Research article Special Issues

A complete classification of weakly Dedekind groups

  • Received: 30 November 2023 Revised: 31 January 2024 Accepted: 07 February 2024 Published: 26 February 2024
  • MSC : 20D35, 20E34

  • A finite group is called a weakly Dedekind group if all its noncyclic subgroups are normal. In this paper, we determine the complete classification of weakly Dedekind groups.

    Citation: Huaguo Shi, Zhangjia Han, Pengfei Guo. A complete classification of weakly Dedekind groups[J]. AIMS Mathematics, 2024, 9(4): 7955-7972. doi: 10.3934/math.2024387

    Related Papers:

  • A finite group is called a weakly Dedekind group if all its noncyclic subgroups are normal. In this paper, we determine the complete classification of weakly Dedekind groups.



    加载中


    [1] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York-Heidelberg-Berlin, 1980. https://doi.org/10.1007/978-1-4419-8594-1
    [2] G. Pic, Despre structura grupurilor quasihamiltoniene, Buletin Ştiinţific, 1949.
    [3] J. T. Buckley, J. C. Lennox, J. Wieglod, Generalizations of Hamiltonian groups, Ric. Mat., 41 (1992), 369–376.
    [4] Z. Bozikov, Z. Janko, A complete classification of finite $p$-groups all of whose noncyclic subgroups are normal, Glas. Mat., 44 (2009), 177–185. https://doi.org/10.3336/gm.44.1.10 doi: 10.3336/gm.44.1.10
    [5] L. H. Zhang, J. Q. Zhang, Finite $p$-groups all of whose non-normal abelian subgroups are cyclic, J. Algebra Appl., 12 (2013), 1350052. https://doi.org/10.1142/S0219498813500527 doi: 10.1142/S0219498813500527
    [6] R. Brandl, Groups with few non-normal subgroups, Comm. Algebra, 23 (1995), 2091–2098. https://doi.org/10.1080/00927879508825330 doi: 10.1080/00927879508825330
    [7] Z. J. Han, G. Y. Chen, H. G. Shi, A new proof of cassification of finite groups whose non-normal subgroups are conjugate, Adv. Math., 46 (2017), 97–102. https://doi.org/10.11845/SXJZ.2015047B doi: 10.11845/SXJZ.2015047B
    [8] P. F. Bai, X. Y. Guo, K. P. Shum, On finite NDC-groups, Bull. Malays. Math. Sci. Soc., 43 (2020), 3099–3123. https://doi.org/10.1007/s40840-019-00856-z doi: 10.1007/s40840-019-00856-z
    [9] A. Fattahi, Groups with only normal and abnormal subgroups, J. Algebra, 28 (1974), 15–19. https://doi.org/10.1016/0021-8693(74)90019-2 doi: 10.1016/0021-8693(74)90019-2
    [10] X. Guo, J. Wang, On generalized Dedekind groups, Acta Math. Hungar., 122 (2009), 37–44. https://doi.org/10.1007/s10474-009-7178-2 doi: 10.1007/s10474-009-7178-2
    [11] Z. C. Shen, W. J. Shi, J. S. Zhang, Finite non-nilpotent generalizations of Hamiltonian groups, Bull. Korean Math. Soc., 48 (2011), 1147–1155. https://doi.org/10.4134/BKMS.2011.48.6.1147 doi: 10.4134/BKMS.2011.48.6.1147
    [12] Z. C. Shen, J. S. Zhang, W. J. Shi, On a generalization of Hamiltonian groups and a dualization of PN-groups, Commun. Algebra, 41 (2013), 1608–1618. https://doi.org/10.1080/00927872.2011.644609 doi: 10.1080/00927872.2011.644609
    [13] Q. W. Song, H. P. Qu, Finite $2$-groups whose subgroups are cyclic or normal, Math. Pract. Theory, 38 (2008), 191–197.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(608) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog