Research article

Covering cross-polytopes with smaller homothetic copies

  • Received: 30 November 2023 Revised: 08 January 2024 Accepted: 10 January 2024 Published: 11 January 2024
  • MSC : 52A20, 52C17, 52A15

  • Let $ C_{n} $ be an $ n $-dimensional cross-polytope and $ \Gamma_{p}(C_{n}) $ be the smallest positive number $ \gamma $ such that $ C_{n} $ can be covered by $ p $ translates of $ \gamma C_{n} $. We obtain better estimates of $ \Gamma_{2^n}(C_n) $ for small $ n $ and a universal upper bound of $ \Gamma_{2^n}(C_n) $ for all positive integers $ n $.

    Citation: Feifei Chen, Shenghua Gao, Senlin Wu. Covering cross-polytopes with smaller homothetic copies[J]. AIMS Mathematics, 2024, 9(2): 4014-4020. doi: 10.3934/math.2024195

    Related Papers:

  • Let $ C_{n} $ be an $ n $-dimensional cross-polytope and $ \Gamma_{p}(C_{n}) $ be the smallest positive number $ \gamma $ such that $ C_{n} $ can be covered by $ p $ translates of $ \gamma C_{n} $. We obtain better estimates of $ \Gamma_{2^n}(C_n) $ for small $ n $ and a universal upper bound of $ \Gamma_{2^n}(C_n) $ for all positive integers $ n $.



    加载中


    [1] K. Bezdek, Hadwiger's covering conjecture and its relatives, Am. Math. Mon., 99 (1992), 954–956. https://doi.org/10.1080/00029890.1992.11995963 doi: 10.1080/00029890.1992.11995963
    [2] K. Bezdek, Classical topics in discrete geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, New York: Springer, 2010. https://doi.org/10.1007/978-1-4419-0600-7
    [3] K. Bezdek, M. A. Khan, The geometry of homothetic covering and illumination, In: Discrete Geometry and Symmetry, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-78434-2
    [4] V. Boltyanski, H. Martini, P. S. Soltan, Excursions into combinatorial geometry, Universitext, Berlin: Springer-Verlag, 1997. https://doi.org/10.1007/978-3-642-59237-9
    [5] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, New York: Springer, 2005. https://doi.org/10.1007/0-387-29929-7
    [6] H. Martini, V. Soltan, Combinatorial problems on the illumination of convex bodies, Aequationes Math., 57 (1999), 121–152. https://doi.org/10.1007/s000100050074 doi: 10.1007/s000100050074
    [7] F. W. Levi, Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns, Arch. Math., 6 (1955), 369–370. https://doi.org/10.1007/BF01900507 doi: 10.1007/BF01900507
    [8] C. Zong, A quantitative program for Hadwiger's covering conjecture, Sci. China Math., 53 (2010), 2551–2560. https://doi.org/10.1007/s11425-010-4087-3 doi: 10.1007/s11425-010-4087-3
    [9] X. Li, L. Meng, S. Wu, Covering functionals of convex polytopes with few vertices, Arch. Math., 119 (2022), 135–146. https://doi.org/10.1007/s00013-022-01727-z doi: 10.1007/s00013-022-01727-z
    [10] F. Xue, Y. Lian, Y. Zhang, On Hadwiger's covering functional for the simplexand the cross-polytope, arXiv Preprint, 2021. https://doi.org/10.48550/arXiv.2108.13277
    [11] U. Betke, M. Henk, Intrinsic volumes and lattice points of crosspolytopes, Monatsh. Math., 115 (1993), 27–33. https://doi.org/10.1007/BF01311208 doi: 10.1007/BF01311208
    [12] G. Pólya, G. Szegő, Problems and theorems in analysis: Series, integral calculus, theory of functions, Classics in Mathematics, Berlin: Springer-Verlag, 1998. https://doi.org/10.1007/978-3-642-61905-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(870) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog