Research article

The bound of the correlation results of the roughness measure of the disturbation fuzzy set

  • Received: 14 December 2023 Revised: 28 January 2024 Accepted: 31 January 2024 Published: 19 February 2024
  • MSC : 03E72

  • This paper mainly studies and proves the roughness bound of disturbation fuzzy sets. Firstly, based on the theory of determining self-increment and uncertain self-decrement operators, the problem that the execution subsets are not equal sets is effectively solved, which hinders the quantitative study of disturbed fuzzy sets and lays a foundation for the quantitative study of the related properties of disturbed fuzzy sets in the future. The boundary of roughness measure of disturbing fuzzy set is further studied and proved. The new territories proposed in this paper can effectively avoid the unnecessary calculation space outside the boundary in the calculation process, so as to improve the work efficiency.

    Citation: Li Li, Hangyu Shi, Xiaona Liu, Jingjun Shi. The bound of the correlation results of the roughness measure of the disturbation fuzzy set[J]. AIMS Mathematics, 2024, 9(3): 7152-7168. doi: 10.3934/math.2024349

    Related Papers:

  • This paper mainly studies and proves the roughness bound of disturbation fuzzy sets. Firstly, based on the theory of determining self-increment and uncertain self-decrement operators, the problem that the execution subsets are not equal sets is effectively solved, which hinders the quantitative study of disturbed fuzzy sets and lays a foundation for the quantitative study of the related properties of disturbed fuzzy sets in the future. The boundary of roughness measure of disturbing fuzzy set is further studied and proved. The new territories proposed in this paper can effectively avoid the unnecessary calculation space outside the boundary in the calculation process, so as to improve the work efficiency.



    加载中


    [1] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. http://doi.org/10.1007/BF01001956
    [2] Y. Yao, Rough sets, neighborhood systems and granular computing, 1999 IEEE Canadian Conference on Electrical and Computer Engineering, 1999. http://doi.org/10.1109/CCECE.1999.804943
    [3] Z. Huang, J. Li, C. Wang, Robust feature selection using multigranulation variable-precision distinguishing indicators for fuzzy covering decision systems, IEEE Trans. Syst. Man Cybern., 54 (2024), 903–914. http://doi.org/10.1109/TSMC.2023.3321315 doi: 10.1109/TSMC.2023.3321315
    [4] Z. Huang, J. Li, Y. Qian, Noise-tolerant fuzzy-$\beta$-covering-based multigranulation rough sets and feature subset selection, IEEE Trans. Fuzzy Syst., 30 (2022), 2721–2735. http://doi.org/10.1109/TFUZZ.2021.3093202 doi: 10.1109/TFUZZ.2021.3093202
    [5] Z. Huang, J. Li, Discernibility measures for fuzzy $\beta$ covering and their application, IEEE Trans. Cybern., 52 (2022), 9722–9735. http://doi.org/10.1109/TCYB.2021.3054742 doi: 10.1109/TCYB.2021.3054742
    [6] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X
    [7] N. Jan, J. Gwak, D. Pamucar, A robust hybrid decision making model for human-computer interaction in the environment of bipolar complex picture fuzzy soft sets, Inf. Sci., 645 (2023), 119163. http://doi.org/10.1016/j.ins.2023.119163 doi: 10.1016/j.ins.2023.119163
    [8] N. Jan, J. Gwak, D. Pamucar, L. Martínez, Hybrid integrated decision-making model for operating system based on complex intuitionistic fuzzy and soft information, Inf. Sci., 651 (2023), 119592. http://doi.org/10.1016/j.ins.2023.119592 doi: 10.1016/j.ins.2023.119592
    [9] M. K. Ebrahimpour, M. Eftekhari, Ensemble of feature selection methods, Soft Comput., 50 (2017), 300–312. http://doi.org/10.1016/j.asoc.2016.11.021 doi: 10.1016/j.asoc.2016.11.021
    [10] A. F. Jahromi, Z. E. Mimand, A new outlier detection method for high dimensional fuzzy databases based on LOF, J. Math. Model., 2 (2018), 123–136. http://doi.org/10.22124/jmm.2018.8102.1108 doi: 10.22124/jmm.2018.8102.1108
    [11] Z. Yuan, H. Chen, T. Li, B. Sang, S. Wang, Outlier detection based on fuzzy rough granules in mixed attribute data, IEEE Trans. Cybern., 52 (2022), 8399–8412. http://doi.org/10.1109/TCYB.2021.3058780 doi: 10.1109/TCYB.2021.3058780
    [12] P. Zhang, T. Li, G. Wang, D. Wang, P. Lai, F. Zhang, A multi-source information fusion model for outlier detection, Inf. Fusion, 93 (2023), 192–208. http://doi.org/10.1016/j.inffus.2022.12.027 doi: 10.1016/j.inffus.2022.12.027
    [13] F. Xiao, EFMCDM: evidential fuzzy multicriteria decision making based on belief entrop, IEEE Trans. Fuzzy Syst., 28 (2020), 1477–1491. http://doi.org/10.1109/TFUZZ.2019.2936368 doi: 10.1109/TFUZZ.2019.2936368
    [14] F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE Trans. Syst. Man Cybern., 51 (2021), 3980–3992. http://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
    [15] X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: the application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. http://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
    [16] X. Gou, Z. Xu, P. Ren, The properties of continuous pythagorean fuzzy information, Int. J. Intell. Syst., 31 (2016), 401–424. http://doi.org/10.1002/int.21788 doi: 10.1002/int.21788
    [17] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209 http://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
    [18] M. Banerjee, S. K. Pal, Roughness of a fuzzy set, Inf. Sci., 93 (1996), 235–246. http://doi.org/10.1016/0020-0255(96)00081-3
    [19] W. Wei, J. Liang, Y. Qian, Can fuzzy entropies be effective measures for evaluating the roughness of a rough set? Inf. Sci., 232 (2013), 143–166. http://doi.org/10.1016/J.INS.2012.12.036
    [20] J. Hu, W. Pedrycz, G. Wang, A roughness measure of fuzzy sets from the perspective of distance, Int. J. Gen. Syst., 45 (2016), 352–367. http://doi.org/10.1080/03081079.2015.1086580 doi: 10.1080/03081079.2015.1086580
    [21] M. Z. Anwar, S. Bashir, M. Shabir, M. G. Alharbi, Multigranulation roughness of intuitionistic fuzzy sets by soft relations and their applications in decision making, Mathematics, 9 (2021), 2587. http://doi.org/10.3390/math9202587 doi: 10.3390/math9202587
    [22] Q. Li, Disturbation problems of membership functions and study of disturbation operators, J. Dalian Univ. Technol., 41 (2001), 387–391.
    [23] X. Liu, T. Chen, Disturbance fuzzy logic and its non-operator, Fuzzy Syst. Math., 16 (2002), 179–182.
    [24] G. J. Wang, Non-classical mathematical logic and approximate reasoning, Beijing Science Press, 2000.
    [25] T. Chen, Y. Meng, F. Wu, Generalized double blind expression in perturbed fuzzy propositional logic systems, Fuzzy Syst. Math., 19 (2000), 86–89.
    [26] T. Chen, X. Li, Generalized quasi-tautologies of interval-valued fuzzy propositional logic and their classification, J. Liaoning Normal Univ., 3 (2004), 22–25.
    [27] F. Wu, Semantics of intuitionistic fuzzy propositional logic system, Master thesis, Liaoning Normal University, 2005.
    [28] Y. Han, S. Chen, S. Chen, Roughness of disturbing fuzzy sets, J. Appl. Math. Univ., 22 (2007), 498–504.
    [29] Y. Yang, R. John, Roughness bounds in rough set operations, Inf. Sci., 176 (2006), 3256–3267. http://doi.org/10.1016/j.ins.2006.02.009 doi: 10.1016/j.ins.2006.02.009
    [30] Z. Pawlak, Rough sets: theoretical aspects of reasoning about data, Springer Science & Business Media, 1992. http://doi.org/10.1007/978-94-011-3534-4
    [31] H. Zhang, H. Liang, D. Liu, Two new operators in rough set theory with applications to fuzzy sets, Inf. Sci., 166 (2004), 147–165. http://doi.org/10.1016/j.ins.2003.11.003 doi: 10.1016/j.ins.2003.11.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(571) PDF downloads(35) Cited by(1)

Article outline

Figures and Tables

Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog