Research article Special Issues

Optimizing cancer treatment using optimal control theory

  • Received: 01 September 2024 Revised: 19 October 2024 Accepted: 04 November 2024 Published: 07 November 2024
  • MSC : 49N60, 49M37, 93C10

  • Cancer is a complex group of diseases characterized by uncontrolled cell growth that can spread throughout the body, leading to serious health issues. Traditional treatments mainly include chemotherapy, surgery, and radiotherapy. Although combining different therapies is becoming more common, predicting how these treatments will interact and what side effects they may cause, such as gastrointestinal or neurological problems, can be challenging. This research applies optimal control theory (OCT) to create precise and personalized treatment plans for cancer patients. OCT helps identify the most effective doses of chemotherapy and immunotherapy by forecasting how various treatment combinations will impact tumor growth and the immune response over time. It optimizes the integration of chemotherapy with immunotherapy to minimize side effects while maximizing therapeutic benefits. The study proposes a model for managing malignant tumors using a mix of immunotherapy, vaccines, and chemotherapy. The aim is to develop the best treatment plan that reduces new tumor growth while keeping healthy cells stable. It also takes into account individual differences among patients, including variations in tumor biology and immune responses in both younger and older individuals. To do this, we compared different optimal control strategies: interior point optimization (IPOPT), an open-source tool for nonlinear optimization; state-dependent Riccati equation (SDRE), which adapts linear control methods for nonlinear situations; and approximate sequence Riccati equation (ASRE), a globally optimal feedback control approach for nonlinear systems. The optimization criterion showed that the proposed work achieved a cost value of 52.3573 for IPOPT, compared with 52.424 for both SDRE and ASRE. For $ \mathrm{C}\mathrm{D}{8}^{+} $ T cells, the proposed method maintained a consistent value of 1.6499 for continuous (C) and dosed (D) across all techniques. Tumor cell counts had a C value of 0.0007 for IPOPT, compared with 0.0006 for ISDRE and ASRE, with D values remaining at 0 across all methods. This comparison demonstrates the successful use of control theory techniques and highlights their potential for developing personalized and effective treatment strategies for complex cancer cases. By optimizing treatment schedules and dosages, OCT can help minimize the side effects of cancer therapies, thereby enhancing patients' overall quality of life.

    Citation: Ahmed J. Abougarair, Mohsen Bakouri, Abdulrahman Alduraywish, Omar G. Mrehel, Abdulrahman Alqahtani, Tariq Alqahtani, Yousef Alharbi, Md Samsuzzaman. Optimizing cancer treatment using optimal control theory[J]. AIMS Mathematics, 2024, 9(11): 31740-31769. doi: 10.3934/math.20241526

    Related Papers:

  • Cancer is a complex group of diseases characterized by uncontrolled cell growth that can spread throughout the body, leading to serious health issues. Traditional treatments mainly include chemotherapy, surgery, and radiotherapy. Although combining different therapies is becoming more common, predicting how these treatments will interact and what side effects they may cause, such as gastrointestinal or neurological problems, can be challenging. This research applies optimal control theory (OCT) to create precise and personalized treatment plans for cancer patients. OCT helps identify the most effective doses of chemotherapy and immunotherapy by forecasting how various treatment combinations will impact tumor growth and the immune response over time. It optimizes the integration of chemotherapy with immunotherapy to minimize side effects while maximizing therapeutic benefits. The study proposes a model for managing malignant tumors using a mix of immunotherapy, vaccines, and chemotherapy. The aim is to develop the best treatment plan that reduces new tumor growth while keeping healthy cells stable. It also takes into account individual differences among patients, including variations in tumor biology and immune responses in both younger and older individuals. To do this, we compared different optimal control strategies: interior point optimization (IPOPT), an open-source tool for nonlinear optimization; state-dependent Riccati equation (SDRE), which adapts linear control methods for nonlinear situations; and approximate sequence Riccati equation (ASRE), a globally optimal feedback control approach for nonlinear systems. The optimization criterion showed that the proposed work achieved a cost value of 52.3573 for IPOPT, compared with 52.424 for both SDRE and ASRE. For $ \mathrm{C}\mathrm{D}{8}^{+} $ T cells, the proposed method maintained a consistent value of 1.6499 for continuous (C) and dosed (D) across all techniques. Tumor cell counts had a C value of 0.0007 for IPOPT, compared with 0.0006 for ISDRE and ASRE, with D values remaining at 0 across all methods. This comparison demonstrates the successful use of control theory techniques and highlights their potential for developing personalized and effective treatment strategies for complex cancer cases. By optimizing treatment schedules and dosages, OCT can help minimize the side effects of cancer therapies, thereby enhancing patients' overall quality of life.



    加载中


    [1] J. Z. Shing, J. Corbin, A. R. Kreimer, L. J. Carvajal, K. Taparra, M. S. Shiels, et al., Human papillomavirus–associated cancer incidence by disaggregated Asian American, Native Hawaiian, and other Pacific Islander ethnicity, JNCI Cancer Spectrum, 7 (2023), 1–9. https://doi.org/10.1093/jncics/pkad012 doi: 10.1093/jncics/pkad012
    [2] J. Galon, D. Daniela, Tumor immunology and tumor evolution: intertwined histories, Immunity, 52 (2020), 55–81. https://doi.org/10.1016/j.immuni.2019.12.018 doi: 10.1016/j.immuni.2019.12.018
    [3] W. H. Fridman, F. Pagès, C. Sautès-Fridman, J. Galon, The immune contexture in human tumors: impact on clinical outcome, Nat. Rev. Cancer, 12 (2012), 298–306. https://doi.org/10.1038/nrc3245 doi: 10.1038/nrc3245
    [4] H. Song, C. Ruan, Y. Xu, T. Xu, R. Fan, T. Jiang, et al., Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model, Exp. Biol. Med., 247 (2022), 898–909. https://doi.org/10.1177/15353702211065010 doi: 10.1177/15353702211065010
    [5] G. Rajput, S. Agrawal, K. Biyani, S. Vishvakarma, Early breast cancer diagnosis using cogent activation function-based deep learning implementation on screened mammograms, Int. J. Imaging Syst. Technol., 32 (2022), 1101–1118. https://doi.org/10.1002/ima.22701 doi: 10.1002/ima.22701
    [6] A. Abougarair, A. Oun, S. Sawan, A. Ma'arif, Deep learning-based automated approach for classifying bacterial images, Int. J. Robotics Control Syst., 4 (2024), 849–876. https://doi.org/10.31763/ijrcs.v4i2.1423 doi: 10.31763/ijrcs.v4i2.1423
    [7] M. Itik, M. U. Salamci, S. P. Banks, Optimal control of drug therapy in cancer treatment, Nonlinear Anal., 71 (2009), e1473–e1486. https://doi.org/10.1016/j.na.2009.01.214 doi: 10.1016/j.na.2009.01.214
    [8] T. Çimen, Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method, Annu. Rev. Control, 34 (2010), 32–51. https://doi.org/10.1016/j.arcontrol.2010.03.001 doi: 10.1016/j.arcontrol.2010.03.001
    [9] Y. Batmani, H. Khaloozadeh, Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter, Optim. Contr. Appl. Met., 34 (2013), 562–577. https://doi.org/10.1002/oca.2039 doi: 10.1002/oca.2039
    [10] L. De Pillis, A. Radunskaya, The dynamics of an optimally controlled tumor model: a case study. Math. Comput. Model., 37 (2003), 1221–1244. https://doi.org/10.1016/S0895-7177(03)00133-X doi: 10.1016/S0895-7177(03)00133-X
    [11] F. A. Rihan, N. F. Rihan, Dynamics of cancer-immune system with external treatment and optimal control, J. Cancer Sci. Ther., 8 (2016), 257–261. https://doi.org/10.4172/1948-5956.1000423 doi: 10.4172/1948-5956.1000423
    [12] M. Sarhaddi, M. Yaghoobi, A new approach in cancer treatment regimen using adaptive fuzzy back-stepping sliding mode control and tumor-immunity fractional order model, Biocybern. Biomed. Eng., 40 (2020), 1654–1665. https://doi.org/10.1016/j.bbe.2020.09.003 doi: 10.1016/j.bbe.2020.09.003
    [13] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5
    [14] F. Angaroni, A. Graudenzi, M. Rossignolo, D. Maspero, T. Calarco, R. Piazza, et al., An optimal control framework for the automated design of personalized cancer treatments, Front. Bioeng. Biotechnol, 8 (2020), 523. https://doi.org/10.3389/fbioe.2020.00523 doi: 10.3389/fbioe.2020.00523
    [15] J. J. Cunningham, J. S. Brown, R. A. Gatenby, K. Staňková, Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer, J. Theor. Biol., 459 (2018), 67–78. https://doi.org/10.1016/j.jtbi.2018.09.022 doi: 10.1016/j.jtbi.2018.09.022
