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1. Introduction

In this work, we study the following Riemann-Liouville-type impulsive fractional integral boundary
value problem

WDP() = —f (t,2(0), t # 1y,

ADPz(t) = L (z(t), k=1,...,m, (L1)

1
2(0)=7(0)=0, (1) = f g(s,z(s))da(s),
0

where 2 < 8 < 3 is a real number, ,kDf is the Riemann-Liouville fractional derivative, 0 = 1, < #; <
—1 . —1 —1 — . —1
<ty <yt = 1, D72 (8f) = Ty DY 2 (0 + ) and  DF'7(£7) = limyno- o D)2 (5 + )
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represent the right and left limits of ,kDf _1z(t) at t = 1, respectively, ,kD,B _lz(t,:) = tkDf _lz(tk), and
ADP 'z (1) = D'z (t,j) — D'z (t,;). In addition, the functions f, g, @, I, satisfy the conditions:

(HO) f,g € C([0, 1] X R*,R*"), I, € CR*,R"), k=1,2,...,m, R" := [0, +00),

(H1) « is a function of bounded variation with a(f) > 0, and a(z) £ 0, t € [0, 1].

In comparison to integer calculus when describing natural phenomena and objective laws, fractional
calculus is more accurate and applicable in physics, chemistry, and engineering. Many scholars have
applied the methods of nonlinear analysis to study fractional boundary value problems, and a large
number of results have been obtained; see for example [1-31] and the references therein. In [1],
the authors used some fixed-point techniques to study the existence, uniqueness, and multiplicity of
positive solutions for the fractional integral boundary value problem

oDIx(t) + q(t) f(1, x(1) = 0, 0 < 1 < 1,
2(0) = X(0) = -+ = X7 D(0) = 0, oDFx(1) = [ h(s, x(s))dA(s),

where (DY, on are Riemann-Liouville fractional derivatives. In [2], the authors studied the following
p-Laplacian fractional boundary value problem involving the Riemann-Stieltjes integral:

—oD} (@, (—oD?z(t) — g(t, 2(0), oD} 2(£)))) = f(t,2(1),0D]2(t)), 0 <t < 1,
0D?2(0) = (D**'7(0) = (D] z(0) = 0,
oD¢z(1) = 0, oD)z(1) = [ oD)(s)dA(s),

where (D¢, oD;, oD are Riemann-Liouville fractional derivatives. The authors used fixed point
theorems on a sum operator in partial ordering Banach spaces to investigate the existence and
uniqueness of positive solutions for their problem.

In [3], the authors studied the impulsive fractional integral boundary value problem

WDfu®) = f (. u(),w/(8),, DI u(t)) , t # 1,
ADﬁ_lu([k) =Lw), k=1,...,m,
w(©0) = w(0) =0, w'(1) = [’ g(s, u(s))ds,

and they adopted the contraction mapping principle and the fixed point theorem to establish the
existence and uniqueness of nontrivial solutions when the nonlinearities f, g, I; satisfy some Lipschitz
conditions. In [4], the authors studied positive solutions for the fractional integral boundary value
problem

Dy x(@) +h(@)f(t,x(@®) =0, 0<r<lI,

x(0) = x'(0) = x"(0) =0,

x(1) = A [ x(s)ds,

where f € C([0, 1] x R*,R*) satisfies the conditions

(HZ1) lim inf, ¢+ / '(;’X) > Ay, limsup, / ?‘) < A; uniformly with respect to ¢ € [0, 1],
(HZ2) limsup, . £ < 2, liminf, . £&2 > A, uniformly with respect to 7 € [0, 1],

where A, is the first eigenvalue of the operator (Lz;y)(f) = fol Gy(t, s)h(s)y(s)ds and Gy is the Green’s
function.
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Motivated by the aforementioned works, in this paper we use the fixed point index to study positive
solutions for (1.1) under some conditions concerning the spectral radius of the relevant linear operator.
Note that the considered linear operator can include the Riemann-Stieltjes integral condition in (1.1)
and the approach is quite different from previous works in the literature. Moreover, we also consider
the effect of the impulsive term and our conditions are more general than (HZ1)-(HZ2).

2. Preliminaries

In this section, we first present the definitions of the Riemann-Liouville-type fractional integral and
derivative. For the other necessary definitions and notations, we refer the reader to the books [8,13,17].

Definition 2.1. The Riemann-Liouville fractional integral of order 8 > 0 of a function z : (a, +o0) —» R
is given by

al’fz(t) F(B)f(t_s)ﬂ z2(8)ds, a>0,

provided that the right-hand side is point-wise defined on (a, +00).

Definition 2.2. The Riemann-Liouville fractional derivative of order 8 > 0 of a continuous function
z: (a, +0) — R is given by

D) = \fa@”%mw

I'(n ,3) dr

where a > 0,n — 1 < 8 < n, provided that the right-hand side is point-wise defined on (a, +0).
Let C([0, 1],R) be the Banach space of continuous functions from [0, 1] to R with the norm ||z|]| =
SUpy<,<; 12(1)|. Define the Banach space PC ([0, 1], R) as follows

PC'([0,1],R) = {z € C([0,11,R) : , D’ 'z (t7) and , DF 'z (r;) exist with
WD) = (D2 (6) . k=0, 1,. }

with the norm |lzllper = max {|lzll, ||, D/"'2[|}. Let P = {z € C(10,1L,R) : z(t) > 0.t € [0,1]} and
Py ={z€ P:z(t) >z, € [0, 1]}. Then P, Py are cones on C([0, 1], R).

Lemma 2.3. (see [3, Lemma 2.4]) Let A,V € C([0,1],R) and v, € R, k = 1,2,...,m. Then, the
boundary value problem
WDz =-h@), t#1,

—1 _ —
ADP'z(t)=-v, k=1,...,m @

1
0 =20 =0, 2= [ Vit
0

has a solution of the form
—1

-1

1 1 m
2(2) = fo G(1, $)h(s)ds + 3 fO V(s)da(s) + ;H(I, v, 0<1 <1,
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where

G(t,s) = —
(& 5) A1 -sP2 0<t<s<l,

1 [P A=-sP?2-@-sF',0<s<1<1,
I'(B)

and
1 |, 0<t<t <1,
H(t, 1) = ——
0,0<p <t

I'®)

Lemma 2.4. (see [9]) The function G has the following properties:
(C1)G(t,s) =0fort, s €[0,1];
(C2) #'G(1,5) < G(t,5s) < G(1, ) for t,s € [0,1].

From Lemma 2.3 and (HO)-(H1), we define an operator 7 : P — P as follows:

-1

1 1 m
T2 = f G(t,s)f (s,z(s))ds + 7 f g (s,z(s))da(s) + Z Ht, )l (z(t), 0<tr<1. 2.2)
0 0 .

=1

From Lemma 2.3 we see that if there exists z* € P\{0O} such that 7 z* = z*, then this z* is the positive
solution for (1.1). Hence, in what follows we study the existence of positive fixed points of the operator
T.

Lemma 2.5. Suppose that (HO)-(H1) hold. Then, 7 (P) C Py.
By Lemma 2.4 and the method of [21, Lemma 2.6], we obtain the conclusion, so, we omit its proof.

Lemma 2.6. Let

1 —1 1
<£W6m=ujﬁGm@amh+vﬁ \fzummw
0 B 1 0

with g, v > 0 and > +v* # 0. Then £,,(P) C P, and the spectral radius of £,,,, denoted by r(L,,),
which satisfies the inequality

1 1 1 1
[ f G, 5)s" \ds + —— f 7 da(s) < (L) < f G, s)ds + —— f da(s).  (2.3)
0 ﬁ - 1 0 0 B - 1 0

Proof. 1f z € P, then from Lemma 2.4(C2) we have

1 1
(@mmngG@mmevl fz@mm,
0 :8_1 0

and

1 1 pl
(L)1) > Z’B_luf G(1, s)z(s)ds +v ¢ f z(s)da(s)
0 B-1Jo
> YL,z 1 €10,1].

Hence, .L,,(P) € Py, as required.
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Let (L,2)(1) = u [, G(t, $)z(s)ds and (L,2)(1) = vi= [ z(s)da(s), t € [0, 1]. Then for all n € N* we

B-1Jo
have 1 1
(LZZ)(I)=/1"I f G(t, 51)G(s1, $2) == G(Su_1, S)2(s,)dsy - - - ds,,
0 0
1 1
> " f f G, 51)8 T G, 52) - 571G, s)2(su)d s - dsa,
0 0
and

n 1 n—1 1
(L'2)(f) = (L) #1 [ f sﬁ_lda(s)] f s)da(s), 1 €[0,1].
ﬁ - 1 0 0

Consequently, we have

and |

1 n=l 1]

LA = max(LiD(@) = //’[ fo G(1,s)sﬁ—‘ds] fo G(1, s)ds,
L > L' > (— n 1sﬁ‘ld i

I > max(aio > () | [t

1
f da(s),
0
where 1(7) = 1, t € [0, 1]. Therefore, Gelfand’s theorem implies that

1
r(L,) = liminf JIIL2) > f G(1, )5 'ds,
n— 00 0

1
r(L,) = liminf <*/||L';||z,8—v1 f £ dad(s).
n—oo —_ 0

Combining the two inequalities, we get

and

1 1
H(Luy) > fo G(1,5)s" ds + ﬁ%l fo & dads).

On the other hand, we note that

1 1
r(L,) < u fo G, s)ds, and r(L,) < ﬁ%l fo do(s),

and then 1 1
ML) < f G, s)ds + —— f da(s).
0 ﬁ - 1 0

Therefore, we obtain (2.3). This completes the proof. O
From Lemma 2.6, we find r(£,,) > 0. Consequently, the Krein-Rutman theorem [32] implies that
there exists £, € P\{0} such that

L,u,v(p,v = r(-£,u,v)§,u,v~ 2.4)
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From [19, 33], the conjugate space of C([0,1],R) is E* := {y : y has bounded variation on [0, 1]}.
Moreover, the dual cone of P and the bounded linear functional on C([0, 1], R) can be expressed by

1
P* :={y € E" : yis non-decreasing on [0, 1]} and y(z) = f 2()dy(t),z € C([0,1],R),y € E".
0

Note that r(£,,) > 0 in Lemma 2.6, and there exists ¢, € P*\{0} such that

L Wy =1 (L) U 2.5)

where L7, : E* — E" is the conjugate operator of £, ,, denoted by

‘ | 1 _p-1
(.EZ,V)/) () :=pu f ds f G(t, $)dy(T) + va(t) f id dy(t),y € E".
0 0 o B-1

Lemma 2.7. (see [34]) Let E be a Banach space, Q C E a bounded open set, and A : QNP> Pa
completely continuous operator. If there exists zo € P\ {0} such that z—Az # Az, forall z € 0QNP, A >
0, then the fixed point index i(A,Q N P, P) = 0.

Lem_ma 2.8. (see [34]) Let E be a Banach space, ¢ E a bounded open set with 0 € Q, and
A : QNP — Pacompletely continuous operator. If z # 1Az, forallz € 9Q N P,0 < A < 1, then the
fixed point index i(A,Q N P, P) = 1.

