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Abstract: This paper mainly studies and proves the roughness bound of disturbation fuzzy sets.
Firstly, based on the theory of determining self-increment and uncertain self-decrement operators,
the problem that the execution subsets are not equal sets is effectively solved, which hinders the
quantitative study of disturbed fuzzy sets and lays a foundation for the quantitative study of the related
properties of disturbed fuzzy sets in the future. The boundary of roughness measure of disturbing fuzzy
set is further studied and proved. The new territories proposed in this paper can effectively avoid the
unnecessary calculation space outside the boundary in the calculation process, so as to improve the
work efficiency.
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1. Introduction

Pawlak first proposed the rough set theory [1], which is the basis for testing the granularity of
knowledge [2]. In recent years, many models related to rough sets have emerged, such as the rough
set theory based on fuzzy covering [3–5]. The fuzzy set theory was first proposed by Zadeh [6]. Since
then, theories and applications related to fuzzy sets [7] have also been widely studied, such as fuzzy soft
sets [8], feature selection of fuzzy sets [9], outlier detection of fuzzy sets [10–12], decision application
of fuzzy sets, etc. [13–16]. The relation and difference between fuzzy set theory and rough set theory is
also a hot topic. An important component of this research is the roughness of the fuzzy set. Dubois et al
first defined the concepts of the rough fuzzy set and fuzzy rough set [17]. The roughness measurement
method of fuzzy sets proposed by Banerjee et al really makes the relationship between fuzzy sets
and rough sets closer [18], and it has laid a solid foundation for subsequent researchers to explore
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the roughness measurement of fuzzy sets by applying fuzzy entropy [19], from the perspective of
distance [20] and based on soft relation [21]. Li first mentioned the concept of disturbed fuzzy sets [22].
Liu and Chen formally described the concept of disturbed fuzzy sets [23]. Chen and Wu extended the
tautology of fuzzy sets [24] to interval-valued fuzzy sets [25], intuitionistic fuzzy sets [26], and disturb
fuzzy sets [27], respectively. It is found that the same result can be obtained only when the disturbation
fuzzy set is generalized to the ordinary fuzzy set. Therefore, the disturbation fuzzy set shows excellent
properties in the operation and has extensive research value, which is not found in any kind of fuzzy
set, including the interval valued fuzzy set. Subsequently, Han et al. put forward the concept of
disturbed fuzzy rough sets and the roughness measure of disturbed fuzzy sets [28]. It further enriches
the theoretical basis of combining the fuzzy set and the rough set. However, there are few researches
on the roughness measurement of the disturbance fuzzy set, and the application of disturbance fuzzy
set roughness measurement is even less.

Upper and lower approximations of fuzzy sets are two important aspects in the study of fuzzy rough
sets theory [29]. In this paper, there are two limitations: On the one hand, it is found in the exploration
that the approximation of M̃ ∪ Ñ generally cannot be obtained by the approximation of M̃ and Ñ, and
these properties are the result of logical forms defined by assumptions in the domain of discussion
expressed in an approximate manner [30]. Therefore they bring inconvenience and difficulty to the
research in many fields, including the roughness measurement of disturbed fuzzy sets. On the other
hand, when data analysis, data mining, decision support system, and machine learning are carried out,
the datasets are usually huge, in order to solve the inconvenience caused by too large datasets. So in this
paper, first, the related concepts of the rough set, disturbation fuzzy set, and roughness measurement
are introduced. Second, by introducing two new operators designed by Zhang et al. and associating
them with the disturbation fuzzy set, the limitation that the execution subset is not the equality of
the set and cannot be studied quantitatively is effectively solved. Finally, the roughness measure of
the disturbation fuzzy set is studied quantitatively, and its boundedness is obtained. Therefore, it is
expected that using the boundary of roughness measure of the disturbing fuzzy set proved in this paper
can effectively avoid the computing space outside the boundary and improve the computing efficiency.

2. Preparatory knowledge

In this section, some basic concepts related to approximate space, upper and lower approximations
of fuzzy sets, the roughness measure of fuzzy sets, and disturbation fuzzy sets are given.

Definition 2.1. (Approximate space) [1] The nonempty set U is called the discourse domain, S is the
equivalence relation on U, and (U, S ) is called an approximate space.

Definition 2.2. (Upper approximation, lower approximation, and boundary field) [1] (U, S ) is the
known approximation space, M ⊆ U, and in the approximation space y1, y2, · · · , yk represents an
equivalence class with respect to S . S̄ (M) is the upper approximation of M and S

¯
(M) is the lower

approximation of M. The boundary area BNS is represented by

S
¯

(M) =
{
yi|

[
yi
]
S ⊆ M

}
, S (M) =

{
yi|

[
yi
]
S ∩ M , ∅

}
, (2.1)

while

BNS =
S̄ (M)
s
¯

(M)
, k = 1, 2, · · · ,m.
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Definition 2.3. (Upper and lower approximations of fuzzy sets) [1] In U, the upper and lower
approximations of the fuzzy set M are defined as: U/S → [0, 1] and

S
¯

(M) (y) = inf
y∈Yk

M (x) ,

S̄ (M) (y) = sup
y∈Yk

M (x) , k = 1, 2, · · · ,m.

Definition 2.4. (Roughness measure of fuzzy set) [1] (U, S ) is the known approximation space, M ⊆ U,
and the M roughness measure in (U, S ) is

ρM = 1 −
|s
¯

(M)|∣∣∣S̄ (M)
∣∣∣ ,

where the set |∗| represents the cardinality of ∗.

Yao [2] once proposed that the roughness measure of a fuzzy set can be understood as the distance
between the upper approximation and the lower approximation of the fuzzy set. If M: U → [0, 1] is in
U, M (y) , y ∈ U gives y membership in M.

Definition 2.5. (Disturbed fuzzy sets) [23] If

P̃ : Z 7→ ω, z 7→ P̃ (z) (2.2)

and
ω =

{
P̃ (z) =

(
P̃α (z) , P̃β (z)

)∣∣∣∣ P̃α (z) , P̃β (z) ∈ [0, 1]
}

(2.3)

call P̃ a disturbed fuzzy set on Z, then all disturbed fuzzy sets on the discourse domain U are denoted
as Ẽ (U).

3. Roughness of the disturbance fuzzy set

Based on the concepts of upper approximation and lower approximation, this section introduces the
roughness measure formula of the disturbed fuzzy set, the operation relations of upper approximation,
and lower approximation, and the key properties of roughness measure of the disturbed fuzzy set.

Definition 3.1. (Operation of disturbed fuzzy sets) [28] Let

ω =
{
µ =

(
µα, µβ

)}
,

the interval corresponding to
(
µα, µβ

)
is[

max
(
0, µα − µβ

)
,min

(
1, µα + µβ

)]
(3.1)

for all
µ = (µα, µβ), ν = (να, νβ), µ, ν ∈ ω,

the operation on ω is defined as

µ ∧ ν =
(
min {µα, να} ,max

{
µβ, νβ

})
,

µ ∨ ν =
(
max {µα, να} ,min

{
µβ, νβ

})
,

µc =
(
1 − µα, 1 − µβ

)
.

(3.2)
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Definition 3.2. (Relation of disturbed fuzzy sets) [28] The relationship between µ and ν is defined as

µ = ν⇔ µα = να, µβ = νβ,

µ ≤ ν⇔ µα ≤ να, µβ ≥ νβ,

µ < ν⇔ µα < να, µβ ≥ νβ or µα ≤ να, µβ < νβ,

(3.3)

otherwise, we call it incomparable and denote by U(µ, ν).

Obviously, when (ω,≤), 0 = (0, 1) and 1 = (1, 0) are the minimum and maximum elements on ω,
respectively.

Definition 3.3. (Upper and lower approximations of disturbed fuzzy sets) [28] Let µ, ν be the two given
parameters,

M̃ ∈ Ẽ (U) , 0̃ < ν ≤ µ ≤ 1̃,

and the (U, S ) be the approximate space, defining the upper and lower approximations of a disturbed

fuzzy set. The µ− cut sets and ν− cut sets of S
¯

(
M̃

)
and S̄

(
M̃

)
are(

S
¯

(
M̃

))
µ
=

{
y ∈ U |

(
M̃

)
(y) ≥ µ

}
, (3.4)(

S̄
(
M̃

))
ν
=

{
y ∈ U | S̄

(
M̃

)
(y) ≥ ν

}
, (3.5)

where,
(
S
¯

(
M̃

))
µ

and
(
S̄

(
M̃

))
ν

can be regarded as the sets of objects with µ and ν as the minimum

membership degrees in the disturbance fuzzy set M̃.

Definition 3.4. (Roughness of disturbed fuzzy set) [28] Let (U, S ) be the approximate space,

M̃ ∈ Ẽ (U) , 0̄ < ν ≤ µ ≤ 1̄,

then the roughness of the disturbed fuzzy set M̃ on U in accordance with parameter µ, ν is

ρ̃
µ̃,ν̃

M̃
= 1 −

∣∣∣∣S¯ (
M̃

)
µ̃

∣∣∣∣∣∣∣∣S̄ (
M̃

)
ν̃

∣∣∣∣ . (3.6)

Han et al. introduced several key properties of this roughness measure [28].

Proposition 3.1. (Disturbation of upper and lower approximation of fuzzy sets) [28] Let µ, ν be two
given parameters,

M̃ ∈ Ẽ (U) , 0 < ν ≤ µ ≤ 1,

and let
(
S
¯

(
M̃

))
µ

and
(
S̄

(
M̃

))
ν

be the µ− cut sets and ν− cut sets of the upper and lower approximations

of the disturbed fuzzy set S
¯

(
M̃

)
and S̄

(
M̃

)
, where(

S̄
(
M̃ ∪ Ñ

))
ν
=

(
S̄

(
M̃

))
ν
∪

(
S̄

(
Ñ
))
ν
, (3.7)(

S
¯

(
M̃ ∩ Ñ

))
µ
=

(
S
¯

(
M̃

))
µ
∩

(
S
¯

(
Ñ
))
µ
, (3.8)(

S
¯

(
M̃

))
µ
∪

(
S
¯

(
Ñ
))
µ
⊆

(
S
¯

(
M̃ ∪ Ñ

))
µ
, (3.9)(

S̄
(
M̃ ∩ Ñ

))
ν
⊆

(
S̄

(
M̃

))
ν
∩

(
S̄

(
Ñ
))
ν
. (3.10)
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Property 3.1. For disturbed fuzzy set M̃, Ñ, there is [28]

ρ̃
µ,ν

M̃∪Ñ
= 1 −

∣∣∣∣(S¯ (
M̃ ∪ Ñ

))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∪ Ñ

))
ν

∣∣∣∣ = 1 −

∣∣∣∣(S¯ (
M̃ ∪ Ñ

))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν
∪

(
S̄

(
Ñ
))
ν

∣∣∣∣ ≤ 1 −

∣∣∣∣(S¯ (
M̃

))
µ
∪

(
S
¯

(
Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν
∪

(
S̄

(
Ñ
))
ν

∣∣∣∣ , (3.11)

ρ̃
µ,ν

M̃∩Ñ
= 1 −

∣∣∣∣(S¯ (
M̃ ∩ Ñ

))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ = 1 −

∣∣∣∣(S¯ (
M̃

))
µ
∩

(
S
¯

(
Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ ≤ 1 −

∣∣∣∣(S¯ (
M̃

))
µ
∩

(
S
¯

(
Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν
∩

(
S̄

(
Ñ
))
ν

∣∣∣∣ . (3.12)

4. Determine the increment and indeterminate decrement operators

The pioneering study of fuzzy sets [1] derived as (3.8) and (3.9) in Proposition 3.1, which carry
out the property that subsets are not equal sets, hindered the quantitative study of fuzzy sets. Because
of this difficulty, Zhang et al. designed two new operators [31]. In this section, the new operator
proposed by Zhang et al. is fully associated with the disturbed fuzzy set so as to effectively avoid the
bad influence of this property in the roughness measurement process of the disturbed fuzzy set. The
roughness measure of the disturbed fuzzy set can be studied quantitatively.

Definition 4.1. (Determine the increment operator) [31] Let the discourse domain be U, S , the
equivalence class on U, P,Q ⊆ U, when P is extended by Q (i.e., P ∪ Q),

X
¯ (·) (·) : U × U → U,

defining
X
¯ (P) (Q) = ∪

{[
p
]
S

∣∣∣ p ∈ H (P) , hP (p) 1 Q
}
,

and lP (p) ⊆ Q is called the definite increment of P, where

H (P) = ∪ {hP (p)| p ∈ BNS (P) ∩ P} ,

lP (p) =
[
p
]
S − P and hP (p) =

[
p
]
S − lP (p) .

Definition 4.2. (Uncertain decrement operator) [31] Let the discourse domain be U, S the equivalence
class on U, P,Q ⊆ U, when P is cut by Q (i.e., P ∩ Q),

X
¯ (·) (·) : U × U → U,

defining
X̄(P) (Q) = ∪

{[
p
]
S

∣∣∣ p ∈ H (P) , hP (p) ∩ Q = ∅
}

and
lP (p) ∩ Q , ∅,

which is called the uncertainty decrement of P, where

H (P) = ∪ {hP (p)| p ∈ BNS (P) ∩ P} ,

lP (p) =
[
p
]
S − P and hP (p) =

[
p
]
S − lP (p) .
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Property 4.1. [31] P,Q ⊆ U, so
X
¯ (P) (Q) = X

¯ (Q) (P) , (4.1)

X̄(P) (Q) = X̄(Q) (P) . (4.2)

Property 4.2. [31]
X
¯ (P) (∅) = ∅, (4.3)

X
¯ (P) (P) = ∅, (4.4)

X
¯ (P) (¬P) = BNS (P) = S̄ P − S

¯
P. (4.5)

Property 4.3. [31]
X̄(P) (∅) = ∅, (4.6)

X̄(P) (P) = ∅, (4.7)

X̄(P) (¬P) = BNS (P) . (4.8)

Theorem 4.1. Let M̃ and Ñ be two disturbed fuzzy sets in the discourse domain U. Parameters µ, ν

satisfy 0 < ν ≤ µ ≤ 1, while X
¯ M̃µ

(
Ñµ

)
, X̄M̃ν

(
Ñν

)
, X

¯ Ñµ

(
M̃µ

)
, and X̄Ñν

(
M̃ν

)
are, respectively, M̃µ, Ñµ

determines the increment and M̃ν, and the uncertainty of Ñν decreases so we can get(
S
¯

(
M̃ ∪ Ñ

))
µ
=

(
S
¯

(
M̃

))
µ
∪

(
S
¯

(
Ñ
))
µ
∪ X

¯ M̃µ

(
Ñµ

)
=

(
S
¯

(
M̃

))
µ
∪

(
S
¯

(
Ñ
))
µ
∪ X

¯ Ñµ

(
M̃µ

)
, (4.9)(

S̄
(
M̃ ∩ Ñ

))
ν
=

(
S̄

(
M̃

))
ν
∩

(
S̄

(
Ñ
))
ν
− X̄M̃ν

(
Ñν

)
=

(
S̄

(
M̃

))
ν
∩

(
S̄

(
Ñ
))
ν
− X̄Ñν

(
M̃ν

)
. (4.10)

Property 4.4. For disturbed fuzzy sets M̃ and Ñ,

ρ̃
µ,ν

M̃∪Ñ
= 1 −

∣∣∣∣(S¯ (
M̃

))
µ
∪

(
S
¯

(
Ñ
))
µ
∪ X

¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν
∪

(
S̄

(
Ñ
))
ν

∣∣∣∣ = 1 −

∣∣∣∣(S¯ (
M̃

))
µ
∪

(
S
¯

(
Ñ
))
µ
∪ X

¯ Ñµ

(
M̃µ

)∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν
∪

(
S̄

(
Ñ
))
ν
,
∣∣∣∣ , (4.11)

ρ̃
µ,ν

M̃∩Ñ
= 1 −

∣∣∣∣((M̃))
µ
∩

((
Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν
∩

(
S̄

(
Ñ
))
ν
− X̄M̃ν

(
Ñν

)∣∣∣∣ = 1 −

∣∣∣∣((M̃))
µ
∩

((
Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν
∩

(
S̄

(
Ñ
))
ν
− X̄Ñν

(
M̃ν

)∣∣∣∣ . (4.12)

5. The boundary of the correlation results of the roughness measure of the perturbation fuzzy
set

When calculating the roughness measurement of disturbed fuzzy sets, the datasets of many
programs are huge and the measurement is very complicated and cumbersome work, which requires a
lot of manpower and material resources. Therefore, this section presents the boundaries of some
results necessary for the roughness measurement of disturbed fuzzy sets. Understanding the
boundaries of these results before operation can greatly improve work efficiency. It has very
important practical significance.
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Theorem 5.1. The upper bound of the roughness measure ρ̃µ̃,ν̃
M̃∪Ñ

of the disturbed fuzzy sets M̃ and Ñ
in the discourse domain U is

ρ̃
µ̃,ν̃

M̃∪Ñ
≤

1 − ρ̃µ̃,ν̃
M̃
ρ̃
µ̃,ν̃

Ñ

2 −
(
ρ̃
µ̃,ν̃

M̃
+ρ̃
µ̃,ν̃

Ñ

)
with respect to parameter µ, ν, satisfying 0 < ν ≤ µ ≤ 1.

Proof. From (3.7) in Proposition 3.1 and the fundamental properties of sets, we can get

ρ̃
µ̃,ν̃

M̃∪Ñ
≤ 1 −

max
{∣∣∣∣(S¯ (M̃))

µ

∣∣∣∣ , ∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣}∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ + ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ , (5.1)

if ∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣ ≥ ∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣ .
Thus

ρ̃
µ̃,ν̃

M̃∪Ñ
≤ 1 −

1(
|(S̄ (M̃))ν|∣∣∣∣(s

¯
(M̃))µ

∣∣∣∣ + ||(
S̄ (Ñ))ν||∣∣∣∣(s
¯
(M̃))µ

∣∣∣∣
) , (5.2)

so, by Definition 3.4, we get

ρ̃
µ̃,ν̃

M̃∪Ñ
≤

1 − ρ̃µ̃,ν̃
M̃
ρ̃
µ̃,ν̃

Ñ

2 −
(
ρ̃
µ̃,ν̃

M̃
+ρ̃
µ̃,ν̃

Ñ

) . (5.3)

□

Theorem 5.2. The upper bound of the roughness measure ρ̃µ̃,ν̃
M̃∪Ñ

of the disturbed fuzzy sets M̃ and Ñ
in the discourse domain U is

ρ̃
µ̃,ν̃

M̃∩Ñ
≤ ρ̃

µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 + U◦

with respect to parameter µ, ν, satisfying 0 < ν ≤ µ ≤ 1 and

U◦ =

∣∣∣∣(s¯ (
M̃ ∪ Ñ

))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ .
Proof. From (3.8) in Proposition 3.1 and the fundamental properties of sets, we can get

ρ̃
µ̃,ν̃

M̃∩Ñ
= 1 −

∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ −
∣∣∣∣(S¯ (Ñ))

µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ +
∣∣∣∣(S¯ (M̃ ∪ Ñ

))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ . (5.4)

Also, according to (3.10) in Proposition 3.1,(
S̄

(
M̃ ∩ Ñ

))
ν
⊆

(
S̄

(
M̃

))
ν
, (5.5)(

S̄
(
M̃ ∩ Ñ

))
ν
⊆

(
S̄

(
Ñ
))
ν
. (5.6)
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In other words, we have ∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ ⊆ ∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ , (5.7)∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ ⊆ ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ , (5.8)

so we can get ∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ ≤
∣∣∣∣((S¯ M̃

))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ , (5.9)

∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ ≤
∣∣∣∣(S¯ (Ñ))

µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ . (5.10)

Next, according to (3.9) in Proposition 3.1, it is obtained

ρ̃
µ̃,ν̃

M̃∩Ñ
≤ 1 −

∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ −
∣∣∣∣(S¯ (Ñ))

µ

∣∣∣∣∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ +
∣∣∣∣(S¯ (M̃ ∪ Ñ

))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ . (5.11)

According to Definition 3.4, we can get

ρ̃
µ̃,ν̃

M̃∩Ñ
≤ ρ̃

µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 +

∣∣∣∣(S¯ (M̃ ∪ Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ . (5.12)

Therefore, to sum up,
ρ̃
µ̃,ν̃

M̃∩Ñ
≤ ρ̃

µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 + U◦,

when

U◦ =

∣∣∣∣(s¯(M̃ ∪ Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ .
□

Remark 5.1. The bounds of Theorem 5.1 depend on roughness measures of the disturbed fuzzy sets M̃
and Ñ, and the bounds of Theorem 5.2 depend on roughness measures of the disturbed fuzzy sets M̃

and Ñ as well as
(
S
¯

(
M̃ ∪ Ñ

))
µ

and
(
S̄

(
M̃ ∩ Ñ

))
ν
.

Theorem 5.3. The lower bound of the disturbed fuzzy sets M̃ and Ñ in the discourse domain U for the

roughness measure ρ̃µ̃,ν̃
M̃∪Ñ

with respect to parameter µ, ν is

ρ̃
µ̃,ν̃

M̃∪Ñ
≥ ρ̃

µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 + L◦,

which satisfies 0 < ν ≤ µ ≤ 1, and

L◦ =

∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣
max

{∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ , ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣} .
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Proof. From (4.11) in Property 4.4 and the fundamental properties of sets, it is obtained that

ρ̃
µ̃,ν̃

M̃∪Ñ
≥ 1 −

∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣ + ∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣ + ∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣
max

{∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ , ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣} , (5.13)

We can obtain ∣∣∣∣(S̄ (
M̃

))
v

∣∣∣∣ ≥ ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ (5.14)

and

ρ̃
µ̃,ν̃

M̃∪Ñ
≥ 1 −

∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣ + ∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣ + ∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣
= 1 −

∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ −
∣∣∣∣(S¯ (Ñ))

µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ −
∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ ,
(5.15)

According to Definition 3.4 and ∣∣∣∣(s¯(Ñ))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ ≤
∣∣∣∣(s¯(Ñ))

µ

∣∣∣∣∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ ,
we can get

ρ̃
µ̃,ν̃

M̃∪Ñ
≥ 1 −

∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ −
∣∣∣∣(S¯ (Ñ))

µ

∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ −
∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣
= 1 −

(
1 − ρ̃µ̃,ν̃

M̃

)
−

(
1 − ρ̃µ̃,ν̃

Ñ

)
−

∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ ,
(5.16)

so

ρ̃
µ̃,ν̃

M̃∪Ñ
≥ ρ̃

µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 −

∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ . (5.17)

Likewise, ∣∣∣∣(S̄ (
M̃

))
v

∣∣∣∣ < ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ , (5.18)

we can get

ρ̃
µ̃,ν̃

M̃∪Ñ
≥ 1 −

∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣ + ∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣ + ∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ , (5.19)

thus,

ρ̃
µ̃,ν̃

M̃∪Ñ
≥ ρ̃

µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 −

∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ . (5.20)
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To sum up,
ρ̃
µ̃,ν̃

M̃∪Ñ
≥ ρ̃

µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 + L◦,

when

L◦ =

∣∣∣∣X¯ M̃µ

(
Ñµ

)∣∣∣∣
max

{∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ , ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣} .
□

Theorem 5.4. The lower bound of the disturbed fuzzy sets M̃ and Ñ in the discourse domain U for the
roughness measure ρ̃µ̃,ν̃

M̃∩Ñ
with respect to parameter µ, ν is

ρ̃
µ̃,ν̃

M̃∩Ñ
≥ 1 −

1 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
+ ρ̃
µ̃,ν̃

M̃
ρ̃
µ̃,ν̃

Ñ

2 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
−I◦

(
1 − ρ̃µ̃,ν̃

M̃

) (
1 − ρ̃µ̃,ν̃

Ñ

) ,
which satisfies 0 < ν ≤ µ ≤ 1, and

I◦ =

∣∣∣∣(S̄ (
M̃ ∪ Ñ

))
ν

∣∣∣∣ + ∣∣∣∣X̄M̃ν

(
Ñν

)∣∣∣∣
min

{∣∣∣∣(s¯ (
M̃

))
µ

∣∣∣∣ , ∣∣∣∣(s¯ (
Ñ
))
µ

∣∣∣∣} .
Proof. From (4.12) in Property 4.4 and the fundamental properties of sets, it is obtained that

ρ̃
µ̃,ν̃

M̃∩Ñ
≥ 1 −

min
{∣∣∣∣X¯ ((M̃))

µ

∣∣∣∣ , ∣∣∣∣X¯ ((Ñ))
µ

∣∣∣∣}∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ + ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ − ∣∣∣∣(S̄ (
M̃ ∪ Ñ

))
ν

∣∣∣∣ − ∣∣∣∣X̄M̃ν

(
Ñν

)∣∣∣∣ , (5.21)

if ∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣ ≤ ∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣ , (5.22)

we can get

ρ̃
µ̃,ν̃

M̃∩Ñ
≥ 1 −

1
|(S̄ (M̃))ν|∣∣∣∣(s

¯
(M̃))µ

∣∣∣∣ + |(
S̄ (Ñ))ν|∣∣∣∣(s
¯
(M̃))µ

∣∣∣∣ − |(
S̄ (M̃∪Ñ))ν|∣∣∣∣(s

¯
(M̃))µ

∣∣∣∣ − |
X̄M̃ν(Ñν)|∣∣∣∣(s
¯
(M̃))µ

∣∣∣∣
. (5.23)

According to Definition 3.4 and ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣∣∣∣∣(s¯(M̃))
µ

∣∣∣∣ ≥
∣∣∣∣(S̄ (

Ñ
))
ν

∣∣∣∣∣∣∣∣((s¯Ñ
))
µ

∣∣∣∣ ,
we can get

ρ̃
µ̃,ν̃

M̃∩Ñ
≥ 1 −

1
|(S̄ (M̃))ν|∣∣∣∣(s

¯
(M̃))µ

∣∣∣∣ + |(
S̄ (Ñ))ν|∣∣∣∣(s
¯
(M̃))µ

∣∣∣∣ − |(
S̄ (M̃∪Ñ))ν|∣∣∣∣(s

¯
(M̃))µ

∣∣∣∣ − |
X̄M̃ν(Ñν)|∣∣∣∣(s
¯
(M̃))µ

∣∣∣∣
= 1 −

1
1

1−ρ̃µ̃,ν̃
M̃

+ 1
1−ρ̃µ̃,ν̃

Ñ

−
|(S̄ (M̃∪Ñ))ν|+|X̄M̃ν(Ñν)|∣∣∣∣(s

¯
(M̃))µ

∣∣∣∣
.

(5.24)
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Therefore, define

I∣∣∣∣((M̃))µ
∣∣∣∣ =

∣∣∣∣(S̄ (
M̃ ∪ Ñ

))
ν

∣∣∣∣ + ∣∣∣∣X̄M̃ν

(
Ñν

)∣∣∣∣∣∣∣∣(s¯(M̃))
µ

∣∣∣∣ , (5.25)

so

ρ̃
µ̃,ν̃

M̃∩Ñ
≥ 1 −

1 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
− ρ̃
µ̃,ν̃

M̃
ρ̃
µ̃,ν̃

Ñ

2 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
−I∣∣∣∣(s

¯
(M̃))µ

∣∣∣∣
(
1 − ρ̃µ̃,ν̃

M̃

) (
1 − ρ̃µ̃,ν̃

Ñ

) . (5.26)

Likewise, for ∣∣∣∣(S¯ (M̃))
µ

∣∣∣∣ > ∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣ , (5.27)

define

I∣∣∣∣((Ñ))µ
∣∣∣∣ =

∣∣∣∣(S̄ (
M̃ ∪ Ñ

))
ν

∣∣∣∣ + ∣∣∣∣X̄M̃ν

(
Ñν

)∣∣∣∣∣∣∣∣(S¯ (Ñ))
µ

∣∣∣∣ , (5.28)

so

ρ̃
µ̃,ν̃

M̃∩Ñ
≥ 1 −

1 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
− ρ̃
µ̃,ν̃

M̃
ρ̃
µ̃,ν̃

Ñ

2 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
−I∣∣∣∣(s

¯
(Ñ))µ

∣∣∣∣
(
1 − ρ̃µ̃,ν̃

M̃

) (
1 − ρ̃µ̃,ν̃

Ñ

) . (5.29)

Thus, to sum up

ρ̃
µ̃,ν̃

M̃∩Ñ
≥ 1 −

1 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
+ ρ̃
µ̃,ν̃

M̃
ρ̃
µ̃,ν̃

Ñ

2 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
−I◦

(
1 − ρ̃µ̃,ν̃

M̃

) (
1 − ρ̃µ̃,ν̃

Ñ

) ,
when

I◦ =

∣∣∣∣(S̄ (
M̃ ∪ Ñ

))
ν

∣∣∣∣ + ∣∣∣∣X̄M̃ν

(
Ñν

)∣∣∣∣
min

{∣∣∣∣(s¯(M̃))
µ

∣∣∣∣ , ∣∣∣∣(s¯(Ñ))
µ

∣∣∣∣} .
□

Remark 5.2. The lower bound of ρ̃µ̃,ν̃
M̃∩Ñ

is different from the upper bound of ρ̃µ̃,ν̃
M̃∩Ñ

, and the roughness

measure depends not only on the disturbation fuzzy sets M̃ and Ñ, but also on∣∣∣∣(S̄ (
M̃

))
ν

∣∣∣∣ , ∣∣∣∣(S̄ (
Ñ
))
ν

∣∣∣∣ , ∣∣∣∣(S¯ (
M̃

))
µ

∣∣∣∣ , ∣∣∣∣(S¯ (
Ñ
))
µ

∣∣∣∣, and
∣∣∣∣X̄M̃ν

(
Ñν

)∣∣∣∣.
Remark 5.3. In the study of the disturbed fuzzy set, it is fully understood that the roughness measure of
the disturbed fuzzy set is bounded, and often roughness comparison can be made by roughly calculating
the roughness measure limit of the disturbed fuzzy set, which can greatly reduce the calculation amount.

6. Practical applications

In the previous section, it has been proved that the roughness measure of perturbed fuzzy sets
is bounded, but the bound of the roughness measure of disturbed fuzzy sets can be fully applied in
practical problems. Next, the superiority of the theory proposed in this paper is demonstrated more
clearly through a practical application of grouping different students in a competition, as shown in
Tables 1–5.
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Example 6.1. Due to receiving the notice that our province will soon hold a student learning
competition to test the learning ability of two subjects of mathematics and Chinese, the school will
send 6 students to participate in the competition. It is known that each student’s ability level
assessment of mathematics and Chinese constitutes a disturbance fuzzy set. The school will formulate
two combinations, respectively,

A : {{student1} , {student2, student3, student5} , {student4, student6}} ,

B : {{student1, student4} , {student2, student5} , {student3, student6}} .

If you want to know which combination is more likely to win, set parameter

(0.00, 0.00) < µ = ν ≤ (0.60, 0.10) ,

(in real life, people usually think that 60 is a passing grade on a 100-point scale, and the parameter
selection of different practical questions will be different). Table 1 is the assessment table of students’
mathematical and language ability levels. The mathematics of disturbed fuzzy sets and the language
of disturbed fuzzy sets are represented by M̃ and Ñ, respectively.

Table 1. Assessment table of students’ mathematical language ability level.

Student 1 Student 2 Student 3 Student 4 Student 5 Student 6

M̃ (0.80, 0.09) (0.30, 0.01) (0.66, 0.06) (0.61, 0.23) (0.43, 0.05) (0.60, 0.10)

Ñ (0.80, 0.09) (0.75, 0.21) (0.45, 0.08) (0.70, 0.09) (0.64, 0.03) (0.50, 0.14)

Table 2. Mathematical and verbal approximations of disturbed fuzzy sets caused by A
classification.

Student 1 Student 2,Student 3,Student 5 Student 4,Student 6

S
¯

(
M̃

)
(0.80, 0.09) (0.30, 0.06) (0.60, 0.23)

S̄
(
M̃

)
(0.80, 0.09) (0.66, 0.01) (0.61, 0.10)

S
¯

(
Ñ
)

(0.66, 0.03) (0.45, 0.21) (0.50, 0.14)

S̄
(
Ñ
)

(0.66, 0.03) (0.75, 0.03) (0.70, 0.09)

Table 3. Approximate values of the intersection and union of mathematical and verbal
disturbed fuzzy sets caused by A class classification.

Student 1 Student 2,Student 3,Student 5 Student 4,Student 6

S
¯

(
M̃ ∪ Ñ

)
(0.80, 0.03) (0.64, 0.06) (0.60, 0.09)

S̄
(
M̃ ∪ Ñ

)
(0.66, 0.09) (0.75, 0.01) (0.70, 0.01)

S
¯

(
M̃ ∩ Ñ

)
(0.66, 0.09) (0.30, 0.21) (0.50, 0.23)

S̄
(
M̃ ∩ Ñ

)
(0.66, 0.09) (0.45, 0.05) (0.61, 0.14)
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Table 4. Mathematical and verbal approximations of disturbed fuzzy sets caused by B
classification.

Student 1,Student 4 Student 2,Student 5 Student 3,Student 6

S
¯

(
M̃

)
(0.61, 0.23) (0.30, 0.05) (0.60, 0.10)

S̄
(
M̃

)
(0.80, 0.09) (0.43, 0.01) (0.66, 0.06)

S
¯

(
Ñ
)

(0.66, 0.09) (0.64, 0.21) (0.45, 0.14)

S̄
(
Ñ
)

(0.70, 0.03) (0.75, 0.03) (0.50, 0.08)

Table 5. Approximate values of the intersection and union of mathematical and verbal
disturbed fuzzy sets caused by B class classification.

Student 1,Student 4 Student 2,Student 5 Student 3,Student 6

S
¯

(
M̃ ∪ Ñ

)
(0.70, 0.09) (0.64, 0.03) (0.60, 0.10)

S̄
(
M̃ ∪ Ñ

)
(0.80, 0.03) (0.75, 0.01) (0.66, 0.06)

S
¯

(
M̃ ∩ Ñ

)
(0.61, 0.23) (0.30, 0.21) (0.45, 0.14)

S̄
(
M̃ ∩ Ñ

)
(0.66, 0.09) (0.43, 0.05) (0.50, 0.08)

So, according to Definition 3.4 and Tables 2 and 4,

ρ̃
µ̃,ν̃

M̃
(A) = 1 −

∣∣∣∣S¯ (M̃)
µ̃

∣∣∣∣∣∣∣∣S̄ (
M̃

)
ν̃

∣∣∣∣ = 1 −
1
6
=

5
6
, ρ̃

µ̃,ν̃

Ñ
(A) = 1 −

∣∣∣∣S¯ (Ñ)
µ̃

∣∣∣∣∣∣∣∣S̄ (
Ñ
)
ν̃

∣∣∣∣ = 1 −
1
6
=

5
6
, (6.1)

ρ̃
µ̃,ν̃

M̃
(B) = 1 −

∣∣∣∣S¯ (M̃)
µ̃

∣∣∣∣∣∣∣∣S̄ (
M̃

)
ν̃

∣∣∣∣ = 1 −
2
4
=

1
2
, ρ̃

µ̃,ν̃

Ñ
(B) = 1 −

∣∣∣∣S¯ (Ñ)
µ̃

∣∣∣∣∣∣∣∣S̄ (
Ñ
)
ν̃

∣∣∣∣ = 1 −
2
4
=

1
2
. (6.2)

From Theorems 5.1–5.4, it follows

ρ̃
µ̃,ν̃

M̃∩Ñ
(A) ≤ ρ̃µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 + U◦ =

20
3
, (6.3)

ρ̃
µ̃,ν̃

M̃∩Ñ
(A) ≥ 1 −

1 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
+ ρ̃
µ̃,ν̃

M̃
ρ̃
µ̃,ν̃

Ñ

2 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
−I◦

(
1 − ρ̃µ̃,ν̃

M̃

) (
1 − ρ̃µ̃,ν̃

Ñ

) = 17
18
, (6.4)

ρ̃
µ̃,ν̃

M̃∩Ñ
(B) ≤ ρ̃µ̃,ν̃

M̃
+ ρ̃
µ̃,ν̃

Ñ
−1 + U◦ = 3, (6.5)

ρ̃
µ̃,ν̃

M̃∩Ñ
(B) ≥ 1 −

1 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
+ ρ̃
µ̃,ν̃

M̃
ρ̃
µ̃,ν̃

Ñ

2 − ρ̃µ̃,ν̃
M̃
− ρ̃
µ̃,ν̃

Ñ
−I◦

(
1 − ρ̃µ̃,ν̃

M̃

) (
1 − ρ̃µ̃,ν̃

Ñ

) = 6
7
, (6.6)

and to sum up,
17
18
≤ ρ̃

µ̃,ν̃

M̃∩Ñ
(A) ≤

20
3
, 3 ≤ ρ̃µ̃,ν̃

M̃∩Ñ
(B) ≤

6
7
.

Obviously, the roughness of B classification is smaller.
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7. Comparative analysis

If the traditional disturbation fuzzy set roughness measure calculation method is

ρ̃
µ,ν

M̃∩Ñ
= 1 −

∣∣∣∣(S¯ (M̃ ∩ Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ = 1 −

∣∣∣∣(S¯ (M̃))
µ
∩

(
S
¯

(
Ñ
))
µ

∣∣∣∣∣∣∣∣(S̄ (
M̃ ∩ Ñ

))
ν

∣∣∣∣ , (7.1)

we need to calculate the number of equivalence classes after the intersection of
(
S
¯

(
M̃

))
µ

and
(
S
¯

(
Ñ
))
µ
.

In Tables 3 and 5, the approximate values of the mathematical and verbal intersection of the disturbed
fuzzy set caused by A classification and B classification are listed, respectively. It can be seen that the
traditional method is more complicated to calculate. However, it can be seen from the example that
using the method proposed in this paper to avoid complex calculation can effectively improve the work
efficiency. This paper only lists 2 classification methods for 6 students. In practical problems, there
may be tens of thousands of students’ classification methods, etc. Therefore, when the sample size is
large, the roughness measurement boundary of the disturbation fuzzy set proposed in this paper will
greatly reduce the workload in operation. In practical problems with large datasets, such as when we
need to do data mining, bioinformatics, cybersecurity, natural language processing, etc., the sample
size is often huge. Therefore, it is usually better to determine the range of roughness first and then
calculate in a small range.

8. Conclusions

First, this work effectively solves the problem that the execution subsets are not equal sets, which
hindrances the quantitative study of disturbed fuzzy sets.

Second, through quantitative research, the new properties of the disturbation fuzzy set operation
and the boundary of the roughness of the disturbation fuzzy set are established effectively, which can
effectively reduce the workload in the operation when the actual data capacity is huge.

This paper proposes and proves that the roughness measure of the disturbed fuzzy set is bounded.
In practical application, a full understanding of the roughness measure boundary of the disturbed fuzzy
set can effectively avoid unnecessary computing space and greatly improve work efficiency. However,
the roughness measurement of disturbed fuzzy sets depends on the choice of parameter µ, ν. The
roughness measurement of disturbed fuzzy sets without parameters will be further explored in future
work.
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