In this paper, we derived that a sufficiently large integer $ N $ can always be represented as the sum of three generalized D. H. Lehmer numbers. As a consequence, we deduced Lu and Yi's original result (Monatsh. Math., 159 (2010), 45–58).
Citation: Mingxuan Zhong, Tianping Zhang. Partitions into three generalized D. H. Lehmer numbers[J]. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196
In this paper, we derived that a sufficiently large integer $ N $ can always be represented as the sum of three generalized D. H. Lehmer numbers. As a consequence, we deduced Lu and Yi's original result (Monatsh. Math., 159 (2010), 45–58).
[1] | E. Alkan, F. Stan, A. Zaharescu, Lehmer $k$-tuples, Proc. Amer. Math. Soc., 134 (2006), 2807–2815. https://doi.org/10.1090/S0002-9939-06-08484-X doi: 10.1090/S0002-9939-06-08484-X |
[2] | E. Bombieri, On exponential sums in finite fields, Amer. J. Math., 88 (1966), 71–105. https://doi.org/10.2307/2373048 doi: 10.2307/2373048 |
[3] | J. Bourgain, T. Cochrane, J. Paulhus, C. Pinner, On the parity of $k$-th powers modulo $p$. A generalization of a problem of Lehmer, Acta Arith., 147 (2011), 173–203. https://doi.org/10.4064/aa147-2-6 doi: 10.4064/aa147-2-6 |
[4] | T. H. Chan, Squarefull numbers in arithmetic progression, Ⅱ, J. Number Theory, 147 (2011), 173–203. https://doi.org/10.1016/j.jnt.2014.12.019 doi: 10.1016/j.jnt.2014.12.019 |
[5] | C. Cobeli, A. Zaharescu, Generalization of a problem of Lehmer, Manuscripta Math., 104 (2001), 304–307. https://doi.org/10.1007/s002290170028 doi: 10.1007/s002290170028 |
[6] | S. D. Cohen, T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68–79. https://doi.org/10.1016/j.jnt.2019.03.004 doi: 10.1016/j.jnt.2019.03.004 |
[7] | D. Han, Z. F. Xu, Y. Yi, T. P. Zhang, A note on high-dimensional D. H. Lehmer problem, Taiwanese J. Math., 25 (2021), 1137–1157. https://doi.org/10.11650/tjm/210705 doi: 10.11650/tjm/210705 |
[8] | H. Iwaniec, E. Kowalski, Analytic Number Theory, New York: American Mathematical Society Colloquium Publications, 2004. https://doi.org/10.1090/coll/053 |
[9] | S. R. Louboutin, J. Rivat, A. S$\rm \acute{a}$rk$\rm \ddot{o}$zy, On a problem of D. H. Lehmer, Proc. Amer. Math. Soc., 135 (2007), 969–975. https://doi.org/10.1090/S0002-9939-06-08558-3 doi: 10.1090/S0002-9939-06-08558-3 |
[10] | Y. M. Lu, Y, Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sin. (English Series), 25 (2009), 1269–1274. https://doi.org/10.1007/s10114-009-7652-3 doi: 10.1007/s10114-009-7652-3 |
[11] | Y. M. Lu, Y, Yi, Partitions involving D. H. Lehmer numbers, Monatsh. Math., 159 (2010), 45–58. https://doi.org/10.1007/s00605-008-0049-z doi: 10.1007/s00605-008-0049-z |
[12] | Y. K. Ma, H, Chen, Z. Z. Qin, T. P. Zhang, Character sums over generalized Lehmer numbers, J. Inequal. Appl., 2016 (2016), 270. https://doi.org/10.1186/s13660-016-1213-y doi: 10.1186/s13660-016-1213-y |
[13] | C. J. Moreno, O. Moreno, Exponential sums and Goppa codes. Ⅰ, Proc. Amer. Math. Soc., 111 (1991), 523–531. https://doi.org/10.2307/2048345 doi: 10.2307/2048345 |
[14] | I. E. Shparlinski, On exponential sums with sparse polynomials and rational functions, J. Number Theory, 60 (1996), 233–244. https://doi.org/10.1006/jnth.1996.0121 doi: 10.1006/jnth.1996.0121 |
[15] | I. E. Shparlinski, On a generalised Lehmer problem for arbitrary powers, preprint paper, 2008. https://doi.org/10.48550/arXiv.0803.3487 |
[16] | I. E. Shparlinski, On a generalisation of a Lehmer problem, Math. Z., 263 (2009), 619–631. https://doi.org/10.1007/s00209-008-0434-2 doi: 10.1007/s00209-008-0434-2 |
[17] | I. E. Shparlinski, A. Winterhof, Partitions into two Lehmer numbers, Monatsh. Math., 160 (2010), 429–441. https://doi.org/10.1007/s00605-009-0130-2 doi: 10.1007/s00605-009-0130-2 |
[18] | I. E. Shparlinski, Modular hyperbolas, Monatsh. Math., 7 (2012), 235–294. https://doi.org/10.1007/s11537-012-1140-8 doi: 10.1007/s11537-012-1140-8 |
[19] | Z. F. Xu, On the difference between an integer and its $m$-th power mod $n$, Sci. China Math., 56 (2013), 1597–1606. https://doi.org/10.1007/s11425-013-4639-4 doi: 10.1007/s11425-013-4639-4 |
[20] | Z. F. Xu, T. P. Zhang, High-dimensional D. H. Lehmer problem over short intervals, Acta Math. Sin. (Engl. Ser.), 30 (2014), 213–228. https://doi.org/10.1007/S10114-014-3324-Z doi: 10.1007/S10114-014-3324-Z |
[21] | Z. F. Xu, W. P. Zhang, On a problem of D. H. Lehmer over short intervals, J. Math. Anal. Appl., 320 (2006), 756–770. https://doi.org/10.1016/j.jmaa.2005.07.054 doi: 10.1016/j.jmaa.2005.07.054 |
[22] | T. P. Zhang, W. P. Zhang, On the $r$-th hyper-Kloosterman sums and its hybrid mean value, J. Korean Math. Soc., 43 (2006), 1199–1217. https://doi.org/10.4134/JKMS.2006.43.6.1199 doi: 10.4134/JKMS.2006.43.6.1199 |
[23] | W. P. Zhang, On a problem of D. H. Lehmer and its generalization, Compositio Math., 86 (1993), 307–316. |
[24] | W. P. Zhang, A problem of D. H. Lehmer and its generalization. Ⅱ, Compositio Math., 91 (1994), 47–56. |