3. Main results

Consider the coefficients y;, v; > 0 with 2 +v? # 0, i = 1,2,3,4. From Lemma 2.6, r(L,,,,) > 0.
Then there exists ¢, ,, € P*\{0} such that

‘EZi,Vil/’#hVi = r(‘Ell[,Vi) 'vl’u;,Vi’ i=1,2,3,4. (3.1
Remark 3.1. Let z € P. Then we have
1 1 1 1
f O (1) > 0, f () > 0, f B (1) > O, f Ht, 1)dW0,(8) > 0.
0 0 0 0

To see this note that i, ,, € P*\{0}, and from the definition of the Riemann-Stieltjes integral we have

1 n
fo ), (1) = lim D 2ED [ (1) = W (111) ] 2 0,
=1
and 1 ;
fo (0 = 10 " [t (1) = i (1)
=1
> [ isVi (1) - ‘/’u,-,w (O)]
> 0,
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forall divisions t: 0 =) <t; <+ <t,| <, <ty =1, p= max1<]<,,( ) &€ [1 L ~], Jj=
1,2,---,n. The other two inequahtles can be similarly proven.
Now, we list our assumptions for the nonlinearities f, g, l(k = 1,2, ..., m):

(H2) There exist i, v; > 0 (uf +vi # 0)and [, > 0 (f I} #0),k =1,2,...,m such that
k=1

m 1 1
it r (L) <12 ) bt fo H(t, t)d 0, (1) > [1=7(Lyy 0 )] fo A, (0),
k=1

ft,2) liminf 882 ()

lim inf > Uy, > vy uniformly on ¢ € [0, 1], and 11m1nf— >l,k=1,2,...m
Z—+00 Z Z—+00 Z 7—+00

(H3) There exist i, v, = 0 (u2 +v3 # 0) and [, > 0 (3 P #0),k=1,2,..,m such that
k=1

1 m 1
F(Low) < 1= 11 =1 (Lins )] fo E (1) > Yy fo H(t, 1)d 5, (1),

k=1

S, 2) : 8, 2) I (2)

lim sup < Uy, limsup < vy uniformly on ¢ € [0, 1], and liminf — < lk, k=1,2,..,m.
7—0* Z 70+ Z 7=0% Z

(H4) There exist i3, v3 > 0 (12 +v2 # 0) and [y > 0 (3] I, # 0),k = 1,2, ...,m such that
k=1

m 1 1
if (L) <12 > Gt fo H(t, t0)d ., () > [1 = 7 (Lys )] fo Ay (1),
k=1

f(t’ Z) > im inf g(t, ) k(Z)

lim inf > 3, limi > y3 uniformly on ¢ € [0, 1], and 11m1nf —_— > lk,k =1,2,....m
z—0* Z z—0* d Z

m

(HS5) There exist g, v4 > 0 (,u4 + v4 # 0) and lk >0 (Z 12 #0),k=1,2,...,msuch that

1 m 1
r(L,u4,v4) <l= (1 - r('£/l4,V4))£ tﬁ_ldl/’;u,m(t) > Z/l;ﬁ H(ta tk)d¢lﬂ4,V4(t)7
k=1

f(,2) : 8(1,2) k( )

lim sup < Uy, limsup < v4 uniformly on ¢ € [0, 1], and liminf — < lk, k=1,2,...m
7400 Z 7400 Z 2+

Theorem 3.2. Suppose that (HO)—(H3) hold. Then, (1.1) has at least one positive solution.

Proof. Let S| ={z€ P:z—-Tz= A4z, 1 >0}, where 7 € P, is a fixed element. We first prove that S is
a bounded set in P. Note that z € S, and from Lemma 2.5 we have

z€ Py, ie.2) > 7 lell.r € [0, 1] and z(t) > £ 'llell. k = 1,2, ... m. (32)
By (H2) there exist ¢, ¢, > 0(k = 1,2, ...,m) such that

ft,2) =2 miz="0), gt,2) 2vi(z—70), I(z) = hkz—cx, ze R, 1 € [0, 1],k = 1,2,....,m.
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Consequently, if z € S|, we have

2(D) = (T 2)()
3.3)

1 l’B_l 1 m _
2 f G(t, 5)(z(s) —O)ds + vy I f (z(s) = o)da(s) + Z H(t, 1) ez (1) = ci) -
0 0 k=1

