadratic Gauss sums and its sixth power mean, AIMS Math., 6 (2021), 11275–11285. http://dx.doi.org/10.3934/math.2021654 doi: 10.3934/math.2021654
    [12] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [13] W. P. Zhang, Moments of generalized quadratic Gauss sums weighted by $L$-functions, J. Number Theory, 92 (2002), 304–314. https://doi.org/10.1006/jnth.2001.2715 doi: 10.1006/jnth.2001.2715
    [14] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 70–76.
    [15] W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013.
    [16] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin. English Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(469) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog