Research article Special Issues

Melnikov functions and limit cycle bifurcations for a class of piecewise Hamiltonian systems

  • Received: 14 November 2023 Revised: 22 December 2023 Accepted: 27 December 2023 Published: 11 January 2024
  • MSC : 34C05, 34C07, 37G15

  • This study evaluated the number of limit cycles for a class of piecewise Hamiltonian systems with two zones separated by two semi-straight lines. First, we obtained explicit expressions of higher Melnikov functions. Then we applied these expressions to find the upper bounds of the number of limit cycles bifurcated from a period annulus of a piecewise polynomial Hamiltonian system.

    Citation: Wenwen Hou, Maoan Han. Melnikov functions and limit cycle bifurcations for a class of piecewise Hamiltonian systems[J]. AIMS Mathematics, 2024, 9(2): 3957-4013. doi: 10.3934/math.2024194

    Related Papers:

  • This study evaluated the number of limit cycles for a class of piecewise Hamiltonian systems with two zones separated by two semi-straight lines. First, we obtained explicit expressions of higher Melnikov functions. Then we applied these expressions to find the upper bounds of the number of limit cycles bifurcated from a period annulus of a piecewise polynomial Hamiltonian system.



    加载中


    [1] X. Chen, M. Han, Number of limit cycles from a class of perturbed piecewise polynomial systems, Internat. J. Bifur. Chaos, 31 (2021), 2150123. https://doi.org/10.1142/S0218127421501236 doi: 10.1142/S0218127421501236
    [2] X. Chen, T. Li, J. Llibre, Melnikov functions of arbitrary order for piecewise smooth differential systems in $\mathbb{R}^n$ and applications, J. Differ. Equ., 314 (2022), 340–369. https://doi.org/10.1016/j.jde.2022.01.019 doi: 10.1016/j.jde.2022.01.019
    [3] J. Giné, J. Llibre, K. Wu, X. Zhang, Averaging methods of arbitrary order, periodic solutions and integrability, J. Differ. Equ., 260 (2016), 4130–4156. https://doi.org/10.1016/j.jde.2015.11.005 doi: 10.1016/j.jde.2015.11.005
    [4] M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Differ. Equ., 7 (2017), 788–794. https://doi.org/10.11948/2017049 doi: 10.11948/2017049
    [5] M. Han, V. G. Romanovski, X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qual. Theory Dyn. Syst., 15 (2016), 471–479. https://doi.org/10.1007/s12346-015-0179-3 doi: 10.1007/s12346-015-0179-3
    [6] M. Han, L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809–815.
    [7] M. Han, J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 3 (2021), 13–34. https://doi.org/10.12150/jnma.2021.13 doi: 10.12150/jnma.2021.13
    [8] J. Huang, Y. Jin, Bifurcation of a kind of $1$D piecewise differential equation and its application to piecewise planar polynomial systems, Int. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950072. https://doi.org/10.1142/S021812741950072X doi: 10.1142/S021812741950072X
    [9] J. Itikawa, J. Llibre, D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, Rev. Mat. Iberoam., 33 (2017), 1247–1265. https://doi.org/10.4171/RMI/970 doi: 10.4171/RMI/970
    [10] G. Ji, Y. Sun, Bifurcation for a class of piecewise cubic systems with two centers, Electron. J. Qual. Theory Differ. Equ., 46 (2022), 1–12. https://doi.org/10.14232/ejqtde.2022.1.46 doi: 10.14232/ejqtde.2022.1.46
    [11] W. Liu, M. Han, Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications, Discrete Contin. Dyn. Syst. Ser. S, 16 (2022), 498–532. https://doi.org/10.3934/dcdss.2022053 doi: 10.3934/dcdss.2022053
    [12] X. Liu, M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 1379–1390. https://doi.org/10.1142/S021812741002654X doi: 10.1142/S021812741002654X
    [13] S. Liu, M. Han, Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory, Discrete Contin. Dyn. Syst., Ser. B, 13 (2020), 3115–3124. https://doi.org/10.3934/dcdss.2020133 doi: 10.3934/dcdss.2020133
    [14] S. Liu, M. Han, J. Li, Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differ. Equ., 275 (2021), 204–233. https://doi.org/10.1016/j.jde.2020.11.040 doi: 10.1016/j.jde.2020.11.040
    [15] S. Liu, X. Jin, Y. Xiong, The number of limit cycles in a class of piecewise polynomial systems, J. Nonlinear Model. Anal., 4 (2022), 352–370. https://doi.org/10.12150/jnma.2022.352 doi: 10.12150/jnma.2022.352
    [16] J. Llibre, A. C. Mereu, D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258 (2015), 4007–4032. https://doi.org/10.1016/j.jde.2015.01.022 doi: 10.1016/j.jde.2015.01.022
    [17] L. Sheng, S. Wang, X. Li, M. Han, Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method, J. Math. Anal. Appl., 490 (2020), 124311. https://doi.org/10.1016/j.jmaa.2020.124311 doi: 10.1016/j.jmaa.2020.124311
    [18] H. Tian, M. Han, Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5581–5599. https://doi.org/10.3934/dcdsb.2020368 doi: 10.3934/dcdsb.2020368
    [19] Y. Xiong, M. Han, Limit cycle bifurcations in discontinuous planar systems with multiple lines, J. Appl. Anal. Comput., 10 (2020), 361–377. https://doi.org/10.11948/20190274 doi: 10.11948/20190274
    [20] J. Yang, Limit cycles appearing from the perturbation of differential systems with multiple switching curves, Chaos Solitons Fract., 135 (2020), 109764. https://doi.org/10.1016/j.chaos.2020.109764 doi: 10.1016/j.chaos.2020.109764
    [21] J. Yang, L. Zhao, Limit cycle bifurcations for piecewise smooth Hamiltonian systems with a generalized eye-figure loop, Int. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650204. https://doi.org/10.1142/S0218127416502047 doi: 10.1142/S0218127416502047
    [22] J. Yang, M. Han, W. Huang, On Hopf bifurcations of piecewise planar Hamiltonian systems, J. Differ. Equ., 250 (2011), 1026–1051. https://doi.org/10.1016/j.jde.2010.06.012 doi: 10.1016/j.jde.2010.06.012
    [23] P. Yang, Y. Yang, J. Yu, Up to second order Melnikov functions for general piecewise Hamiltonian systems with nonregular separation line, J. Differ. Equ., 285 (2021), 583–606. https://doi.org/10.1016/j.jde.2021.03.020 doi: 10.1016/j.jde.2021.03.020
    [24] F. Li, P. Yu, Y. Liu, Y. Liu, Centers and isochronous centers of a class of quasi-analytic switching systems, Sci. China Math., 61 (2018), 1201–1218. https://doi.org/10.1007/s11425-016-9158-2 doi: 10.1007/s11425-016-9158-2
    [25] W. Hou, S. Liu, Melnikov functions for a class of piecewise Hamiltonian systems, J. Nonlinear Model. Anal., 5 (2023), 123–145. https://doi.org/10.12150/jnma.2023.123 doi: 10.12150/jnma.2023.123
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(759) PDF downloads(72) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog