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Abstract: Rabies remains a significant public health challenge, particularly in areas with substantial
dog populations, necessitating a deeper understanding of its transmission dynamics for effective
control strategies. This study addressed the complexity of rabies spread by integrating two critical
delay effects—vaccination efficacy and incubation duration—into a delay differential equations model,
capturing more realistic infection patterns between dogs and humans. To explore the multifaceted
drivers of transmission, we applied a novel framework using piecewise derivatives that incorporated
singular and non-singular kernels, allowing for nuanced insights into crossover dynamics. The
existence and uniqueness of solutions was demonstrated using fixed-point theory within the context
of piecewise derivatives and integrals. We employed a piecewise numerical scheme grounded in
Newton interpolation polynomials to approximate solutions tailored to handle singular and non-
singular kernels. Additionally, we leveraged artificial neural networks to split the dataset into training,
testing, and validation sets, conducting an in-depth analysis across these subsets. This approach aimed
to expand our understanding of rabies transmission, illustrating the potential of advanced mathematical
tools and machine learning in epidemiological modeling.
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1. Introduction

The virus that causes rabies targets the neurological system and, if symptoms start to show, can
be lethal [1]. Usually, wild animals’ bites or scratches are how rabies is transmitted. If wounds or
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mucosa (such as the mouth and eyes) become contaminated with the saliva of sick animals, it can
also spread by direct contact [1, 2]. An estimated 59,000 people die from rabies annually worldwide;
Asia and Africa account for the majority of cases [1, 3]. The most common human carrier of rabies is
dogs. Other animals that have it include cats, foxes, and raccoons [1, 4]. Even though rabid animals
may exhibit odd behaviors, such as aggression and a propensity to bite people or other animals, in
addition to excessive drooling, rabies diagnosis is often made through laboratory testing [5]. Rabies
requires an incubation time following biting, which can range from weeks to years, depending on
several factors [1]. This phase can last up to 2–3 months. After symptoms occur, there are no
recognized treatments for rabies. A person should contact a medical practitioner immediately if
they believe they have been exposed to rabies through bites or scratches [4]. Dog vaccinations can
also be chosen to prevent rabies at its origin. People can receive vaccinations before or after being
exposed to rabies [1]. To lower the incidence and fatality rate of rabies, it is also critical to raise
public awareness and provide education on the prevention of rabies transmission, particularly from
domestic dogs [1,4]. Epidemiological mathematical modeling has provided insights into the dynamics
of rabies transmission and potential disease reduction or eradication strategies. The manuscript’s
approach to modeling rabies transmission through delay differential equations and artificial neural
networks (ANNs) aligns with several real-world applications. For instance, in China, researchers have
developed models to evaluate strategies like dog vaccination and culling, finding that limiting dog
birth rates and boosting vaccinations effectively curb rabies spread. Similarly, in the Philippines,
where rabies transmission occurs between islands, authorities have highlighted the importance of
controlling dog transport to prevent interisland spread. The manuscript’s piecewise delay differential
approach could simulate these regional containment strategies by incorporating boundary conditions
for limited mobility, effectively capturing island-based containment measures. In Nepal, where rabies
impacts dogs and jackals, the challenge of cross-species transmission necessitates a more nuanced
approach. Using singular and non-singular kernel integration in the manuscript’s piecewise derivative
model can address these crossover dynamics, providing insights into interspecies transmission risks.
Furthermore, the application of ANNs in the manuscript enhances predictive accuracy by training,
testing, and validating real-world datasets, offering an advantage over traditional models that lack
machine learning integration. These real-world examples underscore the manuscript’s adaptability and
relevance in modeling complex rabies transmission scenarios across diverse settings. Several scholars
have conducted mathematical studies on the spread of rabies, particularly in Asia. For instance, Zhang
et al. [6] created a model to examine the spread of rabies in China. The research also evaluated the
effects of dog vaccination and culling on the development of rabies. The model tracked the spread
of rabies among human and dog populations. They discovered that restricting dog birth and boosting
dog vaccination rates were the best ways to stop the spread of rabies. Based on the developed rabies
propagation model across human and dog populations, Chen et al. [3] discovered that dog immigration
may create an endemic disease even in cases where the disease eventually becomes extinct. They
declared that there should be more oversight and better monitoring of dog migration. In the Philippines,
Tohma et al. [7] reported interisland rabies transmission. They claimed that to stop the disease from
spreading, it’s critical to recognize that rabies may move between islands and that once the virus is
introduced to an island that was previously rabies-free, rabies can become endemic. To stop the spread
of rabies, the Philippines should implement ongoing rabies control measures, such as limiting dog
transportation. After researching the rabies outbreak in China, Huang, and Li [8] created a model of

AIMS Mathematics Volume 9, Issue 12, 33495–33531.



33497

how rabies spreads throughout domesticated and wild dog populations and among humans. Data from
Chinese authorities and literature were fitted to the model, and the effectiveness of various suppression
techniques was examined. Relative suppression techniques were found to include limiting the number
of wild and domesticated dogs born and boosting immunity in domesticated dogs. While dogs were
more responsible for the spread of rabies in Nepal, jackals and dogs had a significant impact, according
to Pantha et al., [9], who observed rabies among human, dog, and jackal populations. They also
noted the possibility of interspecies transmission between dog and jackal populations. A few studies
also emphasized how crucial it is to use spread control measures in dog populations. According to
Asamoah et al., [10], for example, mass vaccination of susceptible canines and ongoing use, as well as
post-exposure prophylaxis on people, might eliminate the deaths utilizing optimal control. Carroll et
al. [11] found that major dog vaccination campaigns and population control initiatives are two of the
most effective ways to stop the spread. Bornaa et al. [12] discovered that rabies can be prevented by
limiting contact with infectious dogs, boosting vaccination rates, screening newly adopted dogs, and
culling infected dogs. They concluded that these measures should be prioritized over human rabies
prevention. Similarly, Renald et al. [13] discovered that stray dogs should receive more attention to
stop rabies spread.

A system of delay differential equations is another mathematical representation of rabies
transmission. A system’s inherent ability to respond to an action with a delayed consequence is known
as time delay [4]. The population growth at time t is shown by a delay differential equation that is
dependent on the population at a previous time [14]. Recent studies have improved the understanding
of attraction-repulsion chemotaxis models, focusing on conditions for boundedness and stability.
Columbu et al. [15] addressed uniform-in-time boundedness in nonlinear chemotaxis systems, while
Jiao et al. [16] established global existence for systems with singular sensitivities and proliferation.
Li et al. [17] demonstrated that specific combined effects in chemotaxis models with production and
consumption dynamics ensure boundedness. These findings enhance stability predictions for complex
biological systems influenced by attraction and repulsion forces. Abdulmajid and Hassan created a SIV
(susceptible-infected-vaccinated) epidemic model with delay [2] to assess the impact of time delays for
the incubation period and controls on the spread of rabies in canine and human populations. This study
is an illustration of delay-incorporated rabies spread modeling research. It was discovered that the
best ways to eradicate rabies were to boost dog vaccination rates and reduce the number of puppies
born. This study also developed and examined a model of the transmission of rabies in dog and human
populations as a system of delay differential equations with delay effects. The vaccination period is
also a time delay that influences the model of how rabies spreads and the incubation period. Finding
the most effective ways to stop or completely stop the spread of rabies is one of our main research
goals, along with analyzing the stability of the delay system and the impact of two delays on it. The
thought is to enhance earlier studies on the intricate nonlinear dynamics of rabies transmission.

Recent studies illustrate the effectiveness of neural networks and mathematical models in handling
complex dynamics with delays across various fields. Huang et al. [18] and Liu [19] explored stability in
neural networks influenced by mixed and time-varying delays, advancing our understanding of delayed
systems. Long and Gong [20] analyzed the stability of Nicholson’s blowflies equation under multiple
delays, contributing to population dynamics modeling. Sabir et al. [21, 22] applied neural networks
to language learning and astrophysics, demonstrating versatility in complex problem-solving. Lastly,
Kumar et al. [23] modeled Prandtl fluid flow using neural networks, showcasing their utility in fluid
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dynamics. Together, these works highlight the adaptability of neural and delay models across diverse
scientific challenges.

Fractional calculus has emerged as an alternative mathematical tool for describing models with
nonlocal behavior, offering additional interest and flexibility [24, 25]. This approach allows for a
more accurate model and test data fitting than integer-order models. Historical memory and global
knowledge of physical phenomena are captured using fractional differential equations, providing
a more comprehensive representation of the dynamics of physical phenomena than integer-order
models. There are several applications in the literature for nonlocal operators. Nonlocal operators
have found applications that are addressed in various fields of applied mathematics such as disease
models [26], biomathematics and chaotic [27], engineering and stochastic models [28–31], and various
other applicable fields of sciences in the literature of fractional differential equations [32–36]. The
fractional techniques have been applied to the generalized classical models of the dengue disease
model. Indeed, the fractional technique is helpful in generalizing classical models of the dengue
model to a large extent. As a result of this modification, we hope to improve our understanding of
epidemic trends and the prediction of intervention strategies. Several fractional order models have
been developed and found to be extremely useful in identifying specific patterns in the development
of patient illness and a better fit for the data. To devise novel therapies tailored to patients’ needs,
clinicians can use data from the universal fractional order system as a starting point by fitting their
data to the most appropriate fixed index. Consequently, the fractional differential equation applying to
the disease models gives accurate and exact solutions. To get precise results, choosing a meaningful
fractional index based on available accurate data in the literature is essential. A novel approach
involving piecewise differentiation and integration has been proposed. This method introduces classical
and global piecewise derivatives, accompanied by application examples. Despite this, it should be
noted that only real-world problems that follow the crossover properties of these two functions can
be modeled, albeit with some limitations. For example, in a real-world situation, these two functions
cannot establish the time the crossover took place. The Mittag-Leffler and exponential functions’
crossover properties are recognized as powerful mathematical tools to depict real-world problems.
As a result of the investigation of crossover problems, various operators were developed, including
fractal derivatives, non-integer-order derivatives with singularity and non-singularity kernels, fractal-
fractional operators, and others [37–39]. It has been observed that, despite stochastic equations
incorporating randomness, crossover dynamics remain unsolved in many models, including infectious
diseases and complex advection problems [40, 41]. The Caputo-Fabrizio and Atangana-Baleanu
derivatives cannot be used to reproduce real-world issues that display distinct processes from those
described by the extended Mittag-Leffler function and exponential decay function. Suppose a real-
world situation initially exhibits a power law process, followed by a fading memory process. In this
case, neither the general Mittag-Leffler nor the exponential decay functions can adequately describe the
observed behavior. The researchers have established a pioneer work on applying different approaches
to the fractional order model via time delay term, chaos theory, and bifurcation [42–44].

2. Model formulation

We reconsidered the rabies disease model [4] in the framework of piecewise differential and integral
and analyzed its crossover behaviors. Two populations—the human and dog populations—are included
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in the model that has been created, and they both reside in the same setting. The susceptible human
population (S H), the infected human population (IH), and the vaccinated human population (VH)
comprise the three subpopulations that make up the human population. A susceptible dog population
(S D), an infected dog population (ID), and a vaccinated dog population (VD) comprise the three
subpopulations that make up the dog population. The following vital presumptions form the basis
of the model’s construction:
1) There are no migrations into or out of the system. The only factors affecting population size are
births and deaths.
2) Only rabid dogs can spread the rabies virus. There is no rabies transmission between susceptible
dogs and diseased humans, nor between susceptible humans and afflicted humans.
3) Vaccination is thought to confer a long-time immunity. As a result, populations that have received
vaccinations do not lose immunity.
4) New infections do not always arise from contact with affected dogs. Rather, there is a period of
incubation.
5) Immunity is not immediately acquired by vaccination. The vaccination must work for a certain
amount of time before it may provide immunity.
6) Natural death is a possibility during incubation and immunization.

In this case, natural death is taken to occur randomly. Figure 1 details the dynamic of rabies spread
between human and canine populations. As depicted in Figure 1, the average annual human birth rate
(AH) increases the susceptible human population. It is lowered by vaccination at rate kHS Hτ2

e−mHτ2 ,
natural death at rate mH, and infection by contact with infected dogs at rate βHDS HIDτ1

e−mDτ1 . The
incubation delay in this case is τ1, while the vaccine delay is τ2. Moreover, e−mDτ1 represents the
likelihood that rabid dogs will die naturally within the time frame [0, τ1], e−mHτ2 represents the
likelihood that susceptible humans will die naturally within the time frame [0, τ2], βHD represents
the rate of transmission between susceptible humans and infected dogs, and kH represents the human
vaccination rate. The rate of transmission of the infection from susceptible humans to infected dogs
is βHDS HIDτ1

e−mDτ1 . On the other hand, the rate of natural and rabies-related fatalities is mH and µH,
respectively, resulting in a drop in the number of infected people. The rate at which vulnerable persons
are vaccinated is kHS Hτ2

e−mHτ2; the rate at which natural death occurs is mH.

Figure 1. The flow diagram of model 2.1.
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The average annual dog birth rate (AD) increases the susceptible dog population. It is lowered
by vaccination at rate kDS Dτ2

e−mDτ2 , the rates of infection by contact with diseased dogs are
βDDS DIDτ1

e−mDτ1 and natural death at mD. In this case, the likelihood that susceptible dogs will die
naturally within the time range [0, τ2] is e−mDτ2; the rate of transmission between susceptible dogs and
infected dogs is βDD; and the vaccination rate of dogs is kD. The rate at which the number of infected
dogs increases is βDDS DIDτ1

e−mDτ1; the rate at which the number of infected dogs decreases is mD. The
rate at which rabies-related deaths occur is µD. At rate kDS Dτ2

e−mDτ2 , vaccination of susceptible dogs
increases the population of vaccinated dogs; at rate mD, natural death reduces it. The description of
each variable and model parameter is compiled in Table 1.

Table 1. Parameters and description for dengue model.

Parameters Description
S H Susceptible human population at time t
S Hτ2

Susceptible human population at time (t − τ2)
IH Infected human population at time t
VH Vaccinated human population at time t
S D Susceptible dog population at time t
S Dτ2

Susceptible dog population at time t − τ2

ID Infected dog population at time t
IDτ1

Infected dog population at time t − τ1

VD Dog population with vaccinations at time t
AH An average year of human births
mH Human natural death rate
βHD Infection transferred from dogs to people
kH Human vaccination rate
µH Human mortality rate from rabies
AD Yearly average of dog births
mD Dogs’ natural death rate
βDD Rate at which infections spread among dogs
kD Dog vaccination rates
µD Dog mortality rate due to rabies
τ1 Time of incubation
τ2 Immunization latency period

The considered model in the sense of piecewise derivative having singular and non-singular kernels
with order 0 < ν ≤ 1, ζ ∈ [0,T ] can be expressed as follows:
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CABC
0 D

ν
ζ(S H(ζ)) = AH − mHS H − βHDS HIDτ−1e

−mDτ1 − kHS Hτ2
e−mHτ2 ,

CABC
0 D

ν
ζ(IH(ζ)) = βHDS HIDτ1

e−mDτ1 − (mH + µH)IH,
CABC
0 D

ν
ζ(VH(ζ)) = kHS Hτ2

e−mHτ2 − mHVH,
CABC
0 D

ν
ζ(S D(ζ)) = AD − mDS D − βDDS DIDτ1

e−mDτ1 − kDS Dτ2
e−mDτ2 ,

CABC
0 D

ν
ζ(ID(ζ)) = βDDS DIDτ1

e−mDτ1 − (mD + µD)ID,
CABC
0 D

ν
ζ(VD(ζ)) = kDS Dτ2

e−mDτ2 − mDVD,

(2.1)

having initial condition

S H(0) = S H0 > 0, IH(0) = IH0 ≥ 0, VH(0) = VH0 ≥ 0, S D(0) = S D0 ≥ 0, ID(0) = ID0 ≥ 0,
VD(0) = VD0 ≥ 0.

IH(0) ≥ 0,VH(0) ≤ 0, and VD(0) ≥ 0, respectively, are the initial values of IH(t),VH(t), and VD(t).
The historical functions of S H(t), S D(t), and ID(t) are ψ1(t) ≥ 0, ψ2(t) ≥ 0, and ψ3(t) ≥ 0, respectively,
inside the interval [−τ2, 0], the functions of ψ1(t) and ψ2(t) are continuous, and ψ3(t) is a continuous
function inside the interval [−τ1, 0].

The flow chart diagram of the considered model is given in Figure 1. To describe Eq (2.1) more
precisely, we can write it as follows:

CABC
0 D

ν
ζ(S H(ζ)) =

C
0D

ν
ζ(S H(ζ)) =C H1(S H, ζ), 0 < ζ ≤ ζ1,

ABC
0 D

ν
ζ(S H(ζ)) =ABC H1(S H, ζ), ζ1 < ζ ≤ T,

CABC
0 D

ν
ζ(IH(ζ)) =

C
0D

ν
ζ(IH(ζ)) =C H2(IH, ζ), 0 < ζ ≤ ζ1,

ABC
0 D

ν
ζ(IH(ζ)) =ABC H2(IH, ζ), ζ1 < ζ ≤ T,

CABC
0 D

ν
ζ(VH(ζ)) =

C
0D

ν
ζ(VH(ζ)) =C H3(VH, ζ), 0 < ζ ≤ ζ1,

ABC
0 D

ν
ζ(VH(ζ)) =ABC H3(VH, ζ), ζ1 < ζ ≤ T,

CABC
0 D

ν
ζ(S D(ζ)) =

C
0D

ν
ζ(S D(ζ)) =C H4(S D, ζ), 0 < ζ ≤ ζ1,

ABC
0 D

ν
ζ(S D(ζ)) =ABC H4(S D, ζ), ζ1 < ζ ≤ T,

CABC
0 D

ν
ζ(ID(ζ)) =

C
0D

ν
ζ(ID(ζ)) =C H5(ID, ζ), 0 < ζ ≤ ζ1,

ABC
0 D

ν
ζ(ID(ζ)) =ABC H5(ID, ζ), ζ1 < ζ ≤ T,

CABC
0 D

ν
ζ(VD(ζ)) =

C
0D

ν
ζ(VD(ζ)) =C H6(VD, ζ), 0 < ζ ≤ ζ1,

ABC
0 D

ν
ζ(VD(ζ)) =ABC H6(VD, ζ), ζ1 < ζ ≤ T,

(2.2)

where C
0D

ν
ζ and CABC

0 Dνζ are Caputo and Atangana-Baleanu Caputo (ABC) derivates, respectively.
Motivated by the above literature, piecewise fractional operators are useful for capturing crossover

and abrupt dynamics in system dynamics, which is why we utilized them in our study. This paper
examined a set of differential equations under the Caputo and Atangana-Baleanu piecewise fractional
operator that characterizes the crossover dynamics of the dengue model. In particular, we applied
various fractional operators to various system intervals and offered a qualitative analysis for every
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subinterval. We employed the Ulam Hyers (UH) stability analysis to evaluate stability. To generate
approximation solutions that can accommodate dynamics of both integer and rational orders, we
also looked into the use of piecewise terms and fractional orders in the system’s final step. The
advantage of this paper lies in its novel approach to modeling rabies transmission dynamics through the
integration of delay differential equations, piecewise derivatives with singular and non-singular kernels,
and ANNs. Unlike traditional models, this work uniquely accounts for delay effects in vaccination
efficacy and incubation duration, providing a more realistic simulation of rabies spread. By applying a
piecewise derivative framework, this study captures nuanced crossover behaviors often overlooked in
existing models, allowing for a more detailed exploration of interspecies transmission risks and control
strategies. Furthermore, incorporating ANNs enables the model to enhance predictive accuracy by
training on real-world datasets, setting this approach apart from conventional methods lacking machine
learning integration. The neural network approach is used, and the dynamics of the proposed model
are as follows:

The rest of the work is organized as follows: In Section 3, we discuss the basic results used in
the paper. The existence and uniqueness results are established by using the fixed point approach in
Section 4. The numerical approach is analyzed for the considered model (2.2) with fractional order
in Section 5. Simulation of the proposed model has been discussed along with ANN and we mention
different dynamics graphically in Section 6. Finally, we conclude our work in Section 7.

3. Basic results

Here, we shall provide some basic definitions for fractional derivatives and integrals of ABC and
Caputo.

Definition 3.1. [24] The derivative of a function W(ζ) with respect to the ABC operator, given the
condition thatW(ζ) belongs to the spaceH1(0, τ), is defined as below:

ABC
0Dν

ζ(W(ζ)) =
ABC(ν)

1 − ν

∫ ζ

0

d
dθ
W(θ)Eν

[
−ν

1 − ν

(
ζ − θ

)ν]
dθ. (3.1)

Replace Eν

[
−ν

1−ν

(
ζ−θ

)θ]
with E1 = exp

[
−ν
1−ν

(
ζ−θ

)]
in Eq (3.1) to obtain the Caputo-Fabrizio differential

operator. Additionally, it is noted that ABC0Dν
ζ[constant] = 0. In this context, the normalization operator

denoted as ABC(ν) is expressed as ABC(0) = ABC(1) = 1. The symbol Kν also signifies the Mittag-
Leffler function, a generalized form of the exponential function.

Definition 3.2. [24] IfW(t) ∈ L[0,T ], then the fractional integral in the ABC sense is expressed as:

ABC
0IνζW(ζ) =

1 − ν
ABC(ν)

W(ζ) +
ν

ABC(ν)Γ(ν)

∫ ζ

0
(ζ − θ)ν−1W(θ)dθ. (3.2)

Definition 3.3. [25] Consider the function W(ζ). For the definition of the arbitrary order derivative
in the Caputo sense concerning ζ, it is expressed as:
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C
0 Dν

ζW(ζ) =
1

Γ(1 − ν)

∫ ζ

0
(ζ − θ)−ν[W′(θ)]dθ,

where Γ(·) represents the gamma function.

Definition 3.4. Consider the function W(ζ) to be differentiable. For the definition of the Caputo and
ABC fractional piecewise derivative, as introduced in [24], it is expressed as:

PCABC
0 Dν

ζW(ζ) =

C
0 Dν

ζW(ζ), 0 < t ≤ ζ1,
ABC
0 Dν

ζW(ζ) ζ1 < ζ ≤ T,

where, PCABC0DζνW(ζ) represents the Caputo derivative for 0 < ζ ≤ ζ1 and the fractional ABC
derivative for ζ1 < ζ ≤ T .

Definition 3.5. Consider the functionW(ζ) to be differentiable. For the definition of fractional Caputo
and fractional ABC piecewise integration, as introduced in [24], it is expressed as:

PCABC
0 IζW(ζ) =


1
Γν

∫ ζ

ζ1

(ζ − θ)ν−1W(θ)d(θ), 0 < t ≤ ζ1,

1 − ν
ABC(ν)

W(ζ) +
ν

ABC(ν)Γν

∫ ζ

ζ1

(ζ − ν)ν−1W(θ)d(θ) ζ1 < ζ ≤ T,

where, PCABC0IζW(ζ) denotes Caputo singular kernel integration for 0 < ζ ≤ ζ1 and ABC integration
for ζ1 < ζ ≤ T .

4. Qualitative analysis

Now, we want to prove the existence and uniqueness of the solution for the considered piecewise
derivable function. Further elaborating the system (2.2), we can write it as follows:

ACABC
0 Dν

ζW(ζ) = H(ζ,W(tζ)), 0 < ν ≤ 1

is

W(ζ) =


W0 +

1
Γ(ν)

∫ ζ

0
ζH(θ,W(θ))(ζ − θ)ν−1dθ, 0 < ζ ≤ ζ1,

W(ζ1) +
1 − ν
ABC(ν)

H(ζ,W(ζ)) +
ν

ABC(ν)Γν

∫ ζ

ζ1

(ζ − θ)θ−1H(θ,W(θ))d(θ), ζ1 < ζ ≤ T,
(4.1)
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where

W(ζ) =



S H(ζ)
IH(ζ)
VH(ζ)
S D(ζ)
ID(ζ)
VD(ζ)

W0 =



S H(0)

IH(0)

VH(0)

S D(0)

ID(0)

VD(0)

W(ζ1) =



S H(ζ1)

IH(ζ1)

VH(ζ1)

S D(ζ1)

ID(ζ1)

VD(ζ1)

Q(ζ,W(ζ)) =

Hi =

CHi(S H, IH,VH, S D, ID,VD, ζ)
ABCHi(S H, IH,VH, S D, ID,VD, ζ)

,

(4.2)
where, i = 1, 2, 3, 4, 5, 6, now, we take∞ > T ≥ ζ > 0, then X = (C[0,T ] × R6,R+) is a Banach space.
Further, M = X1 × X2 × X3 × X4 × X5 × X6 is also a complete norm space endowed with norm

∥W∥ = max
ζ∈[0,T ]

|W(ζ)| = sup
ζ∈[0,T ]

[|S H(ζ)| + |IH(ζ)| + |VH(ζ)| + |S D(ζ)| + |ID(ζ)| + |VD(ζ)| + |W(ζ)|],

which can be written as in Eq (4.1).
To obtain the desired outcome, we take into account the nonlinear operator’s growth condition:

(C1) ∃ LW > 0; ∀ K, W̄ ∈ K, we have

|K(ζ,W) − K(ζ, W̄)| ≤ LK |W − W̄|.

(C2) ∃ CK > 0 & MK > 0,
|K(ζ,W(ζ))| ≤ CK |W| + MK .

Theorem 4.1. If H is piecewise continuous on the subintervals 0 < ζ ≤ ζ1 and ζ1 < ζ ≤ T within the
interval [0,T ], it also satisfies condition (C2). The piecewise problem (2.2) has at least one solution
on each subinterval.

Proof. Let us define a closed subset in both subintervals of 0 to T as G of E by using the Schauder
fixed-point theorem in the following manner:

G = {W ∈ K : ∥W∥ ≤ R1,2, R > 0}.

Next, we present the following operator: Using (4.1) as well as T : G → G,

T (W) =


W0 +

1
Γ(ν)

∫ ζ1

0
H(θ,W(θ))(ζ − θ)θ−1dθ, 0 < ζ ≤ ζ1,

W(ζ1) +
1 − ν
ABC(ν)

H(ζ,W(ζ)) +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)θ−1H(θ,W(θ))d(θ), ζ1 < ζ ≤ T,
(4.3)

and on anyW ∈ G, we get

|T (W)(ζ)| ≤


|W0| +

1
Γ(ν)

∫ ζ1

0
(ζ − θ)ν−1|H(θ,W(θ))|dθ,

|W(ζ1)| +
1 − ν
ABC(ν)

|H(ζ,W(ζ))| +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1|H(θ,W(θ))|d(θ),
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≤


|W0| +

1
Γ(ν)

∫ ζ1

0
(ζ − θ)ν−1[CH |W| + MH]dθ,

|W(ζ1)| +
1 − ν
ABC(ν)

[CH |W| + MH] +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1[CH |W| + MH]d(θ),

≤


|W0| +

Tν

Γ(ν + 1)
[CH |W| + MH] = R1, 0 < ζ ≤ ζ1,

|W(ζ1)| +
1 − ν
ABC(ν)

[CH |W| + MH] +
σ(T − T)ν

ABC(ν)Γ(ν + 1)
[CH |W| + MH]d(θ) = R2, ζ1 < ζ ≤ T,

≤

R1, 0 < ζ ≤ ζ1,

R2, ζ1 < ζ ≤ T.

Based on the previous equation,W ∈ G. T (G) ⊂ G, as a result, demonstrates the completeness and
closeness of T . In addition, for total consistency, we write as follows: Assume that ζz < ζ j ∈ [0, ζ1] is
the first interval of the Caputo sense:

|T (W)(ζ j) − T (W)(ζz)| =
∣∣∣∣∣ 1
Γ(ν)

∫ ζ j

0
(ζ j − θ)ν−1H(θ,W(θ))dθ −

1
Γ(ν)

∫ ζz

0
(ζz − θ)ν−1H(θ,W(θ))dθ

∣∣∣∣∣
≤

1
Γ(ν)

∫ ζz

0
[(ζz − θ)ν−1 − (ζ j − θ)ν−1]|H(θ,W(θ))|dθ

+
1
Γ(ν)

∫ ζ j

ζi

(ζ j − θ)ν−1|H(θ,W(θ))|dθ

≤
1
Γ(ν)

[ ∫ ζi

0
[(ζz − θ)ν−1 − (ζ j − θ)ν−1]dθ +

∫ ζ j

ζz

(ζ j − θ)ν−1dθ
]
(CH |W| + MH)

≤
(CHW + MH)
Γ(ν + 1)

[ζνj − ζ
ν
z + 2(ζ j − ζz)ν]. (4.4)

Next, from (4.4), we get ζz → ζ j, then,

|T (W)(ζ j) − T (W)(ζz)| → 0, as ζz → ζ j.

So, T is equi-continuous in [0, ζ1] interval. Next, we take the other interval ζz, ζ j ∈ [ζ1,T ] in the ABC
sense as

|T (W)(ζ j) − T (W)(ζz)| =
∣∣∣∣∣ 1 − ν
ABC(ν)

H(t,W(t)) +
ν

ABC(ν)Γ(ν)

∫ ζ j

ζ1

(ζ j − θ)ν−1H(θ,W(θ))dθ,

−
1 − ν
ABC(ν)

H(ζ,W(ζ)) +
(ν)

ABC(ν)Γ(ν)

∫ ζz

ζ1

(ζz − θ)ν−1H(θ,W(θ))dθ
∣∣∣∣∣

≤
ν

ABC(ν)Γ(ν)

∫ ζz

ζ1

[(ζz − θ)ν−1 − (ζ j − θ)ν−1]|H(θ,W(θ))|dθ

+
ν

ABC(ν)Γ(ν)

∫ ζ j

ζz

(ζ j − θ)ν−1|H(θ,W(θ))|dθ
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≤
ν

ABC(ν)Γ(ν)

[ ∫ ζz

ζ1

[(ζz − θ)ν−1 − (ζ j − θ)ν−1]dθ

+

∫ ζ j

ζz

(ζ j − θ)ν−1dθ
]
(CH |W| + MH)

≤
ν(CHW + MH)
ABC(ν)Γ(ν + 1)

[ζνj − ζ
ν
z + 2(ζ j − ζz)ν]. (4.5)

Next, as (4.5), we get ζz → ζ j, then

|T (W)(ζ j) − T (W)(ζz)| → 0, as ζz → ζ j.

T is therefore equi-continuous in the interval [ζ1,T ]. As a result, the mapping T is equi-continuous.
The operatorT is bounded, uniformly continuous, and continuous using the Arzelà-Ascoli theorem. As
a result, the piecewise derivable problem (2.2) has at least one solution on each subinterval according
to Schauder’s fixed-point theorem. □

Theorem 4.2. With (C1), the proposed model has a unique solution if T is a construction operator.

Proof. As we have defined an operator T : G → G to be piecewise continuous, considerW and W̄ ∈ G
on [0, ζ1] in the Caputo sense, as follows:

∥T (W) − T (W̄)∥ = max
ζ∈[0,t1]

∣∣∣∣∣ 1
Γ(ν)

∫ ζ

0
(ζ − θ)ν−1H(θ,W(θ))dθ −

1
Γ(ν)

∫ ζ

0
(ζ − θ)ν−1H(θ, W̄(θ))dθ

∣∣∣∣∣
≤

Tν

Γ(ν + 1)
LH∥W − W̄∥. (4.6)

From (4.6), we have

∥T (W) − T (W̄)∥ ≤
Tν

Γ(ν + 1)
LH∥W − W̄∥. (4.7)

Thus, T is bounded. Thus, in the context of the Banach contraction theorem, the issue under
consideration has a unique solution inside the specified subinterval. Next, in terms of the ABC
derivative, for the other interval ζ ∈ [ζ1,T ] as

∥T (W) − T (W̄)∥ ≤
1 − θ
ABC(ν)

LH∥W − W̄∥ +
ν(T − T ν)

ABC(ν)Γ(ν + 1)
LH∥W − W̄∥, (4.8)

or

∥T (W) − T (W̄)∥ ≤ LH

[ 1 − ν
ABC(ν)

+
ν(T − T)ν

ABC(ν)Γ(ν + 1)

]
∥W − W̄∥. (4.9)

T is a contraction as a result. Accordingly, the issue under consideration has a unique solution in the
specified subinterval in the sense of the Banach contraction theorem. The piecewise derivable issue
thus has an unconventional resolution on each subinterval by Eqs (4.7) and (4.9). □
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4.1. Stability analysis

To ensure the stability of the considered model, we need the following analysis:

Definition 4.1. The model (2.1) under consideration is U-H stable; if each ß > 0, the following
inequality will be held. ∣∣∣CABCDν

tW(ζ) − H(ζ,W(ζ))
∣∣∣ < ß, ζ ∈ T . (4.10)

A unique solution will haveW ∈ Z and a constant ℵ > 0,∣∣∣∣∣∣W −W∣∣∣∣∣∣
Z
≤ ℵß, ζ ∈ T . (4.11)

Moreover, the inequality above can be written as follows if we consider an increasing function θ :
[0,∞)→ R+. ∣∣∣∣∣∣W −W∣∣∣∣∣∣

Z
≤ ℵθ(ß), ζ ∈ T .

If θ(0) = 0, the obtained solution will be generalized U-H stable (G-U-H).
Remark 4.1. Given that a function θ ∈ C(T ) satisfies θ(0) = 0 and is independent of W ∈ W, the
following can be concluded:

|θ(ζ)| ≤ ß, ζ ∈ T ,
CABCDν

tW(ζ) = H (ζ,W(ζ)) + θ(ζ), ζ ∈ T .

Lemma 4.1. Suppose the following function:

CABC
0 Dν

tW(ζ) = H(ζ,W(ζ)), 0 < ν ≤ 1. (4.12)

The solution for Eq (4.12) can be

W(ζ) =


W0 +

1
Γ(ν)

∫ ζ

0
H(θ,W(θ))(ζ − θ)ν−1dθ, 0 < ζ ≤ ζ1,

W(ζ1) +
1 − ν

ABC(ν)
H(ζ,W(ζ)) +

ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1H(θ,W(θ))d(θ), ζ1 < ζ ≤ T.
(4.13)

∣∣∣∣∣∣F(W) − F(W)
∣∣∣∣∣∣ ≤


T ν

1

Γ(ν + 1)
ß, ζ ∈ T1,[

(1 − ν)Γ(ν) + (T ν
2)

ABC(ν)Γ(ν)

]
ß = Λß, ζ ∈ T2.

(4.14)

Theorem 4.3. Lemma 4.1 implies that the solution to model (2.1) is both G-U-H and U-H stable if
L fT

ν

Γ(ν) < 1.
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Proof. We can determine thatW ∈W is a unique solution of (2.1) ifW ∈W is a solution of (2.1).
Case 1: For ζ ∈ T , we obtain∣∣∣∣∣∣W −W∣∣∣∣∣∣ = sup

ζ∈T

∣∣∣∣∣∣W −
(
W◦ +

1
Γ(ν)

∫ ζ1

0
(ζ1 − θ)ν−1H

(
θ,W(θ)

)
dθ

)∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣W −
(
W◦ +

1
Γ(ν)

∫ ζ1

0
(ζ1 − θ)ν−1H

(
θ,W(θ)

)
dθ

)∣∣∣∣∣∣
+ sup

ζ∈T

∣∣∣∣∣∣+ 1
Γ(ν)

∫ ζ1

0
(ζ1 − θ)ν−1H (θ,W(θ)) dθ −

1
Γ(ν)

∫ ζ1

0
(ζ1 − θ)ν−1H

(
θ,W(θ)

)
dθ

∣∣∣∣∣∣
≤
T∞

ν

Γ(ν + 1)
ß +

L fT∞

Γ(ν + 1)

∣∣∣∣∣∣W −W∣∣∣∣∣∣ .
(4.15)

Along with the following:

∣∣∣∣∣∣W −W∣∣∣∣∣∣ ≤  T∞
Γ(ν+1)

1 − L fT∞

Γ(ν+1)

 ß. (4.16)

Case 2: ∣∣∣∣∣∣W −W∣∣∣∣∣∣ ≤ sup
ζ∈T

∣∣∣∣∣∣W −
[
W(ζ1) +

1 − ν
ABC(ν)

[
H (ζ,W(ζ))

]
+

ν

ABC(ν)Γ(ν)

[∫ t

t1
(ζ − θ)ν−1H

(
θ,W(θ)

)
d(θ)

]]∣∣∣∣∣∣
+ sup

ζ∈T

1 − ν
ABC(ν)

∣∣∣∣H (ζ,W(ζ)) − H
(
ζ,W(ζ)

)∣∣∣∣
+ sup

ζ∈T

ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1
∣∣∣∣H (θ,W(θ)) − H

(
θ,W(θ)

)∣∣∣∣ ds.

Using Λ =
[ (1−ν)Γ(ν)+T ν

2
ABC(ν)Γ(ν)

]
, and further calculation, we have∣∣∣∣∣∣W −W∣∣∣∣∣∣

W
≤ Λß + ΛL f

∣∣∣∣∣∣W −W∣∣∣∣∣∣
W
,

or ∣∣∣∣∣∣W −W∣∣∣∣∣∣
W
≤

 Λ

1 − ΛL f

 ß. (4.17)

We use

ℵ = max


 T1

Γ(ν+1)

1 − L fT1

Γ(ν+1)

 , Λ

1 − ΛL f

1−M f

 .
Now, from inequalities (4.16) and (4.17), we have∣∣∣∣∣∣W −W∣∣∣∣∣∣

W
≤ ℵß, ζ ∈ T .
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As a result, we may say that model (2.1) has a U-H stable solution. Furthermore, we obtain the
following results in (4.18) if we replace ß with θ(ß):

∣∣∣∣∣∣W −W∣∣∣∣∣∣
W
≤ ℵθ(ß), at eachζ ∈ T .

Thus, the results show that the system under consideration is G-U-H stable because θ(0) = 0. □

5. Numerical scheme

The following numerical approach is shown for the piecewise differentiable issue (2.2). We shall
create a numerical scheme for the two subintervals of [0,T ] in the Caputo andABC senses. The integer
order numerical approach used in [24] will be the foundation for our piecewise derivative. We express
it as follows by using the piecewise integration to solve Eq (2.2) for the Caputo and ABC formats:

S H(ζ) =


S H0 +

1
Γ(ν)

∫ ζ1

0
(ζ − θ)ν−1C H1(θ), S H(θ)dθ, 0 < ζ ≤ ζ1,

S H(ζ1) +
1 − ν
ABC(ν)

ABCH1(ζ, S (ζ)) +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1ABCH1(θ, S H(θ))dθ, ζ1 < ζ ≤ T,

IH(ζ) =


IH0 +

1
Γ(ν)

∫ ζ1

0
(ζ − θ)ν−1C H2(θ, IH(θ))dθ, 0 < ζ ≤ ζ1,

IH(ζ1) +
1 − ν
ABC(ν)

ABCH2(ζ, I(ζ)) +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1ABCH2(θ, IH(θ))dθ, ζ1 < ζ ≤ T,

VH(ζ) =


VH0 +

1
Γ(θ)

∫ ζ1

0
(ζ − θ)ν−1C H3(θ,VH(θ))dθ, 0 < ζ ≤ ζ1,

VH(ζ1) +
1 − ν
ABC(ν)

ABCH3(ζ,VH(ζ)) +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)θ−1ABCH3(θ,VH(θ))dθ, ζ1 < ζ ≤ T,

S D(ζ) =


S D0 +

1
Γ(ν)

∫ ζ1

0
(tζ − θ)ν−1C H4(θ, S D(θ))dθ, 0 < ζ ≤ ζ1,

S D(ζ1) +
1 − ν
ABC(ν)

ABCH4(ζ, S D(ζ)) +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1ABCH4(θ, S D(θ))dθ, ζ1 < ζ ≤ T,

ID(ζ) =


ID0 +

1
Γ(θ)

∫ ζ1

0
(ζ − θ)ν−1C H5(θ, ID(θ))dθ, 0 < ζ ≤ ζ1,

ID(ζ1) +
1 − ν
ABC(ν)

ABCH5(ζ, ID(ζ)) +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)θ−1ABCH5(θ, ID(θ))dθ, ζ1 < ζ ≤ T,

VD(ζ) =


VD0 +

1
Γ(ν)

∫ ζ1

0
(ζ − θ)ν−1C H6(θ,VD(θ))dθ, 0 < ζ ≤ ζ1,

VD(ζ1) +
1 − ν
ABC(ν)

ABCH6(ζ,VD(ζ)) +
ν

ABC(ν)Γ(ν)

∫ ζ

ζ1

(ζ − θ)ν−1ABCH6(θ,VD(θ))dθ, ζ1 < ζ ≤ T,
(5.1)

where CHz(ζ) =C Hz(S H, IH,VH, S D, ID,VD, ζ) and ABCHz(ζ) =ABC Hz(S H, IH,VH, S D, ID,VD, ζ) are the
left-hand side of Eq (2.1) for z = 1, 2, 3, 4, 5, 6, also given in Eq (2.2). The scheme for the system’s
first equation, (5.1), will be derived, and the remaining compartments will be treated similarly. When
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ζ = ζn+1,

S H(ζn+1) =



S H0 +
1
Γ(ν)

∫ ζ1

0
(ζ − θ)ν−1CH1(S H(θ), θ)dθ,

S H(ζ1) +
1 − ν
ABC(ν)

ABCH1(S H(ζ), ζ),

+
ν

ABC(ν)Γ(ν)

∫ ζn+1

ζ1

(ζ − θ)ν−1ABCH1(θ, S H(θ))dθ, ζ1 < ζ ≤ T,

(5.2)

writing Eq (5.2) in the Newton interpolation approximation given in [24] is as follows:

S H(ζn+1) =



S H(0) +



(Λζ)ν−1

Γ(ν + 1)

z∑
k=2

[C
H1(S k−2

H , ζk−2)
]
Π +

(Λζ)ν−1

Γ(ν + 2)

z∑
k=2

[C
H1(S k−1

H , ζk−1)

−C H1(S k−2
H , ζk−2)

]∑
+
ν(Λζ)ν−1

2Γ(ν + 3)

z∑
k=2

[C
H1(S k

H , ζk)

− 2C H1(S k−1
H , ζk−1) +C H1(S k−2

H , ζk−2)
]
Λ


,

S H(ζ1) +



1 − ν
ABC(ν)

ABCH1(S n
H , ζn) +

ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 1)

n∑
k=z+3

[ABC
H1(S k−2

H , ζk−2)
]
Π

+
ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 2)

n∑
k=z+3

[ABC
H1(S k−1

H , ζk−1) + ABCH1(S k−2
H , ζk−2)

]∑
+

ν

ABC(ν)
ν(Λζ)ν−1

Γ(ν + 3)

n∑
k=z+3

[ABC
H1(S k

H , ζk)

− 2ABCH1(S k−1
H , ζk−1) +ABC H1(S k−2

H , ζk−2)
]
Λ.



.

(5.3)

We can write the Newton interpolation estimate for the remaining compartments as follows:

IH(ζn+1) =



IH(0) +



(Λζ)ν−1

Γ(ν + 1)

z∑
k=2

[C
H1(Ik−2

H , ζk−2)
]
Π +

(Λζ)ν−1

Γ(ν + 2)

z∑
k=2

[C
H1(Ik−1

H , ζk−1)

−C H1(Ik−2
H , ζk−2)

]∑
+
ν(Λζ)ν−1

2Γ(ν + 3)

z∑
k=2

[C
H1(Ik

H , ζk)

− 2C H1(Ik−1
H , ζk−1) +C H1(Ik−2

H , ζk−2)
]
Λ


,

IH(ζ1) +



1 − ν
ABC(ν)

ABCH1(In
H , ζn) +

ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 1)

n∑
k=z+3

[ABC
H1(Ik−2

H , ζk−2)
]
Π

+
ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 2)

n∑
k=z+3

[ABC
H1(Ik−1

H , ζk−1) + ABCH1(Ik−2
H , ζk−2)

]∑
+

ν

ABC(ν)
ν(Λζ)ν−1

Γ(ν + 3)

n∑
k=z+3

[ABC
H1(Ik

H , ζk)

− 2ABCH1(Ik−1
H , ζk−1) +ABC H1(Ik−2

H , ζk−2)
]
Λ.



.

(5.4)
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VH(ζn+1) =



VH(0) +



(Λζ)ν−1

Γ(ν + 1)

z∑
k=2

[C
H1(Vk−2

H , ζk−2)
]
Π +

(Λζ)ν−1

Γ(ν + 2)

z∑
k=2

[C
H1(Vk−1

H , ζk−1)

−C H1(Vk−2
H , ζk−2)

]∑
+
ν(Λζ)ν−1

2Γ(ν + 3)

z∑
k=2

[C
H1(Vk

H , ζk)

− 2C H1(Vk−1
H , ζk−1) +C H1(Vk−2

H , ζk−2)
]
Λ


,

VH(ζ1) +



1 − ν
ABC(ν)

ABCH1(Vn
H , ζn) +

ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 1)

n∑
k=z+3

[ABC
H1(Vk−2

H , ζk−2)
]
Π

+
ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 2)

n∑
k=z+3

[ABC
H1(Vk−1

H , ζk−1) + ABCH1(Vk−2
H , ζk−2)

]∑
+

ν

ABC(ν)
ν(Λζ)ν−1

Γ(ν + 3)

n∑
k=z+3

[ABC
H1(Vk

H , ζk)

− 2ABCH1(Vk−1
H , ζk−1) +ABC H1(Vk−2

H , ζk−2)
]
Λ.



.

(5.5)

S D(ζn+1) =



S D(0) +



(Λζ)ν−1

Γ(ν + 1)

z∑
k=2

[C
H1(S k−2

D , ζk−2)
]
Π +

(Λζ)ν−1

Γ(ν + 2)

z∑
k=2

[C
H1(S k−1

D , ζk−1)

−C H1(S k−2
D , ζk−2)

]∑
+
ν(Λζ)ν−1

2Γ(ν + 3)

z∑
k=2

[C
H1(S k

D, ζk)

− 2C H1(S k−1
D , ζk−1) +C H1(S k−2

D , ζk−2)
]
Λ


,

S D(ζ1) +



1 − ν
ABC(ν)

ABCH1(S n
D, ζn) +

ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 1)

n∑
k=z+3

[ABC
H1(S k−2

D , ζk−2)
]
Π

+
ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 2)

n∑
k=z+3

[ABC
H1(S k−1

D , ζk−1) + ABCH1(S k−2
D , ζk−2)

]∑
+

ν

ABC(ν)
ν(Λζ)ν−1

Γ(ν + 3)

n∑
k=z+3

[ABC
H1(S k

D, ζk)

− 2ABCH1(S k−1
D , ζk−1) +ABC H1(S k−2

D , ζk−2)
]
Λ.



.

(5.6)
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ID(ζn+1) =



ID(0) +



(Λζ)ν−1

Γ(ν + 1)

z∑
k=2

[C
H1(Ik−2

D , ζk−2)
]
Π +

(Λζ)ν−1

Γ(ν + 2)

z∑
k=2

[C
H1(Ik−1

D , ζk−1)

−C H1(Ik−2
D , ζk−2)

]∑
+
ν(Λζ)ν−1

2Γ(ν + 3)

z∑
k=2

[C
H1(Ik

D, ζk)

− 2C H1(Ik−1
D , ζk−1) +C H1(Ik−2

D , ζk−2)
]
Λ


,

ID(ζ1) +



1 − ν
ABC(ν)

ABCH1(In
D, ζn) +

ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 1)

n∑
k=z+3

[ABC
H1(Ik−2

D , ζk−2)
]
Π

+
ν

ABC(ν)
(Λζ)ν−1

Γ(ν + 2)

n∑
k=z+3

[ABC
H1(Ik−1

D , ζk−1) + ABCH1(Ik−2
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(5.8)

Here

Λ =


(1 + n − k)ν

(
2(n − k)2 + (3ν + 10)(n − k) + 2ν2 + 9ν + 12

)
− (n − k)

(
2(n − k)2 + (5ν + 10)(−k + n) + 6ν2 + 18ν + 12

)
 ,

∑
=


(1 + n − k)ν

(
3 + 2ν − k + n

)
− (n − k)

(
n − k + 3ν + 3

)
 ,

Λ =
[
(1 + n − k)ν − (n − k)ν

]
,
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and

CH1 =
ABCH1 = (S H, ζ) = AH − mHS H − βHDS HIDτ−1e

−mDτ1 − kHS Hτ2
e−mHτ2 ,

CH2 =
ABCH2 = (IH, ζ) = βHDS HIDτ1

e−mDτ1 − (mH + µH)IH,
CH3 =

ABCH3 = (VH, ζ) = kHS Hτ2
e−mHτ2 − mHVH,

CH4 =
ABCH4 = (S D, ζ) = AD − mDS D − βDDS DIDτ1

e−mDτ1 − kDS Dτ2
e−mDτ2 ,

CH5 =
ABCH5 = (ID, ζ) = βDDS DIDτ1

e−mDτ1 − (mD + µD)ID,
CH6 =

ABCH6 = (VD, ζ) = kDS Dτ2
e−mDτ2 − mDVD.

6. Numerical simulation and discussion with ANN

We have implemented an ANN to analyze the piecewise derivative models of rabies transmission.
The datasets are taken from the piecewise Adams-Bashforth numerical methods. ANN trains the
datasets, and the model’s accuracy is shown in the figures. In the context of rabies disease, primarily
transmitted by dogs to humans, Figure 2 shows how the illness spreads to human populations and
eventually dies out after about eight years, with no surge in the number of cases because there is
little contact between susceptible humans and canine rabies. As seen in Figure 3, the proportion of
susceptible people gradually declines, suggesting that high vaccination rates cause many susceptible
people to move into the vaccinated subpopulation. Figure 4 shows that the number of susceptible dog
populations gradually declines. Figure 5 shows that while the number of vaccinated people continues
to rise, its growth is slower each time, suggesting that an equilibrium condition will eventually be
reached. Figure 6 shows that the number of instances of infection in dog populations increases, albeit
to less than thirty within the first years. After that, the infection progressively declines until the disease
eventually goes extinct in roughly ten years. Additionally, Figure 7 illustrates how a high vaccination
rate contributes to a rising number of vaccinated dogs, correlated with a declining susceptible dog
population.

We simulate the outcomes of the preceding algorithms for the different categories in (27)–(32) using
Matlab and the parameter values from Table 2, as shown in Figures 2–7.

Table 2. Initial and parameter numerical values for rabies model.

Parameter value Parameter Source Parameter Source
AH 2, 000humans/year Assumed mH 0.04/year [10]
βHD 0.0001dog/year Assumed kH 0.5/year Assumed
µH 300 dH 0.004 p1 0.0012
RH 1/year [13] AD 200 dogs/year Assumed
mD 0.06/year [10] βDD 0.001 dog/year Assumed
kD 0.5/year [10] µD 1/year [13]
τ1 1/6year [13] τ2 1/10year Assumed
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Figure 2. The graphs of numerical simulation of infected humans.

Figure 3. The graphs of numerical simulation of susceptible humans.

Figure 4. The graphs of numerical simulation of susceptible dogs.
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Figure 5. The graphs of numerical simulation of vaccinated humans.

Figure 6. The graphs of numerical simulation of infected dogs.

Figure 7. The graphs of numerical simulation of vaccinated dogs.
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The model’s dataset identifies three groups: 70% are designated for training, 15% for testing, and
15% for validation. Each category’s fractional order is distinct. The approach of ANN using the Adam
Bashforth method is shown in Figure 8 (a). Figure 8 (b) displays the model’s performance at epoch
1000, with mean square errors of 4.8072e − 07. Figure 8 (c) displays the training state. Figure 8 (d)
shows the error histogram, and −0.00606 is the best number we could discover in this instance. Figure
8 (e) displays the errors in the exact figure and the best fit of the training and testing data.

Figure 8. The model under consideration’s statistical dynamics include (a) comparison, (b)
mean square error, (c) regression, (d) error histogram, and (e) training fit for the ANN.

Figure 9 shows the regression of the model under examination for all data, testing data, and training
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data. The data’s obvious placement on the regression line suggests that the final solution was accurately
trained. The value of R is about 1.

Figure 9. Regression with ANN represented dynamically for the system under consideration.

The approach of ANN using the Adam Bashforth method is shown in Figure 10 (a). Figure 10 (b)
displays the performance of the studied model at epoch 1000, with mean square errors of 6.3956e−06.
The state of training is shown in Figure 10 (c). The state of training is displayed in Figure 10 (d). The
error histogram is given in Figure 10 (e), with the best value we could discover in this example being
−0.00171. Figure 10 (e) displays the optimal fit of the training and testing data and errors, as indicated
by the exact figure.
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Figure 10. The model under consideration’s statistical dynamics include (a) comparison, (b)
mean square error, (c) regression, (d) error histogram, and (e) training fit for the ANN.

Figure 11 shows the regression of the model under examination for all data, testing data, and
training data. The data’s prominent placement on the regression line suggests that the final solution
was accurately trained. The value of R is about 1.
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Figure 11. Regression with ANN represented dynamically for the system under
consideration.

The approach of ANN using the Adam Bashforth method is shown in Figure 12 (a). Figure 12 (b)
displays the performance of the studied model at epoch 1000, with mean square errors of 7.8687e−06.
The state of training is displayed in Figure 12 (c). The state of training is displayed in Figure 12
(d). The error histogram is displayed in Figure 12 (d), and 0.000107 is our best result. Figure 12 (e)
displays the best fit of the training and testing data along with the errors in the same figure.
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Figure 12. The model under consideration’s statistical dynamics include (a) comparison, (b)
mean square error, (c) regression, (d) error histogram, and (e) training fit for the ANN.

Figure 13 displays the regression for all testing and training data for the model under discussion.
The data’s obvious placement on the regression line suggests that the final solution was accurately
trained. The value of R is about 1.
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Figure 13. Regression with ANN represented dynamically for the system under
consideration.

The approach of ANN using the Adam Bashforth method is shown in Figure 14 (a). Figure 14 (b)
displays the performance of the studied model at epoch 1000, with mean square errors of 0.0001399.
The state of training is displayed in Figure 14 (c). The error histogram is displayed in Figure 14 (d),
and 0.002694 is our best result. Figure 14 (e) displays the best fit of the training and testing data and
the errors mentioned in the figure.
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Figure 14. The model under consideration’s statistical dynamics include (a) comparison, (b)
mean square error, (c) regression, (d) error histogram, and (e) training fit for the ANN.

Figure 15 illustrates the regression of the model under examination for all testing and training data.
The data’s obvious placement on the regression line suggests that the final solution was accurately
trained. The value of R is about 1.

AIMS Mathematics Volume 9, Issue 12, 33495–33531.



33523

Figure 15. Regression with ANN represented dynamically for the system under
consideration.

The approach of ANN using the Adam Bashforth method is shown in Figure 16 (a). The
performance of the studied model at epoch 1000 is displayed in Figure 16 (b), with mean square
errors of 9.0969e − 09. Figure 16 (c) displays the training state. The error histogram is displayed in
Figure 16 (d), and −9.3e− 06 is the best result we obtain. Figure 16 (e) displays the errors and the best
fit of the training and testing data.
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Figure 16. The model under consideration’s statistical dynamics include (a) comparison, (b)
mean square error, (c) regression, (d) error histogram, and (e) training fit for the ANN.

The regression of the model under investigation for all training, testing, and data is displayed in
Figure 17. The resultant solution was accurately trained, as evidenced by these graphs that show where
the data falls on the regression line. The value of R is about 1.
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Figure 17. Regression with ANN represented dynamically for the system under
consideration.

The approach of ANN using the Adam Bashforth method is shown in Figure 18 (a). Figure 18 (b)
displays the performance of the studied model at epoch 1000, with mean square errors of 5.2036e−13.
Figure 18 (c) displays the training state. The error histogram is displayed in Figure 18 (d), and 1.38e−
07 is the best result. Figure 18 (e) displays the errors and the best fit of the training and testing data.
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Figure 18. The model under consideration’s statistical dynamics include (a) comparison, (b)
mean square error, (c) regression, (d) error histogram, and (e) training fit for the ANN.

The regression of the model under investigation for all training, testing, and data is displayed in
Figure 19. The resultant solution was accurately trained, as evidenced by these graphs that show where
the data falls on the regression line. The value of R is about 1.
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Figure 19. Regression with ANN represented dynamically for the system under
consideration.

7. Conclusions

This study aimed to examine the dynamics of a rabies epidemic model using a unique piecewise
derivative approach based on the Caputo and ABC operators. A piecewise derivative solution for the
disease model outlined in our paper was investigated to establish its existence and uniqueness. We
used the piecewise Newton polynomial approach to approximate the solution. The paper introduces a
numerical method for piecewise derivatives using singular and non-singular kernels. We did numerical
simulations of the piecewise rabies model at different fractional orders and found that piecewise
operators have better dynamics than classical ones. Using ANN approaches on a piecewise model,
the dataset is split into training, testing, and validation sets. A detailed analysis is conducted for each
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category. Our work advances the concept of piecewise derivatives by providing a clearer understanding
of crossover behavior dynamics. A significant outcome of our simulations is that greater vaccine
efficiency resulted in a greater recovery rate. We identified substantial correspondences by analyzing
large quantities of numerical and graphical data. Research into incorporating additional factors in
this study is an exciting avenue for future research. These factors may include evolving vaccination
strategies, weather, or socioeconomic variables to improve the model’s predictive capabilities. As a
result of this holistic approach, we are likely to develop more effective strategies for controlling and
preventing the disease.
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