    [16] Y. Yang, C. Y. Shiranthika, C. Y. Wang, K. W. Chen, S. Sumathipala, Reinforcement learning strategies in cancer chemotherapy treatments: a review, Comput. Meth. Prog. Bio., 229 (2023), 107280. https://doi.org/10.1016/j.cmpb.2022.107280 doi: 10.1016/j.cmpb.2022.107280
    [17] P. Samadi, P. Sarvarian, E. Gholipour, K. S. Asenjan, L. Aghebati-Maleki, R. Motavalli, et al., Berberine: a novel therapeutic strategy for cancer, IUBMB Life, 72 (2020), 2065–2079. https://doi.org/10.1002/iub.2350 doi: 10.1002/iub.2350
    [18] A. M. Jarrett, D. Faghihi, D. A. Hormuth, E. A. B. F. Lima, J. Virostko, G. Biros, et al., Optimal control theory for personalized therapeutic regimens in oncology: Background, history, challenges, and opportunities, J. Clin. Med., 9 (2020), 1314. https://doi.org/10.3390/jcm9051314 doi: 10.3390/jcm9051314
    [19] H. Schättler, U. Ledzewicz, Optimal control for mathematical models of cancer therapies: an application of geometric methods, Vol. 42, Springer, 2015. https://doi.org/10.1007/978-1-4939-2972-6
    [20] S. Oke, M. B. Matadi, S. Xulu, Optimal control analysis of a mathematical model for breast cancer, Math. Comput. Appl., 23 (2018), 21. https://doi.org/10.3390/mca23020021 doi: 10.3390/mca23020021
    [21] M. Engelhart, D. Lebiedz, S. Sager, Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function, Math. Biosci., 229 (2011), 123–134. https://doi.org/10.1016/j.mbs.2010.11.007 doi: 10.1016/j.mbs.2010.11.007
    [22] A. Cappuccio, F. Castiglione, B. Piccoli, Determination of the optimal therapeutic protocols in cancer immunotherapy, Math. Biosci., 209 (2007), 1–13. https://doi.org/10.1016/j.mbs.2007.02.009 doi: 10.1016/j.mbs.2007.02.009
    [23] M. Gluzman, J. G. Scott, A. Vladimirsky, Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory, Proc. Biol. Sci., 287 (2020), 20192454. https://doi.org/10.1098/rspb.2019.2454 doi: 10.1098/rspb.2019.2454
    [24] J. A. Adam, N. Bellomo, A survey of models for tumor-immune system dynamics, Springer Science & Business Media, 2012.
    [25] J. C. Arciero, T. L. Jackson, D. E. Kirschner, A mathematical model of tumor-immune evasion and siRNA treatment, Discrete Cont. Dyn. Syst.-B, 4 (2004), 39–58.
    [26] M. Chaplain, A. Matzavinos, Mathematical modelling of spatio-temporal phenomena in tumour immunology, In: A. Friedman, Tutorials in mathematical biosciences III, Lecture Notes in Mathematics, Springer, 1872 (2006), 131–183. https://doi.org/10.1007/11561606_4
    [27] R. J. De Boer, P. Hogeweg, H. F. Dullens, R. A. De Weger, W. Den Otter, Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model, J. Immunol., 134 (1985), 2748–2758. https://doi.org/10.4049/jimmunol.134.4.2748 doi: 10.4049/jimmunol.134.4.2748
    [28] L. G. de Pillis, W. Gu, A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841–862. https://doi.org/10.1016/j.jtbi.2005.06.037 doi: 10.1016/j.jtbi.2005.06.037
    [29] L. de Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, et al., Mathematical model creation for cancer chemo-immunotherapy, Comput. Math. Methods Med., 10 (2009), 165–184, 2009. https://doi.org/10.1080/17486700802216301 doi: 10.1080/17486700802216301
    [30] D. Kirk, Optimal control theory: an introduction, Dover Publications, 2004.
    [31] D. Jacobson, M. Lele, A transformation technique for optimal control problems with a state variable inequality constraint, IEEE Trans. Automat. Control, 14 (1969), 457–464. https://doi.org/10.1109/TAC.1969.1099283 doi: 10.1109/TAC.1969.1099283
