In this paper, we consider a fractional Nernst-Planck-Poisson-Navier-Stokes system in R3. First, we obtain a priori estimates by using energy estimates. Then, we construct an iterative solution sequence by solving the approximate problem and obtaining the local existence and uniqueness of the classical solution. Finally, combining the local existence with a priori estimates, the global existence and uniqueness of the classical solution with small initial data are obtained.
Citation: Zihang Cai, Chao Jiang, Yuzhu Lei, Zuhan Liu. Global classical solution of the fractional Nernst-Planck-Poisson-Navier- Stokes system in R3[J]. AIMS Mathematics, 2024, 9(7): 17359-17385. doi: 10.3934/math.2024844
[1] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418 |
[2] | Cuiman Jia, Feng Tian . Regularity of weak solution of the compressible Navier-Stokes equations with self-consistent Poisson equation by Moser iteration. AIMS Mathematics, 2023, 8(10): 22944-22962. doi: 10.3934/math.20231167 |
[3] | Krunal B. Kachhia, Jyotindra C. Prajapati . Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator. AIMS Mathematics, 2020, 5(4): 2888-2898. doi: 10.3934/math.2020186 |
[4] | Benedetta Ferrario, Christian Olivera . Lp-solutions of the Navier-Stokes equation with fractional Brownian noise. AIMS Mathematics, 2018, 3(4): 539-553. doi: 10.3934/Math.2018.4.539 |
[5] | Yina Lin, Qian Zhang, Meng Zhou . Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source. AIMS Mathematics, 2022, 7(4): 7212-7233. doi: 10.3934/math.2022403 |
[6] | Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373 |
[7] | Jishan Fan, Tohru Ozawa . A note on 2D Navier-Stokes system in a bounded domain. AIMS Mathematics, 2024, 9(9): 24908-24911. doi: 10.3934/math.20241213 |
[8] | Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777 |
[9] | Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437 |
[10] | Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863 |
In this paper, we consider a fractional Nernst-Planck-Poisson-Navier-Stokes system in R3. First, we obtain a priori estimates by using energy estimates. Then, we construct an iterative solution sequence by solving the approximate problem and obtaining the local existence and uniqueness of the classical solution. Finally, combining the local existence with a priori estimates, the global existence and uniqueness of the classical solution with small initial data are obtained.
In order to describe the charge transport in the semiconductor device, Roosbroeck [21] first proposed the drift-diffusion (DD) system. We briefly review some known results on the DD system. As early as the last century, Mock [14] considered the following system:
{nt−Δn=−∇⋅(n∇ϕ),t>0,x∈Ω,vt−Δv=∇⋅(v∇ϕ),t>0,x∈Ω,Δϕ=n−v,t>0,x∈Ω,(n,v)|t=0=(n0,v0),x∈Ω, | (1.1) |
on the bounded domain Ω⊆RN(N⩾1) with the Neumann boundary condition used to describe charge transport in semiconductor devices. Here, n and v represent the densities of electrons and holes. ϕ stands for the electrostatic potential. Fang and Ito [5] proved the global existence of weak solutions to system (1.1) with the Neumann boundary condition. Afterwards, Jüngel [10] obtained the asymptotic behavior of the global solution under the Neumann boundary condition. The global existence of the solution for the Cauchy problem of system (1.1) was studied by Kurokiba and Ogawa [13]. Then, Kamashima and Kobayashi [12] deduced the optimal dacay estimate by the weighted energy method and obtained an asymptotic result as t→∞.
Then, some scientists have focused on the dopant anomalous diffusion in a semiconductor. The anomalous diffusion is shown as the result of two competing phenomena: dopant trapping on the defects and enhanced diffusivity at the edges of the defect-rich region [3]. The classical Laplace operator cannot describe this anomalous diffusion phenomenon. Scholars have found that the fractional Laplace operator can well describe the process involving anomalous diffusion. Owaga and Yamamoto [16] investigated the fractional DD system
{nt+(−Δ)αn=−∇⋅(n∇ϕ),t>0,x∈Ω,vt+(−Δ)βv=∇⋅(v∇ϕ),t>0,x∈Ω,Δϕ=n−v,t>0,x∈Ω,(n,v)|t=0=(n0,v0),x∈Ω, | (1.2) |
for α=β∈(12,1). They proved the global existence and asymptotic behavior of the mild solution in Ω=RN for N⩾2. Here, the fractional Laplace operator is defined by
^(−Δ)αf(ξ)=|ξ|2αˆf(ξ), |
where ˆf denotes the Fourier transform of the function f. Then Granero-Belinchón [7] considered a fractional DD system with different diffusion orders α≠β∈(0,1), and obtained the global existence of the classical solution to system (1.2) and several decay estimates for the Lebesgue and Sobolev norms in Ω=RN for N=1,2,3.
A similar phenomenon occurs for the ions in a solution. The Nernst-Planck-Poisson(NPP) system was originally conceived to describe the motion of ions in a solution in the context of electrochemistry. It should be emphasized that, although both the DD system and the NPP system share a common structure, their physical meanings are different. Ions in the NPP system are charged particles, electrons and holes in the DD system enjoy a duality between quantum waves and particles. In order to reveal the interaction between the movement of the macroscopic fluid and the transport of the microscopic charge, Rubinstein [17] proposed the classical Nernst-Planck-Poisson-Navier-Stokes(NPPNS) system
{nt+u⋅∇n−Δn=−∇⋅(n∇ϕ),t>0,x∈Ω,vt+u⋅∇v−Δv=∇⋅(v∇ϕ),t>0,x∈Ω,Δϕ=n−v,t>0,x∈Ω,ut+u⋅∇u−Δu+∇P=Δϕ∇ϕ,t>0,x∈Ω,∇⋅u=0,t>0,x∈Ω,(n,v,u)|t=0=(n0,v0,u0),x∈Ω, | (1.3) |
to show the electrokinetic effects consisting of the interplay between charges and the flow field. Here n and v represent the densities of negatively and positively charged particles, u represents the velocity field of the fluid, and P denotes the pressure function. System (1.3) describes an isothermal, incompressible, viscous Newtonian fluid of uniform and homogeneous composition of a high number of positively and negatively charged particles ranging from colloidal to nanosize. It is further assumed to be a dilute fluid so that the electromagnetic forces can be neglected. Readers can refer to [1] and the references therein for more discussion on the physical background of the system (1.3).
In the past few decades, a number of scientists have developed great interest in and conducted indepth research on the NPPNS system (1.3). Based on Kato's semigroup framework, Jerome [8] established the local existence and uniqueness of strong solutions to system (1.3) in RN(N⩾2). Jerome and Sacco [9] obtained the global existence of weak solutions under the mixed Dirichlet boundary condition. By using the energy inequalities and Schauder's fixed point theorem, Schmuck [18] obtained the global existence of weak solutions to system (1.3) in a bounded domain Ω⊆RN(N = 2 or 3) with the Neumann boundary condition. Deng, Zhao and Cui [23,24] obtained the global well-posedness of system (1.3) with small initial data in negative-order Besov space and critical Lebesgue spaces in RN(N⩾2). Zhao, Zhang, and Liu [25] showed the global well-posedness of system (1.3) in the critical Besov space with a large vertical velocity component in R3. Fan, Li, and Nakamura [4] also proved some regularity criteria for the strong solutions to the Cauchy problem of system (1.3) in R3. Zhang and Yin [22] proved the global existence of the classical solution to the Cauchy problem of system (1.3) in R2 and established the L2 decay estimates by using the Fourier splitting method. Recently, Gong, Wang, and Zhang [6] proved the existence of suitable weak solutions to system (1.3) in R3. Based on the spectral analysis and the energy method, Tong and Tan [19] obtained the lower bound and upper bound decay rates of the solution to a generalized NPPNS system in R3.
As for the classical chemotaxis-Navier-Stokes system proposed by Tuval et al.[20], Chae, Kang and Lee [2] established the global existence of smooth solutions in RN(N = 2 or 3). Afterwards, Zhu, Liu and Zhou [26] considered the fractional chemotaxis-Navier-Stokes system in R3 and established the global existence and uniqueness of classical solution with small initial data. Research shows that macroscopic diffusion has been used to describe the random walk of particles; however, Ley's flights can effectively describe the anomalous diffusion phenomenon. Instead of the classical Laplace operator, the fractional Laplace operator can well describe this anomalous diffusion phenomenon. Considering the anomalous diffusion phenomenon of the ions in the solution, we couple the NPPNS system with the fractional Laplace operator and consider the following fractional NPPNS system:
{nt+u⋅∇n+(−Δ)sn=−∇⋅(n∇ϕ),t>0,x∈R3,vt+u⋅∇v+(−Δ)sv=∇⋅(v∇ϕ),t>0,x∈R3,Δϕ=n−v,t>0,x∈R3,ut+u⋅∇u−Δu+∇P=Δϕ∇ϕ,t>0,x∈R3,∇⋅u=0,t>0,x∈R3,(n,v,u)|t=0=(n0,v0,u0),x∈R3, | (1.4) |
where s∈(0,1). The aim of this paper is to obtain the global existence of a classical solution to system (1.4) under the condition of small initial data. Firstly, we obtain a priori estimates of the solution to system (1.4) through the energy method. Then we construct a solution sequence by iterative methods and prove the local existence of the solution sequence of the iterative system (3.25). It should be emphasized that different from [26], firstly, the physical background is different. The chemotaxis-Navier-Stokes system was proposed to study the interaction between cells and fluids. However, the NPPNS system was originally conceived to reveal the interaction between the movement of the macroscopic fluid and the transport of the microscopic charge. Secondly, due in the difference of the external force in the Navier-Stokes equation, the iterative solution sequence of the approximate problem is different from [26] in the process of proving the existence of solutions to system (1.4). Besides, we also prove that the solution sequence of (3.25) is a Cauchy sequence. Thus, according to the convergence of the solution sequence, we can obtain the local existence and uniqueness of the classical solution to the system (1.4). Finally, we prove the global existence of the classical solution to system (1.4) by combining the priori estimates with the local existence. Furthermore, since the global existence of the classical solution for the three-dimensional Navier-Stokes equation is still open, compared with the condition of large initial data in [22], we study the global existence and uniqueness of the classical solution to system (1.4) under the condition of small initial data in R3.
The main theorem of this paper states as follows:
Theorem 1.1. Assume that s∈(12,1), (n0,v0,u0)∈(L1∩Hm)×(L1∩Hm)×Hm(m⩾3), n0,v0⩾0. If there exists a small enough constant ε0>0 such that ‖n0‖H3+‖v0‖H3+‖u0‖H3⩽ε0, then system (1.4) possesses a unique global solution (n,v,ϕ,u) satisfying that for all t⩾0,
(‖n‖2Hm+‖v‖2Hm+‖ϕ‖2Hm+2+‖u‖2Hm)+∫t0(‖∂sn‖2Hm+‖∂sv‖2Hm+‖∂sϕ‖2Hm+2+‖∂u‖2Hm)dτ⩽C(‖n0‖2Hm+‖v0‖2Hm+‖u0‖2Hm), |
where C is a time-independent positive constant.
The rest of this paper is organized as follows: In Section 2, we state some useful lemmas that will be used throughout the paper. In Section 3, we first give a priori estimates and prove the local existence of classical solutions to system (1.4) by iterative methods; then, combining the local existence and a priori estimates, we can obtain the global existence of classical solutions to system (1.4).
In this section, we give the following notations: C>0 is a time-independent constant. We reduce Lq(R3) and Hs(R3) to Lq and Hs, respectively. Moreover, we use a≲b to denote a⩽Cb. Next, we will give some useful lemmas.
Lemma 2.1. ([15]) Assume that 0⩽k,m⩽l and 1⩽p,q,r⩽∞. It follows that
‖∂mf‖Lp⩽C‖∂kf‖1−θLq‖∂lf‖θLr, | (2.1) |
where θ∈[0,1], and k,m,l satisfy
m3−1p=(k3−1q)(1−θ)+(l3−1r)θ. |
Especially, when p=∞, we require that θ∈(0,1), k⩽m+1, and l⩾m+2.
Lemma 2.2. ([11]) Assume that 0⩽k<∞, then we have
‖∂k(fg)‖Lp⩽C(‖f‖Lp1‖∂kg‖Lp2+‖∂kf‖Lp3‖g‖Lp4), | (2.2) |
where p,p2,p3∈(1,∞), p1,p4∈(1,∞] with 1p=1p1+1p2=1p3+1p4.
Lemma 3.1. Assume that s∈(12,1), (n0,v0,u0)∈(L1∩Hm)×(L1∩Hm)×Hm(m⩾3), n0,v0⩾0. Suppose that (n,v,ϕ,u) is a solution of (1.4). Then n,v∈L1 and n,v⩾0 hold for any t⩾0. Furthermore, there exists a small enough constant ε0 such that if ‖n‖H3+‖v‖H3+‖u‖H3⩽ε0,
(‖n‖2Hm+‖v‖2Hm+‖ϕ‖2Hm+2+‖u‖2Hm)+∫t0(‖∂sn‖2Hm+‖∂sv‖2Hm+‖∂sϕ‖2Hm+2+‖∂u‖2Hm)dτ⩽C1(‖n0‖2Hm+‖v0‖2Hm+‖u0‖2Hm) | (3.1) |
holds for any t⩾0, where C1 is a time-independent constant.
Proof. First, integrating over R3×[0,t] for the first and second equation of (1.4), we conclude that n,v∈L1. Then, we briefly prove that n is nonnegative (the situation of v is similar to n). For this, we introduce the following auxiliary problem:
{nt+u⋅∇n+(−Δ)sn=−∇⋅(n+∇ϕ),t>0,x∈R3,vt+u⋅∇v+(−Δ)sv=∇⋅(v+∇ϕ),t>0,x∈R3,Δϕ=n−v,t>0,x∈R3,ut+u⋅∇u−Δu+∇P=Δϕ∇ϕ,t>0,x∈R3,∇⋅u=0,t>0,x∈R3,(n,v,u)|t=0=(n0,v0,u0),x∈R3. | (3.2) |
Here n+ = max{n,0}, n− = max{−n,0} and n=n+−n−. Multiplying the first equation of (3.2) by n− and integrating by parts, we have
12ddt‖n−‖2L2+‖∂sn−‖2L2=∫R3∇⋅(n+∇ϕ)n−dx=0. | (3.3) |
Therefore, ‖n−(t)‖2L2⩽‖n−(0)‖2L2. Since n0 is nonnegative, n is nonnegative. Similarly, v is also nonnegative. We conclude that system (3.2) is equivalent to system (1.4), the nonnegativity of n and v is proved. Finally, we will prove (3.1).
(i) The estimate of n. Applying ∂α(0⩽α⩽m) to the first equation of (1.4) and multiplying by ∂αn, then integrating over R3 by parts, we get
12ddt‖∂αn‖2L2+‖∂α+sn‖2L2=−∫R3∂α(u⋅∇n)∂αndx−∫R3∂α(∇n∇ϕ)∂αndx−∫R3∂α(nΔϕ)∂αndx=:I1+I2+I3. | (3.4) |
As for the term I1, for α=0, recalling that ∇⋅u=0, we get
I1=−12∫R3u⋅∇|n|2dx=0. | (3.5) |
For α=1, recalling that ∇⋅u=0, by Lemma 2.1, Hölder's inequality, and Young's inequality, we obtain
I1=−∫R3∂u⋅∇n∂ndx−12∫R3u⋅∇|∂n|2dx≲‖∂u‖L6‖∂n‖L31+s‖∂n‖L63−2s≲‖∂2u‖L2‖n‖1+2s4L2‖∂2n‖3−2s4L2‖∂1+sn‖L2≲‖∂u‖Hm‖n‖H3‖∂sn‖Hm⩽ε(‖∂u‖2Hm+‖∂sn‖2Hm). | (3.6) |
For 2⩽α⩽m, we have
I1=−12∫R3u⋅∇|∂αn|2dx−∫R3∂αu⋅∇n∂αndx−∑1⩽l⩽α−1Clα∫R3∂lu⋅∇∂α−ln∂αndx≲‖∂αu‖L6‖∇n‖L31+s‖∂αn‖L63−2s+∑1⩽l⩽α−1‖∂lu‖L3s‖∂α−l+1n‖L2‖∂αn‖L63−2s≲‖∂α+1u‖L2‖n‖1+2s4L2‖∂2n‖3−2s4L2‖∂α+sn‖L2+∑1⩽l⩽α−1(‖∂52−2su‖θL2‖∂α+1u‖1−θL2‖∂32−sn‖1−θL2‖∂α+sn‖θL2)‖∂α+sn‖L2≲‖∂u‖Hm‖n‖H3‖∂sn‖Hm+‖u‖θH3‖n‖1−θH3‖∂α+1u‖1−θL2‖∂α+sn‖1+θL2⩽ε0(‖∂u‖2Hm+‖∂sn‖2Hm), | (3.7) |
where θ=2α−2l+2s−12α+4s−3∈(0,1).
In a word,
I1≲ε0(‖∂u‖2Hm+‖∂sn‖2Hm) for 0⩽α⩽m. | (3.8) |
As for the term I2, for α=0, by Lemma 2.1 and Hölder's inequality, we have
I2=−∫R3∇ϕ⋅∇n⋅ndx≲‖∇ϕ‖L2‖∇n‖L3s‖n‖L63−2s≲(‖Δϕ‖45L1‖∂(Δϕ)‖15L2)‖∂52−sn‖L2‖∂sn‖L2≲ε150‖∂sn‖2Hm. | (3.9) |
For α=1, it follows that
I2=−12∫R3Δϕ⋅∂n⋅∂ndx≲‖Δϕ‖L32s−1‖∂n‖2L32−s≲‖∂52−2sΔϕ‖L2‖∂s+12n‖2L2≲ε0‖∂sn‖2Hm. | (3.10) |
For 2⩽α⩽m, we deduce
I2=12∫R3Δϕ⋅∂αn⋅∂αndx−∫R3∂α∇ϕ⋅∇n∂αndx−∑1⩽l⩽α−1Clα∫R3∂l∇ϕ⋅∇∂α−ln∂αndx≲‖Δϕ‖L32s−1‖∂αn‖2L32−s+‖∂α∇ϕ‖L2‖∇n‖L3s‖∂αn‖L63−2s+∑1⩽l⩽α−1‖∂l∇ϕ‖L3s‖∂α−l+1n‖L2‖∂αn‖L63−2s≲‖∂52−2sΔϕ‖L2‖∂α+s−12n‖2L2+‖∂α∇ϕ‖L2‖∂52−sn‖L2‖∂α+sn‖L2+∑1⩽l⩽α−1(‖∂32−sΔϕ‖θL2‖∂αΔϕ‖1−θL2‖∂32−sn‖1−θL2‖∂αn‖θL2)‖∂α+sn‖L2≲ε0(‖∂sn‖2Hm+‖∂sv‖2Hm)+ε0‖∂αΔϕ‖1−θL2‖∂αn‖θL2‖∂α+sn‖L2≲ε0(‖∂sn‖2Hm+‖∂sv‖2Hm)+ε0(‖∂sn‖Hm+‖∂sv‖Hm)‖∂sn‖Hm⩽ε0(‖∂sn‖2Hm+‖∂sv‖2Hm), | (3.11) |
where θ=2α−2l+2s−12α+2s−3∈(0,1).
In a word,
I2≲(ε150+ε0)(‖∂sn‖2Hm+‖∂sv‖2Hm) for 0⩽α⩽m. | (3.12) |
As for the term I3, for α=0, by Lemma 2.1 and Hölder's inequality, we get
I3=2∫R3∇ϕ⋅∇n⋅ndx≲‖∇ϕ‖L2‖∇n‖L3s‖n‖L63−2s≲(‖Δϕ‖45L1‖∂(Δϕ)‖15L2)‖∂52−sn‖L2‖∂sn‖L2≲ε150‖∂sn‖2Hm. | (3.13) |
For 1⩽α⩽m, we obtain that
I3≲(‖∂αn‖L32−s‖Δϕ‖L32s−1+‖∂αΔϕ‖L32−s‖n‖L32s−1)‖∂αn‖L32−s≲‖∂α+s−12n‖L2‖∂52−2sΔϕ‖L2+‖∂α+s−12Δϕ‖L2‖∂52−2sn‖L2)‖∂α+s−12n‖L2≲(‖∂sn‖Hm‖Δϕ‖H3+‖∂sΔϕ‖Hm‖n‖H3)‖∂sn‖Hm≲ε0(‖∂sn‖2Hm+‖∂sv‖2Hm). | (3.14) |
In a word,
I3≲(ε150+ε0)(‖∂sn‖2Hm+‖∂sv‖2Hm) for 0⩽α⩽m. | (3.15) |
Inserting (3.8), (3.12), and (3.15) into (3.4) and summing up with respect to α from 0 to m, we obtain
12ddt‖n‖2Hm+‖∂sn‖2Hm⩽Cε0‖∂u‖2Hm+C(ε150+ε0)(‖∂sn‖2Hm+‖∂sv‖2Hm). | (3.16) |
(ii) The estimate of v. The estimate of v is similar to the estimate of n. We get
12ddt‖v‖2Hm+‖∂sv‖2Hm⩽Cε0‖∂u‖2Hm+C(ε150+ε0)(‖∂sn‖2Hm+‖∂sv‖2Hm). | (3.17) |
(iii) The estimate of u. Applying ∂α(0⩽α⩽m) to the fourth equation of (1.4) and multiplying by ∂αu, then integrating over R3 by parts, we get
12ddt‖∂αu‖2L2+‖∂α+1u‖2L2=−∫R3∂α(u⋅∇u)⋅∂αudx+∫R3∂α(Δϕ∇ϕ)⋅∂αudx=:I4+I5. | (3.18) |
For I4, by Lemma 2.2, Hölder's inequality, and Young's inequality, we have
I4≲(‖∂αu‖L6‖∇u‖L32+‖u‖L3‖∂α+1u‖L2)‖∂αu‖L6≲(‖∂α+1u‖L2‖u‖34L2‖∂2u‖14L2+‖∂12u‖L2‖∂α+1u‖L2)‖∂α+1u‖L2⩽ε0‖∂u‖2Hm. | (3.19) |
As for the term I5, for α=0, we get
I5=∫R3Δϕ⋅∇ϕ⋅udx=0. | (3.20) |
For 1⩽α⩽m, it follows that
I5≲(‖∂αΔϕ‖L2‖∇ϕ‖L3+‖∂α∇ϕ‖L6‖Δϕ‖L32)‖∂αu‖L6≲‖∂αΔϕ‖L2‖Δϕ‖35L1‖∂Δϕ‖25L2‖∂α+1u‖L2≲‖∂sΔϕ‖Hm‖Δϕ‖25H3‖∂u‖Hm⩽ε250(‖∂sn‖2Hm+‖∂sv‖2Hm+‖∂u‖2Hm). | (3.21) |
In a word,
I5≲ε250(‖∂sn‖2Hm+‖∂sv‖2Hm+‖∂u‖2Hm) for 0⩽α⩽m. | (3.22) |
Therefore, inserting (3.19) and (3.22) into (3.18) and summing up with respect to α from 0 to m, we get
12ddt‖u‖2Hm+‖∂u‖2Hm⩽Cε250(‖∂sn‖2Hm+‖∂sv‖2Hm)+C(ε250+ε0)‖∂u‖2Hm. | (3.23) |
Eventually, combining (3.16) and (3.17) with (3.23), we obtain
ddt(‖n‖2Hm+‖v‖2Hm+‖u‖2Hm)+C(‖∂sn‖2Hm+‖∂sv‖2Hm+‖∂u‖2Hm)⩽0. | (3.24) |
Then, integrating (3.24) from 0 to t and according to the fifth equation of (1.4) immediately implies (3.1).
Next, we will study the local existence and uniqueness of the solution to system (1.4). We construct the solution sequence (nj,vj,ϕj,uj)j⩾0 by iteratively solving the Cauchy problem:
{∂tnj+1+uj⋅∇nj+1+(−Δ)snj+1=−∇⋅(nj+1∇ϕj),t>0,x∈R3,∂tvj+1+uj⋅∇vj+1+(−Δ)svj+1=∇⋅(vj+1∇ϕj),t>0,x∈R3,Δϕj=nj−vj,t>0,x∈R3,∂tuj+1+uj⋅∇uj+1−Δuj+1+∇Pj+1=Δϕj∇ϕj,t>0,x∈R3,∇⋅uj+1=0,t>0,x∈R3, | (3.25) |
where (nj+1,vj+1,ϕj+1,uj+1)|t=0 = (n0,v0,ϕ0,u0) for j⩾0 and Δϕ0=n0−v0. It should be emphasized that the iterative sequence is different from [26] due to the difference in the external force in the Navier-Stokes equation. We first set (n0,v0,u0)=(0,0,0). Then we solve (3.25) with the initial data to get (n1,v1,ϕ1,u1), respectively. Similarly, we can define (nj,vj,ϕj,uj) iteratively.
Lemma 3.2. Assume that s∈(12,1), (n0,v0,u0)∈(L1∩Hm)×(L1∩Hm)×Hm(m⩾3), n0,v0⩾0. Then, there exists a constant T1>0 such that system (1.4) possesses a unique classical solution (n,v,ϕ,u) satisfying
(n,v,ϕ,u)∈L∞(0,T1;Hm×Hm×Hm+2×Hm), |
(∂sn,∂sv,∂sϕ,∂u)∈L2(0,T1;Hm×Hm×Hm+2×Hm). |
Proof. In order to prove the conclusion, we divide the proof into several steps.
Step 1. (Uniform boundedness)
(i) The estimate of nj+1. Applying ∂α(0⩽α⩽m) to the first equation of (3.25), multiplying by ∂αnj+1 and integrating over R3 by parts, we get
12ddt‖∂αnj+1‖2L2+‖∂α+snj+1‖2L2=−∫R3∂α(uj⋅∇nj+1)∂αnj+1dx−∫R3∂α(∇nj+1∇ϕj)∂αnj+1dx−∫R3∂α(nj+1Δϕj)∂αnj+1dx=:J1+J2+J3. | (3.26) |
First, we deal with the term J1. For α=0, recalling that ∇⋅uj=0, we get
J1=−12∫R3uj⋅∇|nj+1|2dx=0. | (3.27) |
For α=1, recalling that ∇⋅uj=0, by Lemma 2.1, Hölder's inequality, and Young's inequality, we have
J1=−∫R3∂uj⋅∇nj+1∂nj+1dx−12∫R3uj⋅∇|∂nj+1|2dx≲‖∂uj‖L3s‖∂nj+1‖L2‖∂nj+1‖L63−2s≲‖∂52−suj‖L2‖∂nj+1‖L2‖∂1+snj+1‖L2≲‖uj‖Hm‖nj+1‖Hm‖∂snj+1‖Hm⩽ε‖∂snj+1‖2Hm+C‖uj‖2Hm‖nj+1‖2Hm. | (3.28) |
For 2⩽α⩽m, recalling that ∇⋅uj=0 and employing Lemma 2.1, Hölder's inequality, and Young's inequality, we obtain
J1=12∫R3Δϕj⋅∂αnj+1⋅∂αnj+1dx−α∫R3∇∂ϕj⋅∇∂α−1nj+1⋅∂αnj+1dx−∑2⩽l⩽αClα∫R3∇∂lϕj⋅∇∂α−lnj+1⋅∂αnj+1dx≲‖Δϕj‖L3s‖∂αnj+1‖L2‖∂αnj+1‖L63−2s+∑2⩽l⩽α‖∂l∇ϕj‖L2‖∂α−l+1nj+1‖L3s‖∂αnj+1‖L63−2s≲‖∂32−sΔϕj‖L2‖∂αnj+1‖L2‖∂α+snj+1‖L2+∑2⩽l⩽α‖∂l∇ϕj‖L2‖∂α−l+52−snj+1‖L2‖∂α+snj+1‖L2≲‖∂snj+1‖Hm‖nj+1‖Hm‖Δϕj‖Hm⩽ε‖∂snj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1‖2Hm. | (3.29) |
In a word,
J1≲ε‖∂snj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm+‖uj‖2Hm)‖nj+1‖2Hm for 0⩽α⩽m. | (3.30) |
As for J2, for α=0, by Lemma 2.1, Hölder's inequality, and Young's inequality, we get
J2=12∫R3Δϕj⋅nj+1⋅nj+1dx≲‖Δϕj‖L2‖nj+1‖L3s‖nj+1‖L63−2s≲‖Δϕj‖L2‖∂32−snj+1‖L2‖∂snj+1‖L2≲‖Δϕj‖Hm‖nj+1‖Hm‖∂snj+1‖Hm⩽ε‖∂snj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1‖2Hm. | (3.31) |
For α=1, by Lemma 2.1, Hölder's inequality, and Young's inequality, we have
J2=∫R3∇nj+1⋅∇ϕj⋅∂2nj+1dx≲‖∂nj+1‖L63+2s‖∇ϕj‖L∞‖∂2nj+1‖L63−2s≲‖nj+1‖2+s3L2‖∂3nj+1‖1−s3L2‖Δϕj‖12L2‖∂Δϕj‖12L2‖∂2+snj+1‖L2≲‖∂snj+1‖Hm‖nj+1‖Hm‖Δϕj‖Hm⩽ε‖∂snj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1‖2Hm. | (3.32) |
For 2⩽α⩽m, by Lemma 2.1, Hölder's inequality, and Young's inequality, we obtain
J2=12∫R3Δϕj⋅∂αnj+1⋅∂αnj+1dx−α∫R3∇∂ϕj⋅∇∂α−1nj+1⋅∂αnj+1dx−∑2⩽l⩽αClα∫R3∇∂lϕj⋅∇∂α−lnj+1⋅∂αnj+1dx≲‖Δϕj‖L3s‖∂αnj+1‖L2‖∂αnj+1‖L63−2s+∑2⩽l⩽α‖∂l∇ϕj‖L2‖∂α−l+1nj+1‖L3s‖∂αnj+1‖L63−2s≲‖∂32−sΔϕj‖L2‖∂αnj+1‖L2‖∂α+snj+1‖L2+∑2⩽l⩽α‖∂l∇ϕj‖L2‖∂α−l+52−snj+1‖L2‖∂α+snj+1‖L2≲‖∂snj+1‖Hm‖nj+1‖Hm‖Δϕj‖Hm⩽ε‖∂snj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1‖2Hm. | (3.33) |
In a word,
J2≲ε‖∂snj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1‖2Hm for 0⩽α⩽m. | (3.34) |
For J3, by Lemmas 2.1 and 2.2, Hölder's inequality and Young's inequality, we get
J3≲(‖∂αnj+1‖L2‖Δϕj‖L3s+‖nj+1‖L3s‖∂αΔϕj‖L2)‖∂αnj+1‖L63−2s≲(‖∂αnj+1‖L2‖∂32−sΔϕj‖L2+‖∂32−snj+1‖L2‖∂αΔϕj‖L2)‖∂α+snj+1‖L2≲‖nj+1‖Hm‖Δϕj‖Hm‖∂snj+1‖Hm⩽ε‖∂snj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1‖2Hm. | (3.35) |
Therefore, by inserting (3.30), (3.34), and (3.35) into (3.26) and summing up with respect to α from 0 to m, we get
ddt‖nj+1‖2Hm+‖∂snj+1‖2Hm⩽C(‖nj‖2Hm+‖vj‖2Hm+‖uj‖2Hm)‖nj+1‖2Hm. | (3.36) |
(ii) The estimate of vj+1. The estimate of vj+1 is similar to the estimate of nj+1; we get
ddt‖vj+1‖2Hm+‖∂svj+1‖2Hm⩽C(‖nj‖2Hm+‖vj‖2Hm+‖uj‖2Hm)‖vj+1‖2Hm. | (3.37) |
(iii) The estimate of uj+1. Applying ∂α(0⩽α⩽m) to the fourth equation of (3.25), multiplying by ∂αuj+1 and integrating over R3 by parts, we get
12ddt‖∂αuj+1‖2L2+‖∂α+1uj+1‖2L2=−∫R3∂α(uj⋅∇uj+1)⋅∂αuj+1dx+∫R3∂α(Δϕj∇ϕj)⋅∂αuj+1dx=:J4+J5. | (3.38) |
First, we deal with the term J4. For α=0, recalling that ∇⋅uj=0, we get
J4=−12∫R3uj⋅∇|uj+1|2dx=0. | (3.39) |
For 1⩽α⩽m, by Lemma 2.2, Hölder's inequality, and Young's inequality, we have
J4=∫R3∂α−1(uj⋅∇uj+1)⋅∂α+1uj+1dx≲(‖∂α−1uj‖L2‖∂uj+1‖L∞+‖uj‖L∞‖∂αuj+1‖L2)‖∂α+1uj+1‖L2≲‖uj‖Hm‖uj+1‖Hm‖∂uj+1‖Hm⩽ε‖∂uj+1‖2Hm+C‖uj‖2Hm‖uj+1‖2Hm. | (3.40) |
In a word,
J4≲ε‖∂uj+1‖2Hm+C‖uj‖2Hm‖uj+1‖2Hm for 0⩽α⩽m. | (3.41) |
As for J5, for α=0, recalling that ∇⋅uj=0, we have
J5=∫R3uj+1⋅∇ϕj⋅Δϕjdx=0. | (3.42) |
For 1⩽α⩽m, by Lemma 2.2, Hölder's inequality, and Young's inequality, we obtain
J5=−∫R3∂α−1(Δϕj∇ϕj)⋅∂α+1uj+1dx≲(‖∂α−1Δϕj‖L2‖∇ϕj‖L∞+‖Δϕj‖L3‖∂α−1∇ϕj‖L6)‖∂α+1uj+1‖L2≲(‖∂α−1Δϕj‖L2‖Δϕj‖12L2‖∂Δϕj‖12L2+‖∂12Δϕj‖L2‖∂α−1Δϕj‖L2)‖∂α+1uj+1‖L2≲‖Δϕj‖2Hm‖∂uj+1‖Hm⩽ε‖∂uj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)2. | (3.43) |
In a word,
J5≲ε‖∂uj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)2 for 0⩽α⩽m. | (3.44) |
Thus, inserting (3.41) and (3.44) into (3.38) and summing up with respect to α from 0 to m, we get
ddt‖uj+1‖2Hm+‖∂uj+1‖2Hm⩽C‖uj‖2Hm‖uj+1‖2Hm+C(‖nj‖2Hm+‖vj‖2Hm)2. | (3.45) |
Next, we show that there exists a constant M>0 such that for any j, the following inequality holds in a small time interval [0,T1] (T1 will be specified later):
sup0⩽t⩽T1(‖nj+1‖2Hm+‖vj+1‖2Hm+‖uj+1‖2Hm)+∫T10(‖∂snj+1‖2Hm+‖∂svj+1‖2Hm+‖∂uj+1‖2Hm)dt⩽M. | (3.46) |
Here M satisfies M⩾4(‖n0‖2Hm+‖v0‖2Hm+‖u0‖2Hm).
We prove (3.46) by mathematical induction. Suppose (3.46) holds for j⩽i−1. Combining (3.36), (3.37) and (3.45) to obtain
ddt(‖ni+1‖2Hm+‖vi+1‖2Hm+‖ui+1‖2Hm)+(‖∂sni+1‖2Hm+‖∂svi+1‖2Hm+‖∂ui+1‖2Hm)⩽C‖ui‖2Hm‖ui+1‖2Hm+C(‖ni‖2Hm+‖vi‖2Hm+‖ui‖2Hm)(‖ni+1‖2Hm+‖vi+1‖2Hm)+C(‖ni‖2Hm+‖vi‖2Hm)2⩽C(‖ni‖2Hm+‖vi‖2Hm+‖ui‖2Hm)(‖ni+1‖2Hm+‖vi+1‖2Hm+‖ui+1‖2Hm)+C(‖ni‖2Hm+‖vi‖2Hm)2⩽CM(‖ui+1‖2Hm+‖ni+1‖2Hm+‖vi+1‖2Hm)+CM2. |
We choose T1 such that CMT1⩽14 and eCMT1⩽2. Then, according to Gronwall's inequality, we have (3.46). Thus, we get (nj+1,vj+1,ϕj+1,uj+1)∈ L∞(0,T1;Hm×Hm×Hm+2×Hm) and (∂snj+1,∂svj+1,∂sϕj+1,∂uj+1)∈L2(0,T1;Hm×Hm×Hm+2×Hm) for T1>0.
Step 2. (Convergence)
The estimate in this part is similar to that in the previous part. Since both (nj,vj,ϕj,uj) and (nj+1,vj+1,ϕj+1,uj+1) satisfy (3.25), we get the following equations:
{∂t(nj+1−nj)+uj⋅∇(nj+1−nj)+(uj−uj−1)⋅∇nj+(−△)s(nj+1−nj)=−∇ϕj(∇nj+1−∇nj)−∇nj(∇ϕj−∇ϕj−1)−Δϕj(nj+1−nj)−nj(Δϕj−Δϕj−1),t>0,x∈R3,∂t(vj+1−vj)+uj⋅∇(vj+1−vj)+(uj−uj−1)⋅∇vj+(−△)s(vj+1−vj)=∇ϕj(∇vj+1−∇vj)+∇vj(∇ϕj−∇ϕj−1)+Δϕj(vj+1−vj)+vj(Δϕj−Δϕj−1),t>0,x∈R3,Δϕj−Δϕj−1=(nj−nj−1)−(vj−vj−1),t>0,x∈R3,∂t(uj+1−uj)+uj⋅∇(uj+1−uj)+(uj−uj−1)∇uj−△(uj+1−uj)+∇Pj+1−∇Pj=∇ϕj(Δϕj−Δϕj−1)+Δϕj−1(∇ϕj−∇ϕj−1),t>0,x∈R3,∇⋅(uj+1−uj)=0,t>0,x∈R3. | (3.47) |
(i) The estimate of nj+1−nj. Applying ∂α(0⩽α⩽m−1) to the first equation of (3.47), multiplying by ∂α(nj+1−nj), and integrating over R3 by parts, we get
12ddt‖∂α(nj+1−nj)‖2L2+‖∂α+s(nj+1−nj)‖2L2=−∫R3∂α(uj⋅∇(nj+1−nj))⋅∂α(nj+1−nj)dx−∫R3∂α((uj−uj−1)∇nj)⋅∂α(nj+1−nj)dx−∫R3∂α(∇ϕj(∇nj+1−∇nj)))⋅∂α(nj+1−nj)dx−∫R3∂α(∇nj(∇ϕj−∇ϕj−1)))⋅∂α(nj+1−nj)dx−∫R3∂α(Δϕj(nj+1−nj))⋅∂α(nj+1−nj)dx−∫R3∂α(nj(Δϕj−Δϕj−1))⋅∂α(nj+1−nj)dx=:R1+R2+R3+R4+R5+R6. | (3.48) |
First, we deal with R1. For α=0, recalling that ∇⋅uj=0, we have
R1=−12∫R3uj⋅∇|nj+1−nj|2dx=0. | (3.49) |
For α=1, by Lemma 2.1, Hölder's inequality, and Young's inequality, we get
R1=−∫R3∂uj⋅∇(nj+1−nj)⋅∂(nj+1−nj)dx−12∫R3uj⋅∇|∂(nj+1−nj)|2dx≲‖∂uj‖L3s‖∂(nj+1−nj)‖L2‖∂(nj+1−nj)‖L63−2s≲‖∂52−suj‖L2‖∂(nj+1−nj)‖L2‖∂1+s(nj+1−nj)‖L2≲‖uj‖Hm‖nj+1−nj‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖uj‖2Hm‖uj−uj−1‖2Hm−1. | (3.50) |
For 2⩽α⩽m−1, by Lemma 2.1, Hölder's inequality, and Young's inequality, we obtain
R1=−12∫R3uj⋅∇|∂α(nj+1−nj)|2dx−α∫R3∂uj⋅∇∂α−1(nj+1−nj)⋅∂α(nj+1−nj)dx−∑2⩽l⩽αClα∫R3∂luj⋅∇∂α−l(nj+1−nj)⋅∂α(nj+1−nj)dx≲‖∂uj‖L3s‖∂α(nj+1−nj)‖L2‖∂α(nj+1−nj)‖L63−2s+∑2⩽l⩽α‖∂luj‖L2‖∂α−l+1(nj+1−nj)‖L3s‖∂α(nj+1−nj)‖L63−2s≲‖∂52−suj‖L2‖∂α(nj+1−nj)‖L2‖∂α+s(nj+1−nj)‖L2+∑2⩽l⩽α‖∂luj‖L2‖∂α−l+52−s(nj+1−nj)‖L2‖∂α+s(nj+1−nj)‖L2≲‖uj‖Hm‖nj+1−nj‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖uj‖2Hm‖nj+1−nj‖2Hm−1. | (3.51) |
In a word,
R1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖uj‖2Hm‖nj+1−nj‖2Hm−1 for 0⩽α⩽m−1. | (3.52) |
For R2, by Lemmas 2.1 and 2.2, Hölder's inequality, and Young's inequality, we get
R2≲(‖∂α(uj−uj−1)‖L2‖∇nj‖L3s+‖uj−uj−1‖L3s‖∂α+1nj‖L2)‖∂α(nj+1−nj)‖L63−2s≲(‖∂α(uj−uj−1)‖L2‖∂52−snj‖L2+‖∂32−s(uj−uj−1)‖L2‖∂α+1nj‖L2)‖∂α+s(nj+1−nj)‖L2≲‖nj‖Hm‖uj−uj−1‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖nj‖2Hm‖uj−uj−1‖2Hm−1. | (3.53) |
Then we deal with the term R3. For α=0, by Lemma 2.1, Hölder's inequality, and Young's inequality, we have
R3=12∫R3Δϕj⋅(nj+1−nj)⋅(nj+1−nj)dx≲‖Δϕj‖L2‖nj+1−nj‖L3s‖nj+1−nj‖L63−2s≲‖Δϕj‖L2‖∂32−s(nj+1−nj)‖L2‖∂s(nj+1−nj)‖L2≲‖Δϕj‖Hm‖nj+1−nj‖Hm−1‖∂s(nj+1−nj)‖Hm−1≲ε‖∂s(nj+1−nj)‖2Hm−1+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1−nj‖2Hm−1. | (3.54) |
For α=1, by Lemma 2.1, Hölder's inequality, and Young's inequality, we obtain
R3=∫R3∇(nj+1−nj)⋅∇ϕj⋅∂2(nj+1−nj)dx≲‖∂(nj+1−nj)‖L63+2s‖∇ϕj‖L∞‖∂2(nj+1−nj)‖L63−2s≲‖nj+1−nj‖2+s3L2‖∂3(nj+1−nj)‖1−s3L2‖Δϕj‖12L2‖∂Δϕj‖12L2‖∂2+s(nj+1−nj)‖L2≲‖∂s(nj+1−nj)‖Hm−1‖nj+1−nj‖Hm−1‖Δϕj‖Hm⩽ε‖∂s(nj+1−nj)‖2Hm−1+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1−nj‖2Hm−1. | (3.55) |
For 2⩽α⩽m−1, by Lemma 2.1, Hölder's inequality, and Young's inequality, we get
R3=12∫R3Δϕj⋅∂α(nj+1−nj)∂α(nj+1−nj)dx−α∫R3∂(∇ϕj)⋅∇∂α−1(nj+1−nj)⋅∂α(nj+1−nj)dx−∑2⩽l⩽αClα∫R3∂l∇ϕj⋅∇∂α−l(nj+1−nj)⋅∂α(nj+1−nj)dx≲‖Δϕj‖L3s‖∂α(nj+1−nj)‖L2‖∂α(nj+1−nj)‖L63−2s+∑2⩽l⩽α‖∂l∇ϕj‖L2‖∂α−l+1(nj+1−nj)‖L3s‖∂α(nj+1−nj)‖L63−2s≲‖∂32−sΔϕj‖L2‖∂α(nj+1−nj)‖L2‖∂α+s(nj+1−nj)‖L2+∑2⩽l⩽α‖∂l∇ϕj‖L2‖∂α−l+52−s(nj+1−nj)‖L2‖∂α+s(nj+1−nj)‖L2≲‖Δϕj‖Hm‖nj+1−nj‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1−nj‖2Hm−1. | (3.56) |
In a word,
R3⩽ε‖∂s(nj+1−nj)‖2Hm−1+C(‖nj‖2Hm+‖vj‖2Hm)‖nj+1−nj‖2Hm−1 for 0⩽α⩽m−1. | (3.57) |
As for R4, for α=0, we obtain
R4=∫R3nj⋅[(Δϕj−Δϕj−1)⋅(nj+1−nj)+(∇ϕj−∇ϕj−1)⋅∇(nj+1−nj)]dx≲‖nj‖L3s‖Δϕj−Δϕj−1‖L2‖nj+1−nj‖L63−2s+‖nj‖L3‖∇ϕj−∇ϕj−1‖L6‖∇(nj+1−nj)‖L2≲‖∂32−snj‖L2‖Δϕj−Δϕj−1‖L2‖∂s(nj+1−nj)‖L2+‖∂12nj‖L2‖Δϕj−Δϕj−1‖L2‖∇(nj+1−nj)‖L2≲‖nj‖Hm‖Δϕj−Δϕj−1‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖nj‖2Hm(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.58) |
For 1⩽α⩽m−1, it follows that
R4≲(‖∂α∇nj‖L2‖∇ϕj−∇ϕj−1‖L31−s+‖∇nj‖L32−s‖∂α(∇ϕj−∇ϕj−1)‖L6)‖∂α(nj+1−nj)‖L61+2s≲(‖∂α∇nj‖L2‖∂s−12(Δϕj−Δϕj−1)‖L2+‖∂s+12nj‖L2‖∂α(Δϕj−Δϕj−1)‖L2)‖∂α+1−s(nj+1−nj)‖L2≲‖nj‖Hm‖Δϕj−Δϕj−1‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖nj‖2Hm(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.59) |
In a word,
R4⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖nj‖2Hm×(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1) for 0⩽α⩽m−1. | (3.60) |
For R5, by Lemmas 2.1 and 2.2, Hölder's inequality, and Young's inequality, we have
R5≲(‖∂αΔϕj‖L2‖nj+1−nj‖L3s+‖∂α(nj+1−nj)‖L2‖Δϕj‖L3s)‖∂α(nj+1−nj)‖L63−2s≲(‖∂αΔϕj‖L2‖∂32−s(nj+1−nj)‖L2+‖∂α(nj+1−nj)‖L2‖∂32−sΔϕj‖L2)‖∂α+s(nj+1−nj)‖L2≲‖Δϕj‖Hm‖nj+1−nj‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C(‖nj‖2Hm+‖vj‖2Hm)‖nj−nj−1‖2Hm−1. | (3.61) |
For R6, by Lemmas 2.1 and 2.2, Hölder's inequality, and Young's inequality, we obtain
R6≲(‖∂αnj‖L2‖Δϕj−Δϕj−1‖L3s+‖∂α(Δϕj−Δϕj−1)‖L2‖nj‖L3s)‖∂α(nj+1−nj)‖L63−2s≲(‖∂αnj‖L2‖∂32−s(Δϕj−Δϕj−1)‖L2+‖∂α(Δϕj−Δϕj−1)‖L2‖∂32−snj‖L2)‖∂α+s(nj+1−nj)‖L2≲‖nj‖Hm‖Δϕj−Δϕj−1‖Hm−1‖∂s(nj+1−nj)‖Hm−1⩽ε‖∂s(nj+1−nj)‖2Hm−1+C‖nj‖2Hm(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.62) |
Therefore, inserting (3.52), (3.53), (3.57), and (3.60)–(3.62) into (3.48) and summing up with respect to α from 0 to m−1, we have
ddt‖nj+1−nj‖2Hm−1+‖∂s(nj+1−nj)‖2Hm−1⩽C(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1+‖uj−uj−1‖2Hm−1+‖nj+1−nj‖2Hm−1). | (3.63) |
(ii) The estimate of vj+1−vj. The estimate of vj+1−vj is similar to the estimate of nj+1−nj. We get
ddt‖vj+1−vj‖2Hm−1+‖∂s(vj+1−vj)‖2Hm−1⩽C(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1+‖uj−uj−1‖2Hm−1+‖vj+1−vj‖2Hm−1). | (3.64) |
(iii) The estimate of uj+1−uj. Applying ∂α(0⩽α⩽m−1) to the fourth equation of (3.47), multiplying by ∂α(uj+1−uj) and integrating over R3 by parts, we get
12ddt‖∂α(uj+1−uj)‖2L2+‖∂α∇(uj+1−uj)‖2L2=−∫R3∂α(uj⋅∇(uj+1−uj))⋅∂α(uj+1−uj)dx−∫R3∂α((uj−uj−1)∇uj)⋅∂α(uj+1−uj)dx+∫R3∂α(∇ϕj(Δϕj−Δϕj−1))⋅∂α(uj+1−uj)dx+∫R3∂α(Δϕj−1(∇ϕj−∇ϕj−1))⋅∂α(uj+1−uj)dx=:R7+R8+R9+R10. | (3.65) |
First, we deal with the term R7. For α=0, recalling that ∇⋅uj=0, we have
R7=−12∫R3uj⋅∇|uj+1−uj|2dx=0. | (3.66) |
For 1⩽α⩽m−1, by Lemma 2.2, Hölder's inequality, and Young's inequality, we get
R7=∫R3∂α−1(uj⋅∇(uj+1−uj))⋅∂α+1(uj+1−uj)dx≲(‖uj‖L∞‖∂α(uj+1−uj)‖L2+‖∂α−1uj‖L2‖∇(uj+1−uj)‖L∞)‖∂α+1(uj+1−uj)‖L2≲‖uj‖Hm‖uj+1−uj‖Hm−1‖∂(uj+1−uj)‖Hm−1⩽ε‖∂(uj+1−uj)‖2Hm−1+C‖uj‖2Hm‖uj+1−uj‖2Hm−1. | (3.67) |
In a word,
R7⩽ε‖∂(uj+1−uj)‖2Hm−1+C‖uj‖2Hm‖uj+1−uj‖2Hm−1 for 0⩽α⩽m−1. | (3.68) |
For R8, by Lemmas 2.1 and 2.2, Hölder's inequality, and Young's inequality, we obtain
R8≲(‖∂α(uj−uj−1)‖L2‖∇uj‖L3+‖∂α+1uj‖L2‖uj−uj−1‖L3)‖∂α(uj+1−uj)‖L6≲(‖∂α(uj−uj−1)‖L2‖∂32uj‖L2+‖∂α+1uj‖L2‖∂12(uj−uj−1)‖L2)‖∂α+1(uj+1−uj)‖L2⩽‖uj−uj−1‖Hm−1‖uj‖Hm‖∂(uj+1−uj)‖Hm−1⩽ε‖∂(uj+1−uj)‖2Hm−1+C‖uj‖2Hm‖uj−uj−1‖2Hm−1. | (3.69) |
We next deal with the term R9. For α=0, we have
R9≲‖∇ϕj‖L3‖Δϕj−Δϕj−1‖L2‖uj+1−uj‖L6≲‖Δϕj‖35L1‖∂Δϕj‖25L2‖Δϕj−Δϕj−1‖L2‖∂(uj+1−uj)‖L2≲‖Δϕj‖25Hm‖Δϕj−Δϕj−1‖Hm−1‖∂(uj+1−uj)‖Hm−1⩽ε‖∂(uj+1−uj)‖2Hm−1+C‖Δϕj‖45Hm(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.70) |
For 1⩽α⩽m−1, it follows that
R9=−∫R3∂α−1(∇ϕj(Δϕj−Δϕj−1))⋅∂α+1(uj+1−uj)dx≲(‖∂α−1∇ϕj‖L6‖Δϕj−Δϕj−1‖L3+‖∇ϕj‖L∞‖∂α−1(Δϕj−Δϕj−1)‖L2)‖∂α+1(uj+1−uj)‖L2≲(‖∂α−1Δϕj‖L2‖∂12(Δϕj−Δϕj−1)‖L2+‖Δϕj‖12L2‖∂Δϕj‖12L2‖∂α−1(Δϕj−Δϕj−1)‖L2)‖∂α+1(uj+1−uj)‖L2≲‖Δϕj‖Hm‖Δϕj−Δϕj−1‖Hm−1‖∂(uj+1−uj)‖Hm−1⩽ε‖∂(uj+1−uj)‖2Hm−1+C‖Δϕj‖2Hm(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.71) |
In a word,
R9⩽ε‖∂(uj+1−uj)‖2Hm−1+C(‖Δϕj‖45Hm+‖Δϕj‖2Hm)×(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1) for 0⩽α⩽m−1. | (3.72) |
As for R10, for α=0, we have
R10=−∫R3∇ϕj−1(Δϕj−Δϕj−1)⋅(uj+1−uj)dx≲‖∇ϕj−1‖L3‖Δϕj−Δϕj−1‖L2‖uj+1−uj‖L6≲‖Δϕj−1‖35L1‖∂Δϕj−1‖25L2‖Δϕj−Δϕj−1‖L2‖∂(uj+1−uj)‖L2≲‖Δϕj−1‖25Hm‖Δϕj−Δϕj−1‖Hm−1‖∂(uj+1−uj)‖Hm−1⩽ε‖∂(uj+1−uj)‖2Hm−1+C‖Δϕj−1‖45Hm(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.73) |
For 1⩽α⩽m−1, we obtain
R10=−∫R3∂α−1(Δϕj−1(∇ϕj−∇ϕj−1))⋅∂α+1(uj+1−uj)dx≲(‖∂α−1Δϕj−1‖L2‖∇ϕj−∇ϕj−1‖L∞+‖Δϕj−1‖L3‖∂α−1(∇ϕj−∇ϕj−1)‖L6)‖∂α+1(uj+1−uj)‖L2≲(‖∂α−1Δϕj−1‖L2‖Δϕj−Δϕj−1‖12L2‖∂(Δϕj−Δϕj−1)‖12L2+‖∂12Δϕj−1‖L2‖∂α−1(Δϕj−Δϕj−1)‖L2)‖∂α+1(uj+1−uj)‖L2≲‖Δϕj−1‖Hm‖Δϕj−Δϕj−1‖Hm−1‖∂(uj+1−uj)‖Hm−1⩽ε‖∂(uj+1−uj)‖2Hm−1+C(‖nj−1‖2Hm+‖vj−1‖2Hm)×(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.74) |
In a word,
R10⩽ε‖∂(uj+1−uj)‖2Hm−1+C(‖nj−1‖2Hm+‖vj−1‖2Hm+‖Δϕj−1‖45Hm)×(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1). | (3.75) |
Thus, inserting (3.68), (3.69), (3.72), and (3.75) into (3.65) and summing up with respect to α from 0 to m−1, we get
ddt‖uj+1−uj‖2Hm−1+‖∂(uj+1−uj)‖2Hm−1⩽C(‖nj−nj−1‖2Hm−1+‖vj−vj−1‖2Hm−1+‖uj−uj−1‖2Hm−1+‖uj+1−uj‖2Hm−1). | (3.76) |
Combining (3.63), (3.64), and (3.76), we obtain
\begin{equation} \begin{aligned} & \frac{d}{dt}(\|n^{j+1}-n^{j}\|_{H^{m-1}}^{2}+\|v^{j+1}-v^{j}\|_{H^{m-1}}^{2}+\|u^{j+1}-u^{j}\|_{H^{m-1}}^{2}) \\ & +(\|\partial^{s}(n^{j+1}-n^{j})\|_{H^{m-1}}^{2}+\|\partial^{s}(v^{j+1}-v^{j})\|_{H^{m-1}}^{2} +\|\partial(u^{j+1}-u^{j})\|_{H^{m-1}}^{2}) \\ \leqslant & C(\|n^{j}-n^{j-1}\|_{H^{m-1}}^{2}+\|v^{j}-v^{j-1}\|_{H^{m-1}}^{2}+\|u^{j}-u^{j-1}\|_{H^{m-1}}^{2} \\ & +\|n^{j+1}-n^{j}\|_{H^{m-1}}^{2}+\|v^{j+1}-v^{j}\|_{H^{m-1}}^{2}+\|u^{j+1}-u^{j}\|_{H^{m-1}}^{2}), \end{aligned} \end{equation} | (3.77) |
where C depends on the H^{m}\times H^{m}\times H^{m}\times H^{m}\times H^{m} norm of (n^{j}, n^{j-1}, v^{j}, v^{j-1}, u^{j}) .
Through Gronwall's inequality, we obtain
\begin{equation} \begin{aligned} & \sup\limits_{0\leqslant t\leqslant T_{1}}(\|n^{j+1}-n^{j}\|_{H^{m-1}}^{2}+\|v^{j+1}-v^{j}\|_{H^{m-1}}^{2}+\|u^{j+1}-u^{j}\|_{H^{m-1}}^{2}) \\ \leqslant & CT_{1}e^{CT_{1}}\sup\limits_{0\leqslant t\leqslant T_{1}} (\|n^{j}-n^{j-1}\|_{H^{m-1}}^{2}+\|v^{j}-v^{j-1}\|_{H^{m-1}}^{2}+\|u^{j}-u^{j-1}\|_{H^{m-1}}^{2}). \end{aligned} \end{equation} | (3.78) |
Therefore, we conclude that (n^{j}, v^{j}, \phi^{j}, u^{j}) is a Cauchy sequence in the Banach space C(0, T_{1}; H^{m-1}\times H^{m-1}\times H^{m+1}\times H^{m-1}) for small T_{1} > 0 . So, we can take the limit to get (n, v, \phi, u) , which is the solution of system (1.4) and satisfies (n, v, \phi, u)\in L^{\infty}(0, T;H^{m}\times H^{m}\times H^{m+2}\times H^{m}), (\partial^{s}n, \partial^{s}v, \partial^{s}\phi, \partial u)\in L^{2}(0, T;H^{m}\times H^{m}\times H^{m+2}\times H^{m}) .
Step 3. (Uniqueness)
In order to show the uniqueness of the solution, we assume that there are two solutions (n_{1}(x, t), v_{1}(x, t), \phi_{1}(x, t), u_{1}(x, t)) and (n_{2}(x, t), v_{2}(x, t), \phi_{2}(x, t), u_{2}(x, t)) of (1.4) with the same initial data in the time interval [0, T_{1}] , where T_{1} is any time before the maximal time of existence. Then (n_{1}(x, t)-n_{2}(x, t), v_{1}(x, t)-v_{2}(x, t), \phi_{1}(x, t)-\phi_{2}(x, t), u_{1}(x, t)-u_{2}(x, t)) satisfies
\begin{equation} \begin{cases} \partial_{t}(n_{1}-n_{2})+u_{1}\cdot\nabla(n_{1}-n_{2})+(u_{1}-u_{2})\cdot\nabla n_{2}+(-\Delta)^{s}(n_{1}-n_{2}) \\ \quad = -\nabla\cdot((n_{1}-n_{2})\nabla\phi_{1})-\nabla\cdot((\nabla\phi_{1}-\nabla\phi_{2})n_{2}), &t > 0,x\in\mathbb{R}^{3}, \\ \partial_{t}(v_{1}-v_{2})+u_{1}\cdot\nabla(v_{1}-v_{2})+(u_{1}-u_{2})\cdot\nabla v_{2}+(-\Delta)^{s}(v_{1}-v_{2}) &t > 0,x\in\mathbb{R}^{3}, \\ \quad = \nabla\cdot((v_{1}-v_{2})\nabla\phi_{1})+\nabla\cdot((\nabla\phi_{1}-\nabla\phi_{2})v_{2}), &t > 0,x\in\mathbb{R}^{3}, \\ \Delta(\phi_{1}-\phi_{2}) = (n_{1}-n_{2})-(v_{1}-v_{2}), &t > 0,x\in\mathbb{R}^{3},\\ \partial_{t}(u_{1}-u_{2})+u_{1}\cdot\nabla(u_{1}-u_{2})+(u_{1}-u_{2})\cdot\nabla u_{2}-\Delta(u_{1}-u_{2}) +\nabla(P_{1}-P_{2})\\ \quad = (\Delta\phi_{1}-\Delta\phi_{2})\nabla\phi_{1}+\Delta\phi_{2}(\nabla\phi_{1}-\nabla\phi_{2}), &t > 0,x\in\mathbb{R}^{3}, \\ \nabla\cdot(u_{1}-u_{2}) = 0, &t > 0,x\in\mathbb{R}^{3}. \end{cases} \end{equation} | (3.79) |
Multiplying n_{1}-n_{2} to both sides of the first equation of (3.79), then integrating over R^{3} by parts, by Hölder's inequality, we have
\begin{equation} \begin{aligned} & \frac{1}{2}\frac{d}{dt}\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|\partial^{s}(n_{1}-n_{2})\|_{L^{2}}^{2} \\ \lesssim & \|\partial n_{2}\|_{L^{\frac{3}{s}}}\|u_{1}-u_{2}\|_{L^{2}}\|n_{1}-n_{2}\|_{L^{\frac{6}{3-2s}}} +\|\Delta\phi_{1}\|_{L^{\infty}}\|n_{1}-n_{2}\|_{L^{2}}^{2}\\&+\|\nabla n_{2}\|_{L^{\frac{3}{1+s}}}\|\nabla\phi_{1}-\nabla\phi_{2}\|_{L^{6}}\|n_{1}-n_{2}\|_{L^{\frac{6}{3-2s}}} \\ & +\|n_{2}\|_{L^{\frac{3}{s}}}\|\Delta\phi_{1}-\Delta\phi_{2}\|_{L^{2}}\|n_{1}-n_{2}\|_{L^{\frac{6}{3-2s}}} \\ \lesssim & \|\partial^{\frac{5}{2}-s}n_{2}\|_{L^{2}}\|u_{1}-u_{2}\|_{L^{2}}\|\partial^{s}(n_{1}-n_{2})\|_{L^{2}} +\|\Delta\phi_{1}\|_{L^{\infty}}\|n_{1}-n_{2}\|_{L^{2}}^{2} \\ & +\|n_{2}\|_{L^{2}}^{\frac{1+2s}{4}}\|\partial^{2}n_{2}\|_{L^{2}}^{\frac{3-2s}{4}}\|\Delta\phi_{1}-\Delta\phi_{2}\|_{L^{2}}\|\partial^{s}(n_{1}-n_{2})\|_{L^{2}} \\ & +\|\partial^{\frac{3}{2}-s}n_{2}\|_{L^{2}}\|\Delta\phi_{1}-\Delta\phi_{2}\|_{L^{2}}\|\partial^{s}(n_{1}-n_{2})\|_{L^{2}} \\ \leqslant & \varepsilon\|\partial^{s}(n_{1}-n_{2})\|_{L^{2}}^{2} +C(\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|u_{1}-u_{2}\|_{L^{2}}^{2}). \end{aligned} \end{equation} | (3.80) |
Therefore,
\begin{equation} \frac{d}{dt}\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|\partial^{s}(n_{1}-n_{2})\|_{L^{2}}^{2}\leqslant C(\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|u_{1}-u_{2}\|_{L^{2}}^{2}). \end{equation} | (3.81) |
Similarly,
\begin{equation} \frac{d}{dt}\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|\partial^{s}(v_{1}-v_{2})\|_{L^{2}}^{2}\leqslant C(\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|u_{1}-u_{2}\|_{L^{2}}^{2}). \end{equation} | (3.82) |
Multiplying u_{1}-u_{2} to both sides of the fourth equation of (3.79), then integrating over R^{3} by parts, by Hölder's inequality, we have
\begin{equation} \begin{aligned} & \frac{1}{2}\frac{d}{dt}\|u_{1}-u_{2}\|_{L^{2}}^{2}+\|\partial(u_{1}-u_{2})\|_{L^{2}}^{2} \\ \lesssim & \|\nabla u_{2}\|_{L^{3}}\|u_{1}-u_{2}\|_{L^{2}}\|u_{1}-u_{2}\|_{L^{6}} +\|\Delta\phi_{1}-\Delta\phi_{2}\|_{L^{2}}\|\nabla\phi_{1}\|_{L^{3}}\|u_{1}-u_{2}\|_{L^{6}} \\ & +\|\nabla\phi_{1}-\nabla\phi_{2}\|_{L^{6}}\|\Delta\phi_{2}\|_{L^{\frac{3}{2}}}\|u_{1}-u_{2}\|_{L^{6}} \\ \lesssim & \|\partial^{\frac{3}{2}}u_{2}\|_{L^{2}}\|u_{1}-u_{2}\|_{L^{2}}\|\partial(u_{1}-u_{2})\|_{L^{2}} \\ & +\|\Delta\phi_{1}-\Delta\phi_{2}\|_{L^{2}}\|\Delta\phi_{1}\|_{L^{1}}^{\frac{3}{5}}\|\partial\Delta\phi_{1}\|_{L^{1}}^{\frac{2}{5}}\|\partial(u_{1}-u_{2})\|_{L^{2}} \\ & +\|\Delta\phi_{1}-\Delta\phi_{2}\|_{L^{2}}\|\Delta\phi_{2}\|_{L^{1}}^{\frac{3}{5}}\|\partial\Delta\phi_{2}\|_{L^{2}}^{\frac{2}{5}}\|\partial(u_{1}-u_{2})\|_{L^{2}} \\ \leqslant & \varepsilon\|\partial(u_{1}-u_{2})\|_{L^{2}}^{2} +C(\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|u_{1}-u_{2}\|_{L^{2}}^{2}). \end{aligned} \end{equation} | (3.83) |
Therefore,
\begin{equation} \frac{d}{dt}\|u_{1}-u_{2}\|_{L^{2}}^{2}+\|\partial(u_{1}-u_{2})\|_{L^{2}}^{2} \leqslant C(\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|u_{1}-u_{2}\|_{L^{2}}^{2}). \end{equation} | (3.84) |
Summing (3.81), (3.82), and (3.84), we have
\begin{equation} \begin{aligned} & \frac{d}{dt}(\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|u_{1}-u_{2}\|_{L^{2}}^{2}) \\ & +(\|\partial^{s}(n_{1}-n_{2})\|_{L^{2}}^{2}+\|\partial^{s}(v_{1}-v_{2})\|_{L^{2}}^{2}+\|\nabla(u_{1}-u_{2})\|_{L^{2}}^{2}) \\ \leqslant & C(\|n_{1}-n_{2}\|_{L^{2}}^{2}+\|v_{1}-v_{2}\|_{L^{2}}^{2}+\|u_{1}-u_{2}\|_{L^{2}}^{2}). \end{aligned} \end{equation} | (3.85) |
Since (n_{1}(x, t)-n_{2}(x, t), v_{1}(x, t)-v_{2}(x, t), u_{1}(x, t)-u_{2}(x, t))|_{t = 0} = (0, 0, 0) , according to Gronwall's inequality, for 0\leqslant t\leqslant T_{1} ,
(n_{1}(x,t)-n_{2}(x,t),v_{1}(x,t)-v_{2}(x,t),u_{1}(x,t)-u_{2}(x,t)) = (0,0,0). |
Therefore, the uniqueness of local classical solutions is proved.
First, we prove that the solution of (3.25) satisfies the following lemma under the condition of small initial data.
Lemma 3.3. Assume that s\in(\frac{1}{2}, 1) , (n_{0}, v_{0}, u_{0})\in (L^{1}\cap H^{3})\times(L^{1}\cap H^{3})\times H^{3} , n_{0}, v_{0}\geqslant 0 . If there is a small constant \varepsilon_{1} > 0 such that \|n_{0}\|_{H^{3}}+\|v_{0}\|_{H^{3}}+\|u_{0}\|_{H^{3}}\leqslant\varepsilon_{1} , then there exist small constants \varepsilon_{2} > 0 and T_{2} > 0 such that the solution of (3.25) satisfies
\begin{equation} \sup\limits_{0\leqslant t\leqslant T_{2}}(\|n^{j}\|_{H^{3}}+\|v^{j}\|_{H^{3}}+\|u^{j}\|_{H^{3}})\leqslant\varepsilon_{2}, \quad j\geqslant 0. \end{equation} | (3.86) |
Proof. We will prove the conclusion by induction. The assumption (n^{0}, v^{0}, u^{0}) = (0, 0, 0) implies that (3.86) holds for j = 0 . Assuming that (3.86) is true for any j > 0 , we will prove that the conclusion is also true for j+1 .
(i) The estimate of n^{j+1} . Applying \partial^{\alpha}(0\leqslant\alpha\leqslant 3) to the first equation of (3.25), multiplying by \partial^{\alpha}n^{j+1} and integrating over \mathbb{R}^{3} by parts, we get
\begin{equation} \begin{aligned} & \frac{1}{2}\frac{d}{dt}\|\partial^{\alpha}n^{j+1}\|_{L^{2}}^{2}+\|\partial^{\alpha+s}n^{j+1}\|_{L^{2}}^{2} \\ = & -\int_{\mathbb{R}^{3}}\partial^{\alpha}(u^{j}\cdot\nabla n^{j+1})\partial^{\alpha}n^{j+1} \text{d}x - \int_{\mathbb{R}^{3}}\partial^{\alpha}(\nabla n^{j+1}\nabla\phi^{j})\partial^{\alpha}n^{j+1} \text{d}x - \int_{\mathbb{R}^{3}}\partial^{\alpha}(n^{j+1}\Delta\phi^{j})\partial^{\alpha}n^{j+1} \text{d}x \\ = & :Q_{1}+Q_{2}+Q_{3}. \end{aligned} \end{equation} | (3.87) |
First, we deal with the term Q_{1} . For \alpha = 0 , noting that \nabla\cdot u^{j} = 0 , we get
\begin{equation} Q_{1} = -\frac{1}{2}\displaystyle{\int}_{\mathbb{R}^{3}} u^{j}\cdot\nabla|n^{j+1}|^{2} \text{d}x = 0. \end{equation} | (3.88) |
For \alpha = 1 , recalling that \nabla\cdot u^{j} = 0 , by Lemma 2.1, Hölder's inequality, and Young's inequality, we have
\begin{equation} \begin{split} Q_{1} & = -\int_{\mathbb{R}^{3}}\partial u^{j}\cdot\nabla n^{j+1}\partial n^{j+1} \text{d}x-\frac{1}{2}\int_{\mathbb{R}^{3}}u^{j}\cdot\nabla|\partial n^{j+1}|^{2} \text{d}x \\ & \lesssim \|\partial u^{j}\|_{L^{\frac{3}{2s}}}\|\partial n^{j+1}\|_{L^{\frac{6}{3-2s}}}\|\partial n^{j+1}\|_{L^{\frac{6}{3-2s}}} \\ & \lesssim \|u^{j}\|_{L^{2}}^{\frac{1+4s}{6}}\|\partial^{3}u^{j}\|_{L^{2}}^{\frac{5-4s}{6}}\|\partial^{1+s}n^{j+1}\|_{L^{2}}^{2} \\ & \lesssim \|u^{j}\|_{H^{3}}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2} \\ & \leqslant \varepsilon\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+C\|u^{j}\|_{H^{3}}^{2}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.89) |
For 2\leqslant\alpha\leqslant 3 , recalling that \nabla\cdot u^{j} = 0 , by Lemma 2.1, Hölder's inequality, and Young's inequality, it follows that
\begin{equation} \begin{aligned} Q_{1} & = -\frac{1}{2}\int_{\mathbb{R}^{3}}u^{j}\cdot\nabla|\partial^{\alpha}n^{j+1}|^{2} \text{d}x -\alpha\int_{\mathbb{R}^{3}}\partial u^{j}\cdot\nabla\partial^{\alpha-1}n^{j+1}\cdot\partial^{\alpha}n^{j+1} \text{d}x \\ & \quad - \sum\limits_{2\leqslant l\leqslant\alpha}C_{\alpha}^{l} \int_{\mathbb{R}^{3}}\partial^{l}u^{j}\cdot\nabla\partial^{\alpha-l}n^{j+1}\cdot\partial^{\alpha}n^{j+1} \text{d}x \\ & \lesssim \|\partial u^{j}\|_{L^{\frac{3}{2s}}}\|\partial^{\alpha}n^{j+1}\|_{L^{\frac{6}{3-2s}}}^{2} +\sum\limits_{2\leqslant l\leqslant\alpha}\|\partial^{l}u^{j}\|_{L^{2}}\|\partial^{\alpha-l+1}n^{j+1}\|_{L^{\frac{3}{s}}} \|\partial^{\alpha}n^{j+1}\|_{L^{\frac{6}{3-2s}}} \\ & \lesssim \|u^{j}\|_{L^{2}}^{\frac{1+4s}{6}}\|\partial^{3}u^{j}\|_{L^{2}}^{\frac{5-4s}{6}}\|\partial^{\alpha+s}n^{j+1}\|_{L^{2}}^{2} \\ & \quad +\sum\limits_{2\leqslant l\leqslant\alpha}\|\partial^{l}u^{j}\|_{L^{2}} (\|\partial^{s}n^{j+1}\|_{L^{2}}^{\theta}\|\partial^{\alpha+s}n^{j+1}\|_{L^{2}}^{1-\theta})\|\partial^{\alpha+s}n^{j+1}\|_{L^{2}} \\ & \lesssim \|u^{j}\|_{H^{3}}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2} \\ & \leqslant \varepsilon\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+C\|u^{j}\|_{H^{3}}^{2}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}, \end{aligned} \end{equation} | (3.90) |
where \theta = \frac{4s+2l-5}{2\alpha}\in(0, 1) .
In a word,
\begin{equation} Q_{1}\leqslant \varepsilon\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+C\|u^{j}\|_{H^{3}}^{2}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}\ \text{for } 0\leqslant\alpha\leqslant 3 . \end{equation} | (3.91) |
As for Q_{2} , for \alpha = 0 , by Lemma 2.1, Hölder's inequality, and Young's inequality, we obtain
\begin{equation} \begin{split} Q_{2} & \lesssim \|\nabla\phi^{j}\|_{L^{2}}\|\nabla n^{j+1}\|_{L^{\frac{3}{s}}}\|n^{j+1}\|_{L^{\frac{6}{3-2s}}} \\ & \lesssim \|\Delta\phi^{j}\|_{L^{1}}^{\frac{4}{5}}\|\partial\Delta\phi^{j}\|_{L^{2}}^{\frac{1}{5}} \|\partial^{\frac{5}{2}-s}n^{j+1}\|_{L^{2}}\|\partial^{s}n^{j+1}\|_{L^{2}} \\ & \lesssim \|\Delta\phi^{j}\|_{H^{3}}^{\frac{1}{5}}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.92) |
For \alpha = 1 , by Lemma 2.1, Hölder's inequality, and Young's inequality, we have
\begin{equation} \begin{split} Q_{2} & = -\frac{1}{2}\int_{\mathbb{R}^{3}}\Delta\phi^{j}\cdot\partial n^{j+1}\cdot\partial n^{j+1} \text{d}x \\ & \lesssim \|\Delta\phi^{j}\|_{L^{\frac{3}{2s-1}}}\|\partial n^{j+1}\|_{L^{\frac{3}{2-s}}}^{2} \\ & \lesssim \|\partial^{\frac{5}{2}-2s}\Delta\phi^{j}\|_{L^{2}}\|\partial^{s+\frac{1}{2}}n^{j+1}\|_{L^{2}}^{2} \\ & \lesssim \|\Delta\phi^{j}\|_{H^{3}}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2} \\ & \leqslant \varepsilon\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+C(\|n^{j}\|_{H^{3}}^{2}+\|v^{j}\|_{H^{3}}^{2})\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.93) |
For 2\leqslant\alpha\leqslant 3 , it follows that
\begin{equation} \begin{aligned} Q_{2} & = \frac{1}{2}\int_{\mathbb{R}^{3}}\Delta\phi^{j}\cdot\partial^{\alpha}n^{j+1}\cdot \partial^{\alpha}n^{j+1} \text{d}x -\alpha\int_{\mathbb{R}^{3}}\partial\nabla\phi^{j}\cdot\nabla\partial^{\alpha-1}n^{j+1}\cdot\partial^{\alpha}n^{j+1} \text{d}x \\ & \quad -\sum\limits_{2\leqslant l\leqslant\alpha}C_{\alpha}^{l} \int_{\mathbb{R}^{3}}\partial^{l}\nabla\phi^{j}\cdot\nabla\partial^{\alpha-l}n^{j+1}\cdot\partial^{\alpha}n^{j+1} \text{d}x \\ & \lesssim \|\Delta\phi^{j}\|_{L^{\frac{3}{2s-1}}}\|\partial^{\alpha}n^{j+1}\|_{L^{\frac{3}{2-s}}}^{2} \\ & \quad + \sum\limits_{2\leqslant l\leqslant\alpha}\|\partial^{l}\nabla\phi^{j}\|_{L^{2}}\|\partial^{\alpha-l+1}n^{j+1}\|_{L^{\frac{3}{s}}} \|\partial^{\alpha}n^{j+1}\|_{L^{\frac{6}{3-2s}}} \\ & \lesssim \|\partial^{\frac{5}{2}-2s}\Delta\phi^{j}\|_{L^{2}}\|\partial^{\alpha+s-\frac{1}{2}}n^{j+1}\|_{L^{2}}^{2} \\ & \quad + \sum\limits_{2\leqslant l\leqslant\alpha}\|\partial^{l}\nabla\phi^{j}\|_{L^{2}} (\|\partial^{s}n^{j+1}\|_{L^{2}}^{\theta}\|\partial^{\alpha+s}n^{j+1}\|_{L^{2}}^{1-\theta}) \|\partial^{\alpha+s}n^{j+1}\|_{L^{2}} \\ & \lesssim \|\Delta\phi^{j}\|_{H^{3}}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2} \\ & \leqslant \varepsilon\|\partial^{s}n^{j+1}\|_{H^{3}}^{2} +C(\|n^{j}\|_{H^{3}}^{2}+\|v^{j}\|_{H^{3}}^{2})\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}, \end{aligned} \end{equation} | (3.94) |
where \theta = \frac{4s+2l-5}{2\alpha}\in(0, 1) .
In a word,
\begin{equation} Q_{2}\leqslant \varepsilon\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+C(\|n^{j}\|_{H^{3}}^{2}+\|v^{j}\|_{H^{3}}^{2}+\|\Delta\phi^{j}\|_{H^{3}}^{\frac{1}{5}}) \|\partial^{s}n^{j+1}\|_{H^{3}}^{2}\ \text{for } 0\leqslant\alpha\leqslant 3 . \end{equation} | (3.95) |
We next deal with the term Q_{3} . For \alpha = 0 , by Lemma 2.1, Hölder's inequality, and Young's inequality, we obtain
\begin{equation} \begin{split} Q_{3} & = 2\int_{\mathbb{R}^{3}}\nabla\phi^{j}\cdot\nabla n^{j+1}\cdot n^{j+1} \text{d}x \\ & \lesssim \|\nabla\phi^{j}\|_{L^{2}}\|\nabla n^{j+1}\|_{L^{\frac{3}{s}}}\|n^{j+1}\|_{L^{\frac{6}{3-2s}}} \\ & \lesssim \|\Delta\phi^{j}\|_{L^{1}}^{\frac{4}{5}}\|\partial\Delta\phi^{j}\|_{L^{2}}^{\frac{1}{5}}\|\partial^{\frac{5}{2}-s}n^{j+1}\|_{L^{2}} \|\partial^{\alpha+s}n^{j+1}\|_{L^{2}} \\ & \lesssim \|\Delta\phi^{j}\|_{H^{3}}^{\frac{1}{5}}\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.96) |
For 1\leqslant\alpha\leqslant 3 , we obtain
\begin{equation} \begin{split} Q_{3} & \lesssim (\|\partial^{\alpha}n^{j+1}\|_{L^{\frac{6}{3-2s}}}\|\Delta\phi^{j}\|_{L^{3}} +\|\partial^{\alpha}\Delta\phi^{j}\|_{L^{2}}\|n^{j+1}\|_{L^{\frac{3}{1-s}}})\|\partial^{\alpha}n^{j+1}\|_{L^{\frac{6}{1+2s}}} \\ & \lesssim (\|\partial^{\alpha+s}n^{j+1}\|_{L^{2}}\|\partial^{\frac{1}{2}}\Delta\phi^{j}\|_{L^{2}} +\|\partial^{\alpha}\Delta\phi^{j}\|_{L^{2}}\|\partial^{s+\frac{1}{2}}n^{j+1}\|_{L^{2}})\|\partial^{\alpha+1-s}n^{j+1}\|_{L^{2}} \\ & \lesssim (\|n^{j}\|_{H^{3}}+\|v^{j}\|_{H^{3}})\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.97) |
In a word,
\begin{equation} Q_{3}\leqslant C(\|n^{j}\|_{H^{3}}+\|v^{j}\|_{H^{3}}+\|\Delta\phi^{j}\|_{H^{3}}^{\frac{1}{5}})\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}\ \text{for } 0\leqslant\alpha\leqslant 3 . \end{equation} | (3.98) |
Thus, inserting (3.91), (3.95), and (3.98) into (3.87) and summing up with respect to \alpha from 0 to 3, we have
\begin{equation} \begin{split} &\frac{d}{dt}\|n^{j+1}\|_{H^{3}}^{2}+C\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}\\ \leqslant& C(\|u^{j}\|_{H^{3}}^{2}+\|\Delta\phi^{j}\|_{H^{3}}^{\frac{1}{5}}+\|n^{j}\|_{H^{3}}^{2} +\|v^{j}\|_{H^{3}}^{2}+\|n^{j}\|_{H^{3}}+\|v^{j}\|_{H^{3}})\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.99) |
(ii) The estimate of v^{j+1} . The estimate of v^{j+1} is similar to the estimate of n^{j+1} ; we have
\begin{equation} \begin{split} &\frac{d}{dt}\|v^{j+1}\|_{H^{3}}^{2}+C\|\partial^{s}v^{j+1}\|_{H^{3}}^{2}\\ \leqslant& C(\|u^{j}\|_{H^{3}}^{2}+\|\Delta\phi^{j}\|_{H^{3}}^{\frac{1}{5}}+\|n^{j}\|_{H^{3}}^{2} +\|v^{j}\|_{H^{3}}^{2}+\|n^{j}\|_{H^{3}}+\|v^{j}\|_{H^{3}})\|\partial^{s}v^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.100) |
(iii) The estimate of u^{j+1} . Applying \partial^{\alpha}(0\leqslant\alpha\leqslant 3) to the fourth equation of (3.25), multiplying by \partial^{\alpha}u^{j+1} and integrating over \mathbb{R}^{3} by parts, we obtain
\begin{equation} \begin{aligned} & \frac{1}{2}\frac{d}{dt}\|\partial^{\alpha}u^{j+1}\|_{L^{2}}^{2}+\|\partial^{\alpha+1}u^{j+1}\|_{L^{2}}^{2} \\ = & -\int_{\mathbb{R}^{3}}\partial^{\alpha}(u^{j}\cdot\nabla u^{j+1})\cdot\partial^{\alpha}u^{j+1} \text{d}x + \int_{\mathbb{R}^{3}}\partial^{\alpha}(\Delta\phi^{j}\nabla\phi^{j})\cdot\partial^{\alpha}u^{j+1} \text{d}x \\ = & :Q_{4}+Q_{5}. \end{aligned} \end{equation} | (3.101) |
We first deal with Q_{4} . For \alpha = 0 , recalling that \nabla\cdot u^{j} = 0 , we have
\begin{equation} Q_{4} = -\frac{1}{2}\displaystyle{\int}_{\mathbb{R}^{3}}u^{j}\cdot\nabla|u^{j+1}|^{2} \text{d}x = 0. \end{equation} | (3.102) |
For 1\leqslant\alpha\leqslant 3 , by Lemma 2.1, Hölder's inequality, and Young's inequality, we have
\begin{equation} \begin{split} Q_{4} & = \int_{\mathbb{R}^{3}}\partial^{\alpha-1}(u^{j}\cdot\nabla u^{j+1})\cdot\partial^{\alpha+1}u^{j+1} \text{d}x \\ & \lesssim (\|\partial^{\alpha-1}u^{j}\|_{L^{2}}\|\partial u^{j+1}\|_{L^{\infty}} +\|u^{j}\|_{L^{3}}\|\partial^{\alpha}u^{j+1}\|_{L^{6}})\|\partial^{\alpha+1}u^{j+1}\|_{L^{2}} \\ & \lesssim (\|\partial^{\alpha-1}u^{j}\|_{L^{2}}\|\partial u^{j+1}\|_{L^{\infty}} +\|\partial^{\frac{1}{2}}u^{j}\|_{L^{2}}\|\partial^{\alpha+1}u^{j+1}\|_{L^{2}})\|\partial^{\alpha+1}u^{j+1}\|_{L^{2}} \\ & \lesssim \|u^{j}\|_{H^{3}}\|\partial u^{j+1}\|_{H^{3}}^{2} \\ & \leqslant \varepsilon\|\partial u^{j+1}\|_{H^{3}}^{2}+C\|u^{j}\|_{H^{3}}^{2}\|\partial u^{j+1}\|_{H^{3}}^{2}. \end{split} \end{equation} | (3.103) |
In a word,
\begin{equation} Q_{4}\leqslant \varepsilon\|\partial u^{j+1}\|_{H^{3}}^{2}+C\|u^{j}\|_{H^{3}}^{2}\|\partial u^{j+1}\|_{H^{3}}^{2}\ \text{for } 0\leqslant\alpha\leqslant 3 . \end{equation} | (3.104) |
As for Q_{5} , for \alpha = 0 , noting that \nabla\cdot u^{j} = 0 , we get
\begin{equation} Q_{5} = \displaystyle{\int}_{\mathbb{R}^{3}} u^{j+1}\cdot\nabla\phi^{j}\cdot\Delta\phi^{j} \text{d}x = 0. \end{equation} | (3.105) |
For 1\leqslant\alpha\leqslant 3 , by Lemma 2.2, Hölder's inequality, and Young's inequality, we obtain
\begin{equation} \begin{split} Q_{5} & = -\int_{\mathbb{R}^{3}}\partial^{\alpha-1}(\Delta\phi^{j}\nabla\phi^{j})\cdot\partial^{\alpha+1}u^{j+1} \text{d}x \\ & \lesssim (\|\partial^{\alpha-1}\Delta\phi^{j}\|_{L^{2}}\|\nabla\phi^{j}\|_{L^{\infty}} +\|\Delta\phi^{j}\|_{L^{3}}\|\partial^{\alpha-1}\nabla\phi^{j}\|_{L^{6}})\|\partial^{\alpha}u^{j+1}\|_{L^{2}} \\ & \lesssim (\|\partial^{\alpha-1}\Delta\phi^{j}\|_{L^{2}}\|\Delta\phi^{j}\|_{L^{2}}^{\frac{1}{2}}\|\partial\Delta\phi^{j}\|_{L^{2}}^{\frac{1}{2}} +\|\partial^{\frac{1}{2}}\Delta\phi^{j}\|_{L^{2}}\|\partial^{\alpha-1}\Delta\phi^{j}\|_{L^{2}})\|\partial^{\alpha}u^{j+1}\|_{L^{2}} \\ & \lesssim \|\Delta\phi^{j}\|_{H^{3}}^{2}\|\partial u^{j+1}\|_{H^{3}} \\ & \leqslant \varepsilon\|\partial u^{j+1}\|_{H^{3}}^{2}+C(\|n^{j}\|_{H^{m}}^{2}+\|v^{j}\|_{H^{m}}^{2})^{2}. \end{split} \end{equation} | (3.106) |
In a word,
\begin{equation} Q_{5}\leqslant \varepsilon\|\partial u^{j+1}\|_{H^{3}}^{2}+C(\|n^{j}\|_{H^{m}}^{2}+\|v^{j}\|_{H^{m}}^{2})^{2}\ \text{for } 0\leqslant\alpha\leqslant 3 . \end{equation} | (3.107) |
Thus, inserting (3.104) and (3.107) into (3.101) and summing up with respect to \alpha from 0 to 3, we have
\begin{equation} \frac{d}{dt}\|u^{j+1}\|_{H^{3}}^{2}+\|\partial u^{j+1}\|_{H^{3}}^{2} \leqslant C\|u^{j}\|_{H^{3}}^{2}\|\partial u^{j+1}\|_{H^{3}}^{2}+C(\|n^{j}\|_{H^{3}}^{2}+\|v^{j}\|_{H^{m}}^{3})^{2}. \end{equation} | (3.108) |
Summing (3.99), (3.100), and (3.108), we obtain
\begin{equation} \begin{aligned} & \frac{d}{dt}(\|n^{j+1}\|_{H^{3}}^{2}+\|v^{j+1}\|_{H^{3}}^{2}+\|u^{j+1}\|_{H^{3}}^{2}) +C(\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+\|\partial^{3}v^{j+1}\|_{H^{3}}^{2}+\|\partial u^{j+1}\|_{H^{3}}^{2}) \\ \leqslant & C(\varepsilon_{2}^{2}+\varepsilon_{2}^{\frac{1}{5}}+\varepsilon_{2}) (\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+\|\partial^{3}v^{j+1}\|_{H^{3}}^{2}+\|\partial u^{j+1}\|_{H^{3}}^{2})+C\varepsilon_{2}^{4}. \end{aligned} \end{equation} | (3.109) |
Integrating (3.109) from 0 to t , we conclude that for any t\in[0, T_{2}] ,
\begin{equation*} \begin{aligned} & (\|n^{j+1}\|_{H^{3}}^{2}+\|v^{j+1}\|_{H^{3}}^{2}+\|u^{j+1}\|_{H^{3}}^{2}) +C\int_{0}^{t}(\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+\|\partial^{s}v^{j+1}\|_{H^{3}}^{2}+\|\partial u^{j+1}\|_{H^{3}}^{2}) \text{d}\tau \\ \leqslant & \varepsilon_{1}^{2}+C(\varepsilon_{2}^{2}+\varepsilon_{2}^{\frac{1}{5}}+\varepsilon_{2}) \int_{0}^{t}(\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+\|\partial^{s}v^{j+1}\|_{H^{3}}^{2} +\|\partial u^{j+1}\|_{H^{3}}^{2}) \text{d}\tau+C\varepsilon_{2}^{4}T_{2}. \end{aligned} \end{equation*} |
Taking properly \varepsilon_{1} , \varepsilon_{2} , T_{2} such that (\|n^{j+1}\|_{H^{3}}^{2}+\|v^{j+1}\|_{H^{3}}^{2}+\|u^{j+1}\|_{H^{3}}^{2}) +C\int_{0}^{t}(\|\partial^{s}n^{j+1}\|_{H^{3}}^{2}+\|\partial^{3}v^{j+1}\|_{H^{3}}^{2}+\|\partial u^{j+1}\|_{H^{3}}^{2}) \text{d}\tau \leqslant\varepsilon_{2}^{2} , we can conclude that (3.86) holds for any j\geqslant 0 .
