In this work, we investigate a Riemann-Liouville-type impulsive fractional integral boundary value problem. Using the fixed point index, we obtain two existence theorems on positive solutions under some conditions concerning the spectral radius of the relevant linear operator. Our method improves and generalizes some results in the literature.
Citation: Keyu Zhang, Qian Sun, Donal O'Regan, Jiafa Xu. Positive solutions for a Riemann-Liouville-type impulsive fractional integral boundary value problem[J]. AIMS Mathematics, 2024, 9(5): 10911-10925. doi: 10.3934/math.2024533
In this work, we investigate a Riemann-Liouville-type impulsive fractional integral boundary value problem. Using the fixed point index, we obtain two existence theorems on positive solutions under some conditions concerning the spectral radius of the relevant linear operator. Our method improves and generalizes some results in the literature.
[1] | S. Padhi, J. R. Graef, S. Pati, Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 716–745. https://doi.org/10.1515/fca-2018-0038 doi: 10.1515/fca-2018-0038 |
[2] | C. Zhai, Y. Ma, H. Li, Unique positive solution for a $p$-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral, AIMS Mathematics, 5 (2020), 4754–4769. https://doi.org/10.3934/math.2020304 doi: 10.3934/math.2020304 |
[3] | K. Zhao, J. Liang, Solvability of triple-point integral boundary value problems for a class of impulsive fractional differential equations, Adv. Differ. Equ., 2017 (2017), 50. https://doi.org/10.1186/s13662-017-1099-0 doi: 10.1186/s13662-017-1099-0 |
[4] | X. Zhang, L. Wang, Q. Sun, Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter, Appl. Math. Comput., 226 (2014), 708–718. https://doi.org/10.1016/j.amc.2013.10.089 doi: 10.1016/j.amc.2013.10.089 |
[5] | B. Ahmad, M. Alghanmi, S. K. Ntouyas, A. Alsaedi, Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions, Appl. Math. Lett., 84 (2018), 111–117. https://doi.org/10.1016/j.aml.2018.04.024 doi: 10.1016/j.aml.2018.04.024 |
[6] | B. Ahmad, A. Alsaedi, Y. Alruwaily, On Riemann-Stieltjes integral boundary value problems of Caputo-Riemann-Liouville type fractional integro-differential equations, Filomat, 34 (2020), 2723–2738. https://doi.org/10.2298/FIL2008723A doi: 10.2298/FIL2008723A |
[7] | B. Ahmad, S. K. Ntouyas, Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 20 (2013), 1–19. https://doi.org/10.14232/ejqtde.2013.1.20 doi: 10.14232/ejqtde.2013.1.20 |
[8] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[9] | M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., 2007 (2007), 010368. https://doi.org/10.1155/2007/10368 doi: 10.1155/2007/10368 |
[10] | F. Haddouchi, Positive solutions of nonlocal fractional boundary value problem involving Riemann-Stieltjes integral condition, J. Appl. Math. Comput., 64 (2020), 487–502. https://doi.org/10.1007/s12190-020-01365-0 doi: 10.1007/s12190-020-01365-0 |
[11] | M. Khuddush, K. R. Prasad, Infinitely many positive solutions for an iterative system of conformable fractional order dynamic boundary value problems on time scales, Turkish J. Math., 46 (2022), 338–359. https://doi.org/10.3906/mat-2103-117 doi: 10.3906/mat-2103-117 |
[12] | M. Khuddush, K. R. Prasad, P. Veeraiah, Infinitely many positive solutions for an iterative system of fractional BVPs with multistrip Riemann-Stieltjes integral boundary conditions, Afr. Mat., 33 (2022), 91. https://doi.org/10.1007/s13370-022-01026-4 doi: 10.1007/s13370-022-01026-4 |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Amsterdam: Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[14] | L. Liu, D. Min, Y. Wu, Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann-Stieltjes integral boundary value conditions, Adv. Differ. Equ., 2020 (2020), 442. https://doi.org/10.1186/s13662-020-02892-7 doi: 10.1186/s13662-020-02892-7 |
[15] | C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268. https://doi.org/10.1186/s13662-021-03424-7 doi: 10.1186/s13662-021-03424-7 |