B -
Multiplying by di,,, ,, () on both sides of (3.3) and integrating over [0, 1], from (3.1) we have

-1

1 1 1 . 1
f 2OdY 5, (1) 2 f [,Ul f G(1, 5)(z(s) = c)ds + vy f (z(s) —ada(s)] Ay, 1, (1)
0 0 0 B=1Jo

m Al
+ Z f H(t, ) (Lz () = ¢i) dpy, o, (1)
k=10

1 s 1 1 tﬁ—l
= f (z(s)—ad(m f dr f G(t, )y, (1) + via(s) f —dwl,vm)
0 0 0 0 ﬁ_l

m_ Al
+ Z f H(t’ tk)dlﬁ/-‘layl (t) (lkZ (tk) - Ek)
k=1 Y0
1 R
= f(; (z(s) _E:)d(-E;l,vlwﬂlm)(S) + Z f(; H(t, tk)dlvl’m,v. ) (Liz (1) _’C‘.'k)
k=1

1 m 1
= f (2(5) = O (L ) W) + D | HE 5,0, (0) (2 (1) = ).
0

k=1 Y0

Thus,

1 1 m 1
fo dOdy, ., (1) + T (L) fo () + D T fo H(t, 1)d, 0, (1)
k=1

(3.4)
1 m 1
>r (L) fo z(t)dwm,yl(m;lk fo H(t, 1) d 0, (D2 (1)

There are two cases to consider.
Case L. r(L£,,,,) > 1. From (3.2) and (3.4) we have

1 m 1
[ (Lo ) = 1l fo B (0 + Nl Y bt fo H(t, 1)y, , (1)
k=1

1 m 1
<cr (-L/Jl,Vl>f d‘ﬁm,w (1) + erk f H(t, tk)dw,ul,vl (0,
0 I=1 0

and thus

cr (-me)fol A (1) + 242, Cr fol H(t, ti)dy, v, (1)
(L) = 11 5710 (0 + Sy Gt [ HE 50,0, ()

llzll <

AIMS Mathematics Volume 9, Issue 5, 10911-10925.
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Case 2. Now r(L,,,,) < 1. (H2), (3.2), and (3.4) imply that

1 m 1
[7 (L) = el fo A @) + 112 Y 1t fo H(t, 1)d sy, , (1)
k=1

1 m 1
SFCTI”(-[:#],V])L d'vl’,ul,w(t)‘l'kz_;zk‘fo‘ H(t’ tk)dwllh"l(t)’

and then
T (L) ) o (O + Sy @ ) HCE 0,0, (1)
P (L) = 11 i (0 + Sy ™ [ HE 10,0, ()

llzll <

Combining the two cases, we have proved that §; is a bounded set, as required. Now, we choose a
sufficiently large R; > sup S such that

z—Tz# Az, z€ 0Bg, NP, 1 >0, (3.5)
where Bg, = {z € P : |lzl| < R,}. Therefore, Lemma 2.7 implies that
i(7,Bg, NP,P)=0. (3.6)
By (H3) there exists r; > 0 such that
f(t,2) < oz, g(t,2) < vaz, Ii(2) <Lz, z€[0,n],t€[0,11,k=1,2,....m. (3.7)

Now, we prove that

2# A7z, z€ 0B, NP, 1€][0,1], 3.8)

where B,, = {z € P : ||z|| < ri}. If the claim is false, then there exista z; € 0B,, N P, 4; € [0, 1] such
that

1 = /11‘7'21.
By Lemma 2.5, z; satisfies (3.2), and from (3.7) we have

-1

1
21(1) £ (Tz)@) < ,sz G(t, s)z1(s)ds + v,
0

1 m ~
1 fo z]<s>da<s>+;Hu,rk)lkz] .  (3.9)

AIMS Mathematics Volume 9, Issue 5, 10911-10925.
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Multiplying by di,, ,,(t) on both sides of (3.9) and integrating over [0, 1], from (3.1) we obtain

1 1 1 1 1’6_1 1
f 2Oy, () < 12 f f G(t, )21 ()dsdY1 0, () + 2 f f 21(8)da(5)d (1)
0 0 0 0 ﬂ -1 0

m . l
+kz;lk£ H(t, t)dyy, v, (D21 (8)

1 s 1 1 Z,,B—l
= f z1(s)d (,uz f dr f G(t, D) 1, 1, (1) + v2(s) f —dw,lz,n(l))
0 0 0 0 :8 -1

mo 1
+ Dk fo H(t, td, (021 (1)
k=1
1 m.o_ ol
= f Q)AL W) () + D f H(t, 1)d,0, (021 (1)
0 =l 0

1 mo ol
= fo 2T (L) Vo)) + D Tk fo H(t, 6,0, (1)21 (1)
k=1

This, together with (3.2), implies that

1 m. Al
[1 = 7 (L)l ] f F () < Nill YT f H(t, 10)d,,(0).
0 - Jo

This contradicts (H3) unless ||z;]| = 0. Note that ||z;]] = 0 also contradicts z; € dB,, N P, r; > 0.
Therefore, we obtain that (3.8) holds, as required. From Lemma 2.8 we have

i(7,B, NPP)=1. (3.10)

Note that R, can be chosen large enough such that R; > sup S| and R, > ry. Therefore, from (3.6)
and (3.10) we have

i(7T,(Bg,\B,,) N P,P) = i(T,Bg, N P,P) —i(T,B,, NP,P) = —1.

Therefore, the operator 7 has at least one fixed point in (BRI\F,I) N P. Thus, (1.1) has at least one
positive solution. This completes the proof. O
Theorem 3.3. Suppose that (HO) and (H4)—(H5) hold. Then, (1.1) has at least one positive solution.

Proof. By (H4) there exists a sufficiently small r, > 0 such that
f(t,2) > 3z, 8(t,2) 2 v3z, @) > hz, 2 € [0,r2],0 € [0,1,k = 1,2, ..,m. (3.11)

For this r,, we prove that
2=Tz# Az, z€IB, NP, 1 >0, (3.12)

where B,, = {z € P : |lzl| < 2}, and z is a fixed element in Py. If (3.12) is false, then there exist a
22 € 0B,, N P, A, > 0 such that
20— T 20 = 2.

AIMS Mathematics Volume 9, Issue 5, 10911-10925.



10921

Lemma 2.5 implies that z, satisfies (3.2). Moreover, from (3.11) we have

-1

1 1 m
2(t) = (T 22)(t) =2 3 f G(t, 5)22(s)ds + v3 7 f 2(8)da(s) + Z H(, 1Lz (1) . (3.13)
0 0 k=1

Multiplying by dy,,, ,,(f) on both sides of (3.13) and integrating over [0, 1], from (3.1) we obtain

1 1l Lop1 ol
f 2(0dY 5, (1) Z p3 f f G(1, )za(S)dsdy, v, (1) + v3 f f 22(s)da(s)dyy, (1)
0 0 Jo o B=1JUo

m _ 1
+ ;lkfo H(t, t)dy i, v, (D22 (1)

1 s 1 1 1,6'—1
= f m(s)cz(m f dr f G, ), (1) + V30(5) f —dm,m(r))
0 0 0 0 ﬁ_l

m B 1
+ Z lk‘fo H(t, t)dy s, v, ()22 (1)
=1
| ” |
:f DL )(5)+ ) f H(t, 1) A, (D22 (1)
0 k=1 0

1 monl
= fo (AT ( Ly )Y () + D Tk fo H(t, t)d s, ()22 (1)
k=1

There are two cases to consider.
Cases 1. r(Lﬂm) > 1. From (3.2) we obtain

1 m_ 1
||Zz||[(r(-£m,v})—1) fo P (0 + ) Tt fo H(r,rk>dwm,V3<t>]so,
k=1

which contradicts z, € dB,, N P, r, > 0.
Cases 2. 7(L,,,,) < 1. By (3.2) we have

1 m_o 1
||zZ||[(r(£m,V3)—1) fo Ay @) + D Tl fo H(r,mdwm,w(r)}so,
k=1

and it contradicts (H4) unless ||z, = 0. We also have a contradiction to z; € dB,,NP, r, > 0if ||z,]| = 0.
Therefore, we obtain that (3.12) holds, and Lemma 2.7 implies that

i(7,B,,NP,P)=0. (3.14)
By (H5) there exist ¢, ¢, > 0(k = 1,2, ..., m) such that
f(t,2) <z +0), g(t,2) S vaz+70), I(x) <hz+ T, z€ R, 1€[0,11,k=1,2,...,m. (3.15)

LetS, ={z€ P:z=Aa7z4 € [0,1]}. We now prove that §, is bounded in P. If z € §,, then by
Lemma 2.5, (3.2) holds, and from (3.15) we have
z2(t) < (T2)(0)
-1
B-1

(3.16)

1 1 m
< f G(t, 5) (z(s) + O ds + va f (e(s) + D) da(s) + " Ht, 1) (lz (80 + @)
0 0 k=1
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Multiplying by di,, ,,(t) on both sides of (3.16) and integrating over [0, 1], from (3.1) we obtain

—1

1 1l 1B 1
f 2O APy, (1) < s f f G(t,5) (2(s) + ©) dsdipy, v, (1) + v4 f f (2(s) + ) da(s)d,,, (1)
0 0o Jo o B=1Uo

m 1
- f H(t, 1), (1) (I (1) + )
k=1 Y0

1 s 1 1 Z"B_l
- f (z(S)+E)d(,u4 f dr f G(t, )10, (1) + var(s) f —dm,w))
0 0 0 0 ﬁ - 1

m 1
+ kz_; fo H(t, t)d, v, () ( Iz () + E")

1 m 1
= f (2(8) + OV ALy Yo )() + ) | f H(t, 1A, () (lez (1) + )
0 =1 YO
1 m 1
= fo (2(5) + ) dr (L) s )5 + ) fo H(t, 1)y, (1) (L2 () + )
k=1

Note that (3.2) and r(LMM) < 1, and we have

1 1 m 1

(1 = (L Dl f 7 A (1) S T (L) f Ay ) + ) f H(t, t0)d s, (0) (Ill2ll + )
0 0 =1 YO

and (HS) implies that

T (L) oy WO + iy T fy) HE 1) d100,(1)
(U= P (Lo ) f) #7100 0) = S T [ G100, (0)

llzll <

This implies that S, is a bounded set in P, as required. Therefore, we can choose a large number
R, > max{sup S, r»} such that

2# ATz, z€ OB, NP, 1 €[0,1],
where Bg, = {z € P : ||z|| < R,}. From Lemma 2.8 we have
i(7,Bg, NP,P) = 1. (3.17)
As aresult, from (3.14) and (3.17) we have
i(7", (Bg,\B,,) N P,P) = i(T,Bg, N\ P,P) —i(T,B,,NP,P) = 1.

Therefore, the operator 7~ has at least one fixed point in (Bg, \Ez) N P. Thus, (1.1) has at least one
positive solution. This completes the proof. O
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4. Conclusions

In this paper, we study the existence of positive solutions for the Riemann-Liouville-type impulsive

fractional integral boundary value problem (1.1). We first use the Gelfand theorem and the Krein-
Rutman theorem to investigate a related positive linear operator, which can include the Riemann-
Stieltjes integral condition. Then, the impulsive term is regarded as a perturbation, and we use some
conditions concerning the spectral radius of the linear operator to obtain our main results. In this paper
we provided a quite different method to study such problems.
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