Rabies remains a significant public health challenge, particularly in areas with substantial dog populations, necessitating a deeper understanding of its transmission dynamics for effective control strategies. This study addressed the complexity of rabies spread by integrating two critical delay effects—vaccination efficacy and incubation duration—into a delay differential equations model, capturing more realistic infection patterns between dogs and humans. To explore the multifaceted drivers of transmission, we applied a novel framework using piecewise derivatives that incorporated singular and non-singular kernels, allowing for nuanced insights into crossover dynamics. The existence and uniqueness of solutions was demonstrated using fixed-point theory within the context of piecewise derivatives and integrals. We employed a piecewise numerical scheme grounded in Newton interpolation polynomials to approximate solutions tailored to handle singular and non-singular kernels. Additionally, we leveraged artificial neural networks to split the dataset into training, testing, and validation sets, conducting an in-depth analysis across these subsets. This approach aimed to expand our understanding of rabies transmission, illustrating the potential of advanced mathematical tools and machine learning in epidemiological modeling.
Citation: Ramsha Shafqat, Ateq Alsaadi. Artificial neural networks for stability analysis and simulation of delayed rabies spread models[J]. AIMS Mathematics, 2024, 9(12): 33495-33531. doi: 10.3934/math.20241599
Rabies remains a significant public health challenge, particularly in areas with substantial dog populations, necessitating a deeper understanding of its transmission dynamics for effective control strategies. This study addressed the complexity of rabies spread by integrating two critical delay effects—vaccination efficacy and incubation duration—into a delay differential equations model, capturing more realistic infection patterns between dogs and humans. To explore the multifaceted drivers of transmission, we applied a novel framework using piecewise derivatives that incorporated singular and non-singular kernels, allowing for nuanced insights into crossover dynamics. The existence and uniqueness of solutions was demonstrated using fixed-point theory within the context of piecewise derivatives and integrals. We employed a piecewise numerical scheme grounded in Newton interpolation polynomials to approximate solutions tailored to handle singular and non-singular kernels. Additionally, we leveraged artificial neural networks to split the dataset into training, testing, and validation sets, conducting an in-depth analysis across these subsets. This approach aimed to expand our understanding of rabies transmission, illustrating the potential of advanced mathematical tools and machine learning in epidemiological modeling.
[1] | M. S. Shenoy, A. Santra, A. K. Giri, Rabies elimination policy guidelines: Where do we stand, Indian J. Community He., 35 (2023), 258–263. http://doi.org/10.47203/IJCH.2023.v35i03.002 doi: 10.47203/IJCH.2023.v35i03.002 |
[2] | S. Abdulmajid, A. S. Hassan, Analysis of time delayed Rabies model in human and dog populations with controls, Afr. Mat., 32 (2021), 1067–1085. http://doi.org/10.1007/s13370-021-00882-w doi: 10.1007/s13370-021-00882-w |
[3] | J. Chen, L. Zou, Z. Jin, S. G. Ruan, Modeling the geographic spread of rabies in China, PLoS Negl. Trop. Dis., 9 (2015), e0003772. https://doi.org/10.1371/journal.pntd.0003772 doi: 10.1371/journal.pntd.0003772 |
[4] | M. R. A. Nurdiansyah, Kasbawati, S. Toaha, Stability analysis and numerical simulation of rabies spread model with delay effects, AIMS Mathematics, 9 (2024), 3399–3425. http://doi.org/10.3934/math.2024167 doi: 10.3934/math.2024167 |
[5] | V. Bay, M. R. Shirzadi, M. J. Sirizi, I. M. Asl, Animal bites management in Northern Iran: Challenges and solutions, Heliyon, 9 (2023), e18637. http://doi.org/10.1016/j.heliyon.2023.e18637 doi: 10.1016/j.heliyon.2023.e18637 |
[6] | J. Zhang, Z. Jin, G. Q. Sun, T. Zhou, S. G. Ruan, Analysis of rabies in China: Transmission dynamics and control, PLoS One, 6 (2011), e20891. https://doi.org/10.1371/journal.pone.0020891 doi: 10.1371/journal.pone.0020891 |
[7] | K. Tohma, M. Saito, C. S. Demetria, D. L. Manalo, B. P. Quiambao, T. Kamigaki, et al., Molecular and mathematical modeling analyses of inter-island transmission of rabies into a previously rabies-free island in the Philippines, Infect. Genet. Evol., 38 (2016), 22–28. http://doi.org/10.1016/j.meegid.2015.12.001 doi: 10.1016/j.meegid.2015.12.001 |
[8] | Y. H. Huang, M. T. Li, Application of a mathematical model in determining the spread of the rabies virus: simulation study, JMIR Med. Inform., 8 (2020), e18627. http://doi.org/10.2196/18627 doi: 10.2196/18627 |
[9] | B. Pantha, S. Giri, H. R. Joshi, N. K. Vaidya, Modeling transmission dynamics of rabies in Nepal, Infectious Disease Modelling, 6 (2021), 284–301. http://doi.org/10.1016/j.idm.2020.12.009 doi: 10.1016/j.idm.2020.12.009 |
[10] | J. K. K. Asamoah, F. T. Oduro, E. Bonyah, B. Seidu, Modelling of rabies transmission dynamics using optimal control analysis, J. Appl. Math., 2017 (2017), 2451237. https://doi.org/10.1155/2017/2451237 doi: 10.1155/2017/2451237 |
[11] | M. J. Carroll, A. Singer, G. C. Smith, D. P. Cowan, G. Massei, The use of immunocontraception to improve rabies eradication in urban dog populations, Wildlife Res., 37 (2010), 676–687. http://doi.org/10.1071/WR10027 doi: 10.1071/WR10027 |
[12] | C. S. Bornaa, B. Seidu, M. I. Daabo, Mathematical analysis of rabies infection, J. Appl. Math., 2020 (2020), 1804270. https://doi.org/10.1155/2020/1804270 doi: 10.1155/2020/1804270 |
[13] | E. K. Renalda, D. Kuznetsov, K. Kreppel, Desirable Dog-Rabies control methods in an urban setting in Africa–A mathematical model, International Journal of Mathematical Sciences and Computing(IJMSC), 6 (2020), 49–67. http://doi.org/10.5815/ijmsc.2020.01.05 doi: 10.5815/ijmsc.2020.01.05 |
[14] | R. Haberman, Mathematical models: mechanical vibrations, population dynamics, and traffic flow, New Jersey: Society for Industrial and Applied Mathematics, 1998. |
[15] | A. Columbu, R. D. Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics, Nonlinear Anal.-Real, 79 (2024), 104135. https://doi.org/10.1016/j.nonrwa.2024.104135 doi: 10.1016/j.nonrwa.2024.104135 |
[16] | Z. Jiao, I. Jadlovská, T. X. Li, Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equations, 411 (2024), 227–267. https://doi.org/10.1016/j.jde.2024.07.005 doi: 10.1016/j.jde.2024.07.005 |
[17] | T. X. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0 |
[18] | C. X. Huang, B. W. Liu, H. D. Yang, J. D. Cao, Positive almost periodicity on SICNNs incorporating mixed delays and D operator, Nonlinear Anal.-Model., 27 (2022), 1–21. https://doi.org/10.15388/namc.2022.27.27417 doi: 10.15388/namc.2022.27.27417 |
[19] | B. W. Liu, Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays, Math. Method. Appl. Sci., 40 (2017), 167–174. https://doi.org/10.1002/mma.3976 doi: 10.1002/mma.3976 |
[20] | X. Long, S. H. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett., 100 (2020), 106027. https://doi.org/10.1016/j.aml.2019.106027 doi: 10.1016/j.aml.2019.106027 |
[21] | Z. Sabir, S. B. Said, Q. Al-Mdallal, An artificial neural network approach for the language learning model, Sci. Rep., 13 (2023), 22693. https://doi.org/10.1038/s41598-023-50219-9 doi: 10.1038/s41598-023-50219-9 |
[22] | Z. Sabir, S. B. Said, Q. Al-Mdallal, M. R. Ali, A neuro swarm procedure to solve the novel second order perturbed delay Lane-Emden model arising in astrophysics, Sci. Rep., 12 (2022), 22607. https://doi.org/10.1038/s41598-022-26566-4 doi: 10.1038/s41598-022-26566-4 |
[23] | P. Kumar, A. Felicita, B. Nagaraja, A. R. Ajaykumar, Q. Al-Mdallal, Neural network model using Levenberg Marquardt backpropagation algorithm for the prandtl fluid flow over stratified curved sheet, IEEE Access, 12 (2024), 102242–102260. https://doi.org/10.1109/ACCESS.2024.3422099 doi: 10.1109/ACCESS.2024.3422099 |
[24] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2016, arXiv: 1602.03408. |
[25] | I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386. |
[26] | L. Zhang, M. Ur Rahman, H. D. Qu, M. Arfan, Adnan, Fractal-fractional Anthroponotic Cutaneous Leishmania model study in sense of Caputo derivative, Alex. Eng. J., 61 (2022), 4423–4433. https://doi.org/10.1016/j.aej.2021.10.001 doi: 10.1016/j.aej.2021.10.001 |
[27] | C. J. Xu, M. X. Liao, P. L. Li, L. Y. Yao, Q. W. Qin, Y. L. Shang, Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller, Fractal Fract., 5 (2021), 257. https://doi.org/10.3390/fractalfract5040257 doi: 10.3390/fractalfract5040257 |
[28] | B. W. Zhou, X. B. Shu, F. Xu, F. Y. Yang, Y. Wang, Exponential synchronization of dynamical complex networks via random impulsive scheme, Nonlinear Anal.-Model., 29 (2024), 816–832. http://doi.org/10.1090/S0894-0347-1992-1124979-1 doi: 10.1090/S0894-0347-1992-1124979-1 |
[29] | S. Li, L. X. Shu, X. B. Shu, F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. http://doi.org/10.1080/17442508.2018.1551400 doi: 10.1080/17442508.2018.1551400 |
[30] | X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Ensemble classifier design based on perturbation binary salp swarm algorithm for classification, Comput. Model. Eng. Sci,, 135 (2023), 653-671. https://doi.org/10.32604/cmes.2022.022985 |
[31] | B. Li, Z. Eskandari, Dynamical analysis of a discrete-time SIR epidemic model, J. Franklin I., 360 (2023), 7989-8007. https://doi.org/10.1016/j.jfranklin.2023.06.006 doi: 10.1016/j.jfranklin.2023.06.006 |
[32] | B. Li, T. X. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. https://doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500 |
[33] | X. H. Zhu, P. F. Xia, Q. Z. He, Z. W. Ni, L. P. Ni, Coke price prediction approach based on dense GRU and opposition-based learning salp swarm algorithm, Int. J. Bio-Inspir. Com., 21 (2023), 106–121. http://doi.org/10.1504/IJBIC.2022.10047653 doi: 10.1504/IJBIC.2022.10047653 |
[34] | B. Li, Z. Eskandari, Z. Avazzadeh, Dynamical behaviors of an SIR epidemic model with discrete time, Fractal Fract., 6 (2022), 659. https://doi.org/10.3390/fractalfract6110659 doi: 10.3390/fractalfract6110659 |
[35] | K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of controllability of fractional functional random integroevolution equations with delay, Symmetry, 15 (2023), 290. http://doi.org/10.3390/sym15020290 doi: 10.3390/sym15020290 |
[36] | K. Abuasbeh, R. Shafqat, Fractional Brownian motion for a system of fuzzy fractional stochastic differential equation, J. Math., 2022 (2022), 3559035. https://doi.org/10.1155/2022/3559035 doi: 10.1155/2022/3559035 |
[37] | A. Atangana, S. İ. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos. Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638 |
[38] | Y. N. Anjam, R. Shafqat, I. E. Sarris, M. Ur Rahman, S. Touseef, M. Arshad, A fractional order investigation of smoking model using Caputo-Fabrizio differential operator, Fractal Fract., 6 (2022), 623. https://doi.org/10.3390/fractalfract6110623 doi: 10.3390/fractalfract6110623 |
[39] | A. Sami, A. Ali, R. Shafqat, N. Pakkaranang, M. Ur Rahmamn, Analysis of food chain mathematical model under fractal fractional Caputo derivative, Math. Biosci. Eng., 20 (2023), 2094–2109. http://doi.org/10.3934/mbe.2023097 doi: 10.3934/mbe.2023097 |
[40] | K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of the mathematical modelling of COVID-19 by using mild solution with delay Caputo operator, Symmetry, 15 (2023), 286. https://doi.org/10.3390/sym15020286 doi: 10.3390/sym15020286 |
[41] | A. Turab, R. Shafqat, S. Muhammad, M. Shuaib, M. F. Khan, M. Kamal, Predictive modeling of hepatitis B viral dynamics: A caputo derivative-based approach using artificial neural networks, Sci. Rep., 42 (2024), 21853. http://doi.org/10.1038/s41598-024-70788-7 doi: 10.1038/s41598-024-70788-7 |
[42] | H. D. Qu, S. Saifullah, J. Khan, A. Khan, M. Ur Rahman, G. Z. Zheng, Dynamics of leptospirosis disease in context of piecewise classical-global and classical-fractional operators, Fractals, 30 (2022), 2240216. https://doi.org/10.1142/S0218348X22402162 doi: 10.1142/S0218348X22402162 |
[43] | C. J. Xu, Z. X. Liu, P. L. Li, J. L. Yan, L. Y. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. http://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y |
[44] | Q. Z. He, P. F. Xia, C. Hu, B. Li, Public information, actual intervention and inflation expectations, Transform. Bus. Econ., 21 (2022), 644–666. |