[16] | N. Nyamoradi, B. Ahmad, Generalized fractional differential systems with Stieltjes boundary conditions, Qual. Theory Dyn. Syst., 22 (2023), 6. https://doi.org/10.1007/s12346-022-00703-w doi: 10.1007/s12346-022-00703-w |
[17] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego, CA: Academic Press, 1999. https://doi.org/10.1016/s0076-5392%2899%29x8001-5 |
[18] | S. N. Srivastava, S. Pati, S. Padhi, A. Domoshnitsky, Lyapunov inequality for a Caputo fractional differential equation with Riemann-Stieltjes integral boundary conditions, Math. Methods Appl. Sci., 46 (2023), 13110–13123. https://doi.org/10.1002/mma.9238 doi: 10.1002/mma.9238 |
[19] | W. Wang, J. Ye, J. Xu, D. O'Regan, Positive solutions for a high-order riemann-liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 14 (2022), 2320. https://doi.org/10.3390/sym14112320 doi: 10.3390/sym14112320 |
[20] | Y. Wang, Y. Yang, Positive solutions for a high-order semipositone fractional differential equation with integral boundary conditions, J. Appl. Math. Comput., 45 (2014), 99–109. https://doi.org/10.1007/s12190-013-0713-x doi: 10.1007/s12190-013-0713-x |
[21] | J. Xu, Z. Yang, Positive solutions for a high order Riemann-Liouville type fractional impulsive differential equation integral boundary value problem, Acta Math. Sci. Ser. A, 43 (2023), 53–68. http://121.43.60.238/sxwlxbA/CN |
[22] | X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a class of singular $p$-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition. Appl. Math. Comput., 235 (2014), 412–422. https://doi.org/10.1016/j.amc.2014.02.062 doi: 10.1016/j.amc.2014.02.062 |
[23] | K. Zhao, Stability of a nonlinear fractional langevin system with nonsingular exponential kernel and delay control, Discrete Dyn. Nat. Soc., 2022 (2022), 9169185. https://doi.org/10.1155/2022/9169185 doi: 10.1155/2022/9169185 |
[24] | K. Zhao, Stability of a nonlinear langevin system of ml-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725 |
[25] | K. Zhao, Existence and stability of a nonlinear distributed delayed periodic ag-ecosystem with competition on time scales, Axioms, 12 (2023), 315. https://doi.org/10.3390/axioms12030315 doi: 10.3390/axioms12030315 |
[26] | K. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z |
[27] | K. Zhao, Generalized UH-stability of a nonlinear fractional coupling $(p_1, p_2)$-Laplacian system concerned with nonsingular Atangana-Baleanu fractional calculus, J. Inequal. Appl., 2023 (2023), 96. https://doi.org/10.1186/s13660-023-03010-3 doi: 10.1186/s13660-023-03010-3 |
[28] | K. Zhao, Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations, AIMS Mathematics, 8 (2023), 13351–13367. https://doi.org/10.3934/math.2023676 doi: 10.3934/math.2023676 |
[29] | K. Zhao, Solvability, approximation and stability of periodic boundary value problem for a nonlinear hadamard fractional differential equation with p-laplacian, Axioms, 12 (2023), 733. https://doi.org/10.3390/axioms12080733 doi: 10.3390/axioms12080733 |
[30] | K. Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping, Adv. Cont. Discr. Mod., 2024 (2024), 5. https://doi.org/10.1186/s13662-024-03801-y doi: 10.1186/s13662-024-03801-y |
[31] | K. Zhao, J. Liu, X. Lv, A unified approach to solvability and stability of multipoint bvps for Langevin and Sturm-Liouville equations with CH-fractional derivatives and impulses via coincidence theory, Fractal Fract., 8 (2024), 111. https://doi.org/10.3390/fractalfract8020111 doi: 10.3390/fractalfract8020111 |
[32] | M. G. Kreĭn, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk., 3 (1948), 3–95. |
[33] | Z. Yang, Existence and nonexistence results for positive solutions of an integral boundary value problem, Nonlinear Anal., 65 (2006), 1489–1511. https://doi.org/10.1016/j.na.2005.10.025 doi: 10.1016/j.na.2005.10.025 |
[34] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Boston: Academic Press, 1988. https://doi.org/10.1016/C2013-0-10750-7 |