Next, we prove the main theorem.
Proof of Theorem 1.1. Let T^{\ast} = min \{T_{1}, T_{2}\} , where T_{1} and T_{2} are given in Lemmas 3.2 and 3.3. According to Lemmas 3.2 and 3.3, we obtain that if \|n_{0}\|_{H^{3}}+\|v_{0}\|_{H^{3}}+\|u_{0}\|_{H^{3}}\leqslant\varepsilon_{1} , then
\begin{equation} \sup\limits_{0\leqslant t\leqslant T^{\ast}}(\|n\|_{H^{3}}+\|v\|_{H^{3}}+\|u\|_{H^{3}})\leqslant\varepsilon_{2}. \end{equation} | (3.110) |
Next, we prove T^{\ast} = \infty by contradiction. Let M_{1} = min \{\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\} . Assume that \|n_{0}\|_{H^{3}}+\|v_{0}\|_{H^{3}}+\|u_{0}\|_{H^{3}}\leqslant\frac{M_{1}}{2\sqrt{1+C_{1}}} , where C_{1} is given in Lemma 3.1. We define T: = sup\{t:\sup\limits_{0\leqslant s\leqslant t}(\|n\|_{H^{3}}+\|v\|_{H^{3}}+\|u\|_{H^{3}}\leqslant M_{1})\} as the lifespan of solutions to (1.4). Because
\begin{equation*} \|n_{0}\|_{H^{3}}+\|v_{0}\|_{H^{3}}+\|u_{0}\|_{H^{3}}\leqslant\frac{M_{1}}{2\sqrt{1+C_{1}}}\leqslant M_{1}\leqslant\varepsilon_{1}, \end{equation*} |
recalling Lemma 3.2, we find that T > 0 . If T is finite, according to the definition of T , we obtain that
\begin{equation*} \sup\limits_{0\leqslant s\leqslant T}(\|n\|_{H^{3}}+\|v\|_{H^{3}}+\|u\|_{H^{3}}) = M_{1}. \end{equation*} |
Besides, by Lemma 3.1, we know that
\begin{equation*} \sup\limits_{0\leqslant s\leqslant T} (\|n\|_{H^{3}}+\|v\|_{H^{3}}+\|u\|_{H^{3}})\leqslant\sqrt{C_{1}}(\|n_{0}\|_{H^{3}}+\|v_{0}\|_{H^{3}}+\|u_{0}\|_{H^{3}})\leqslant\frac{M_{1}\sqrt{C_{1}}}{2\sqrt{1+C_{1}}}\leqslant \frac{M_{1}}{2}, \end{equation*} |
which is a contradiction to \sup\limits_{0\leqslant s\leqslant T}(\|n\|_{H^{3}}+\|v\|_{H^{3}}+\|u\|_{H^{3}}) = M_{1} . Thus, \|n\|_{H^{3}}+\|v\|_{H^{3}}+\|u\|_{H^{3}}\leqslant\varepsilon_{2} for any t > 0 . Thus, the global existence and uniqueness of classical solutions to (1.4) have been obtained.
Zihang Cai: writing-original draft, writing-review and editing; Chao Jiang: funding acquisition, writing-review and editing, supervision; Yuzhu Lei: writing-review and editing, supervision; Zuhan Liu: methodology, writing-review and editing, supervision. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by the National Natural Science Foundation of China (11771380) and the Innovation Projects of Jiangsu Province, China (KYCX23-3498).
The authors declare that they have no conflicts of interest.
[1] |
M. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E, 70 (2004), 021506. https://doi.org/10.1103/PhysRevE.70.021506 doi: 10.1103/PhysRevE.70.021506
![]() |
[2] |
M. Chae, K. Kang, J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Cont. Dyn., 33 (2013), 2271–2297. https://doi.org/10.3934/dcds.2013.33.2271 doi: 10.3934/dcds.2013.33.2271
![]() |
[3] |
A. Claverie, L. Laânab, C. Bonafos, C. Bergaud, A. Martinez, D. Mathiot, On the relation between dopant anomalous diffusion in Si and end-of-range defects, Nucl. Instrum. Meth. B, 96 (1995), 202–209. https://doi.org/10.1016/0168-583X(94)00483-8 doi: 10.1016/0168-583X(94)00483-8
![]() |
[4] |
J. Fan, F. Li, G. Nakamura, Regularity criteria for a mathematical model for the deformation of electrolyte droplets, Appl. Math. Lett., 26 (2013), 494–499. https://doi.org/10.1016/j.aml.2012.12.003 doi: 10.1016/j.aml.2012.12.003
![]() |
[5] |
W. Fang, K. Ito, On the time-dependent drift-diffusion model for semiconductors, J. Differ. Equations, 117 (1995), 245–280. https://doi.org/10.1006/jdeq.1995.1054 doi: 10.1006/jdeq.1995.1054
![]() |
[6] |
H. Gong, C. Wang, X. Zhang, Partial regularity of suitable weak solutions of the Navier-Stokes-Planck-Nernst-Poisson equation, SIAM J. Math. Anal., 53 (2021), 3306–3337. https://doi.org/10.1137/19M1292011 doi: 10.1137/19M1292011
![]() |
[7] |
R. Granero-Belinchón, On a drift-diffusion system for semiconductor devices, Ann. Henri Poincaré, 17 (2016), 3473–3498. https://doi.org/10.1007/s00023-016-0493-6 doi: 10.1007/s00023-016-0493-6
![]() |
[8] |
J. Jerome, Analytical approaches to charge transport in a moving medium, Transport Theor. Stat., 31 (2002), 333–366. https://doi.org/10.1081/TT-120015505 doi: 10.1081/TT-120015505
![]() |
[9] |
J. Jerome, R. Sacco, Global weak solutions for an incompressible charged fluid with multi-scale couplings: initial-boundary-value problem, Nonlinear Anal.-Theor., 71 (2009), e2487–e2497. https://doi.org/10.1016/j.na.2009.05.047 doi: 10.1016/j.na.2009.05.047
![]() |
[10] |
A. Jüngel, Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Mod. Meth. Appl. S., 5 (1995), 497–518. https://doi.org/10.1142/S0218202595000292 doi: 10.1142/S0218202595000292
![]() |
[11] |
T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pur. Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
![]() |
[12] |
R. Kobayashi, S. Kawashima, Decay estimates and large time behavior of solutions to the drift-diffusion system, Funkc. Ekvacioj, 51 (2008), 371–394. https://doi.org/10.1619/fesi.51.371 doi: 10.1619/fesi.51.371
![]() |
[13] |
M. Kurokiba, T. Ogawa, Well-posedness for the drift-diffusion system in L^{p} arising from the semiconductor device simulation, J. Math. Anal. Appl., 342 (2008), 1052–1067. https://doi.org/10.1016/j.jmaa.2007.11.017 doi: 10.1016/j.jmaa.2007.11.017
![]() |
[14] |
M. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal., 5 (1974), 597–612. https://doi.org/10.1137/0505061 doi: 10.1137/0505061
![]() |
[15] | L. Nirenberg, On elliptic partial differential equations, In: Il principio di minimo e sue applicazioni alle equazioni funzionali, Berlin: Springer, 2011, 1–48. https://doi.org/10.1007/978-3-642-10926-3_1 |
[16] |
T. Ogawa, M. Yamamoto, Asymptotic behavior of solutions to drift-diffusion system with generalized dissipation, Math. Mod. Meth. Appl. S., 19 (2009), 939–967. https://doi.org/10.1142/S021820250900367X doi: 10.1142/S021820250900367X
![]() |
[17] | I. Rubinstein, Electro-diffusion of ions, Philadelphia: Society for Industrial and Applied Mathematics, 1990. https://doi.org/10.1137/1.9781611970814 |
[18] |
M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Mod. Meth. Appl. S., 19 (2009), 993–1014. https://doi.org/10.1142/S0218202509003693 doi: 10.1142/S0218202509003693
![]() |
[19] |
L. Tong, Z. Tan, Optimal decay rates of the solution for generalized Poisson-Nernst-Planck-Navier-Stokes equations in \mathbb{R}^{3}, Z. Angew. Math. Phys., 72 (2021), 200. https://doi.org/10.1007/s00033-021-01627-2 doi: 10.1007/s00033-021-01627-2
![]() |
[20] |
I. Tuval, L. Cisneros, C. Dombrowski, C. Wolgemuth, J. Kessler, R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci., 102 (2005), 2277–2282. https://doi.org/10.1073/pnas.0406724102 doi: 10.1073/pnas.0406724102
![]() |
[21] |
W. Van Roosbroeck, Theory of the flow of electrons and holes in germanium and other semiconductors, Bell System Technical Journal, 29 (1950), 560–607. https://doi.org/10.1002/j.1538-7305.1950.tb03653.x doi: 10.1002/j.1538-7305.1950.tb03653.x
![]() |
[22] |
Z. Zhang, Z. Yin, Global well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in dimension two, Appl. Math. Lett., 40 (2015), 102–106. https://doi.org/10.1016/j.aml.2014.10.002 doi: 10.1016/j.aml.2014.10.002
![]() |
[23] |
J. Zhao, C. Deng, S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces, J. Math. Phys., 51 (2010), 093101. https://doi.org/10.1063/1.3484184 doi: 10.1063/1.3484184
![]() |
[24] |
J. Zhao, C. Deng, S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, Differ. Equat. Appl., 3 (2011), 427–448. https://doi.org/10.7153/dea-03-27 doi: 10.7153/dea-03-27
![]() |
[25] |
J. Zhao, T. Zhang, Q. Liu, Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space, Discrete Cont. Dyn., 35 (2015), 555–582. https://doi.org/10.3934/dcds.2015.35.555 doi: 10.3934/dcds.2015.35.555
![]() |
[26] |
S. Zhu, Z. Liu, L. Zhou, Global existence and asymptotic stability of the fractional chemotaxis-fluid system in \mathbb{R}^{3}, Nonlinear Analysis, 183 (2019), 149–190. https://doi.org/10.1016/j.na.2019.01.014 doi: 10.1016/j.na.2019.01.014
![]() |