    [32] D. A. Redfern, C. J. Goh, Feedback control of state constrained optimal control problems, In: J. Doležal, J. Fidler, System modelling and optimization, IFIP-The International Federation for Information Processing, Springer, 1996,442–449. https://doi.org/10.1007/978-0-387-34897-1_53
    [33] L. S. Pontryagin, Mathematical theory of optimal processes, 1 Ed., CRC press, 1987. https://doi.org/10.1201/9780203749319
    [34] H. Khalil, Nonlinear systems, 3 Eds., Prentice Hall, 2002.
    [35] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, M. Diehl, CasADi: a software framework for nonlinear optimization and optimal control, Math. Prog. Comput., 11 (2019), 1–36. https://doi.org/10.1007/s12532-018-0139-4 doi: 10.1007/s12532-018-0139-4
    [36] A. Wächter, L. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25–57. https://doi.org/10.1007/s10107-004-0559-y doi: 10.1007/s10107-004-0559-y
    [37] E. V. Kumar, J. Jerome, G. Raaja, State dependent Riccati equation based nonlinear controller design for ball and beam system, Procedia Eng., 97 (2014), 1896–1905. https://doi.org/10.1016/j.proeng.2014.12.343 doi: 10.1016/j.proeng.2014.12.343
    [38] K. Hałas, E. Krysiak, T. Hałas, S. Stępień, Numerical solution of SDRE control problem–comparison of the selected methods, Found. Comput. Decis. Sci., 45 (2020), 79–95. https://doi.org/10.2478/fcds-2020-0006 doi: 10.2478/fcds-2020-0006
    [39] A. J. Abougarair, S. E. Elwefati, Identification and control of epidemic disease based neural networks and optimization technique, Int. J. Rob. Control Syst., 3 (2023), 780–803. https://doi.org/10.31763/ijrcs.v3i4.1151 doi: 10.31763/ijrcs.v3i4.1151
    [40] S. E. Elwefati, A. J. Abougarair, M. M. Bakush, Control of epidemic disease based optimization technique, 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 2021, 52–57. https://doi.org/10.1109/MI-STA52233.2021.9464453
    [41] A. J. Abougarair, A. A. Oun, S. I. Sawan, T. Abougard, H. Maghfiroh, Cancer treatment precision strategies through optimal control theory, J. Rob. Control, 5 (2024), 1261–1290.
    [42] T. Yuan, G. Guan, S. Shen, L. Zhu, Stability analysis and optimal control of epidemic-like transmission model with nonlinear inhibition mechanism and time delay in both homogeneous and heterogeneous networks, J. Math. Anal. Appl., 526 (2023), 127273. https://doi.org/10.1016/j.jmaa.2023.127273 doi: 10.1016/j.jmaa.2023.127273
    [43] L. Zhu, T. Yuan, Optimal control and parameter identification of a reaction–diffusion network propagation model, Nonlinear Dyn., 111 (2023), 21707–21733. https://doi.org/10.1007/s11071-023-08949-y doi: 10.1007/s11071-023-08949-y
    [44] Y. Ke, L. Zhu, P. Wu, L. Shi, Dynamics of a reaction-diffusion rumor propagation model with non-smooth control, Appl. Math. Comput., 435 (2022), 127478. https://doi.org/10.1016/j.amc.2022.127478 doi: 10.1016/j.amc.2022.127478
    [45] L. Zhu, X. Tao, S. Shen, Pattern dynamics in a reaction-diffusion predator–prey model with Allee effect based on network and non-network environments, Eng. Appl. Artif. Intel., 128 (2024), 107491. https://doi.org/10.1016/j.engappai.2023.107491 doi: 10.1016/j.engappai.2023.107491
    [46] B. Li, L. Zhu, Turing instability analysis of a reaction–diffusion system for rumor propagation in continuous space and complex networks, Inform. Process. Manag., 61 (2024), 103621. https://doi.org/10.1016/j.ipm.2023.103621 doi: 10.1016/j.ipm.2023.103621
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(148) PDF downloads(41) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog