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Abstract: Cancer is a complex group of diseases characterized by uncontrolled cell growth that can 

spread throughout the body, leading to serious health issues. Traditional treatments mainly include 

chemotherapy, surgery, and radiotherapy. Although combining different therapies is becoming more 

common, predicting how these treatments will interact and what side effects they may cause, such as 

gastrointestinal or neurological problems, can be challenging. This research applies optimal control 

theory (OCT) to create precise and personalized treatment plans for cancer patients. OCT helps identify 

the most effective doses of chemotherapy and immunotherapy by forecasting how various treatment 

combinations will impact tumor growth and the immune response over time. It optimizes the 

integration of chemotherapy with immunotherapy to minimize side effects while maximizing 

therapeutic benefits. The study proposes a model for managing malignant tumors using a mix of 

immunotherapy, vaccines, and chemotherapy. The aim is to develop the best treatment plan that 

reduces new tumor growth while keeping healthy cells stable. It also takes into account individual 

differences among patients, including variations in tumor biology and immune responses in both 

younger and older individuals. To do this, we compared different optimal control strategies: interior 

point optimization (IPOPT), an open-source tool for nonlinear optimization; state-dependent Riccati 

equation (SDRE), which adapts linear control methods for nonlinear situations; and approximate 

sequence Riccati equation (ASRE), a globally optimal feedback control approach for nonlinear 
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systems. The optimization criterion showed that the proposed work achieved a cost value of 52.3573 

for IPOPT, compared with 52.424 for both SDRE and ASRE. For CD8+ T cells, the proposed method 

maintained a consistent value of 1.6499 for continuous (C) and dosed (D) across all techniques. Tumor 

cell counts had a C value of 0.0007 for IPOPT, compared with 0.0006 for ISDRE and ASRE, with D 

values remaining at 0 across all methods. This comparison demonstrates the successful use of control 

theory techniques and highlights their potential for developing personalized and effective treatment 

strategies for complex cancer cases. By optimizing treatment schedules and dosages, OCT can help 

minimize the side effects of cancer therapies, thereby enhancing patients’ overall quality of life. 

Keywords: optimal control theory; interior point optimization; state-dependent Riccati equation; 

approximate sequence Riccati equation; cancer treatment 

Mathematics Subject Classification: 49N60, 49M37, 93C10 

 

1. Introduction 

Cancer is a complex disease that includes various types, such as lung, prostate, breast, and 

colorectal cancer. A key feature of cancer cells is their uncontrolled growth, which allows them to 

break through normal limits and invade nearby organs, causing the disease to spread. Cancer occurs 

when the body’s natural control systems fail. The main aim of cancer treatment is to remove all cancer 

cells from the body while minimizing damage to healthy cells [1]. Conventional treatments like 

chemotherapy frequently result in drug resistance over time. Cancer cells can evolve and create 

mechanisms to persist, diminishing the effectiveness of these therapies as treatment continues. Many 

traditional therapies indiscriminately target rapidly dividing cells, causing harm to both cancerous and 

healthy cells [2]. This can lead to considerable side effects and complications, negatively impacting 

patients’ overall quality of life. Additionally, tumors are often heterogeneous, meaning that various 

cells within the same tumor may respond differently to treatment. This variability complicates the 

effectiveness of standard therapies, as they may not effectively target all types of cancer cells present 

in a tumor [3]. Immunotherapies are becoming an essential part of comprehensive strategies for 

treating certain types of cancer. The goal of immunotherapy is to strengthen the body’s natural defenses 

against cancer by improving the immune system’s effectiveness. It is also important to recognize that 

individuals with weakened immune systems, such as those with AIDS, are at a higher risk of 

developing specific rare cancers [4]. Conventional cancer treatments often come with various side 

effects, including nerve damage, reduced bone marrow function, and other long-term health problems. 

These side effects can greatly affect patients’ quality of life and may need extra management [5]. 

Although combination therapies can improve treatment effectiveness, they also present challenges. 

Managing the potential side effects of multiple drugs and preventing increased drug resistance are 

important concerns that need to be addressed. To address these gaps, it is essential to develop 

innovative strategies that include personalized medicine, enhanced combination therapies, and a 

deeper understanding of tumor biology to improve treatment outcomes for cancer patients [6]. 

To address the shortcomings of traditional cancer treatments, it is crucial to create new strategies 

that incorporate optimal control theory (OCT). OCT facilitates the development of mathematical 

models that provide insights into tumor growth and how it reacts to various therapies. Moreover, OCT 

allows for immediate adjustments to treatment plans based on the patient’s current responses. This 
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flexibility enhances cancer management by enabling swift modifications to treatments as tumor 

behavior or patient health changes. Additionally, OCT can assist in designing combination therapies 

that target several cancer pathways simultaneously [7]. 

Nowadays, the practical derivation of optimal control strategy can be done via different numerical 

methods. This includes the multiple overshooting transcription method with the interior point 

optimization (IPOPT) numerical solver, the state-dependent Riccati equation (SDRE), the approximate 

sequence Riccati equation (ASRE). Each method can help in determining optimal dosages and 

therefore can effectively combat the disease while preserving the integrity of the patient’s immune 

system. 

The objective of the paper is to tailor cancer treatment strategies to meet the unique needs and 

responses of young and old patients, ensuring the best possible outcomes while considering their 

varying physiological conditions. This study: 

• Focuses on maximizing immune response, minimizing tumor growth, and managing side 

effects for young patients. 

• Emphasizes preserving immune function, controlling tumor progression, and enhancing 

tolerability for old patients. 

The paper is organized as follows: Section 2 will start by reviewing the previous attempts to fight 

cancer. In Section 3, the studied model is shown, along with its main parameters and terms, including 

the mathematical preliminaries of the OCT and the necessary conditions for optimality. This section 

will conclude by discussing each of the proposed techniques, along with their mathematical 

formulation in solving the OCP of the quadratic regulator type. Section 4 will show the proposed 

solutions for each case study using all proposed techniques and finish with a comparison of the results. 

Section 5 will provide a conclusion about the proposed technique and its solution and possible future 

work enhancements. 

2. Literature review 

The utilization of control engineering principles in the field of cancer treatment has gained 

considerable significance in the literature; numerous control methods have been explored and studied. 

In [7–9], authors used a similar model as in [10]; applying optimal control treatment of chemotherapy, 

they used a famous nonlinear state feedback method named SDRE. However, the proposed treatment 

protocols of [7,9] were continuous (i.e., not in the form of doses), hence they cannot be applied in 

practice. In [11], the author also used an optimal control-based therapy for the model of [10] (with an 

added delay parameter in the differential equation to account for the time needed for the immune cells 

to be stimulated by the tumor cells), in addition to the chemotherapy drug. The results were neither 

satisfying nor practical. In [12], a fractional order version of the model in [13] was used, considering 

only immunotherapy treatment adaptive sliding mode control. The researchers in [14] developed a 

framework called control theory for therapy design (CT4TD). This framework utilizes OCT and 

applies it to patient-specific models of pharmacokinetics (PK) and pharmacodynamics (PD). Its 

application to Imatinib administration in chronic myeloid leukemia showed diversified and improved 

therapeutic strategies among patients compared to standard regimes. The authors in [15] presented 

optimal control in metastatic castrate-resistant prostate cancer. By adopting an optimal control theory 

approach, the study identified better treatment schedules that can minimize or eradicate resistant cancer 

cell subpopulations. Control theory, along with machine learning methods like reinforcement learning, 
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are being applied to design cancer treatment schedules [16]. These models help in optimizing treatment 

schedules, modeling treatment responses, and incorporating patient-specific responses for optimum 

treatment options. The authors of [17] detailed how BBR’s anticancer properties are regulated by 

several molecular pathways, including those that cause apoptosis, autophagy, and cell cycle arrest and 

impede invasion and metastasis. In [18], the application of optimal control theory in oncology was 

discussed, particularly in radiation and systemic therapies for cancer. It emphasized the potential of 

integrating patient-specific mathematical models and optimal control theory to significantly improve 

patient outcomes in cancer therapy. 

The authors of [19] utilized optimal control tools and methods to examine various minimally 

parameterized models that illustrate the dynamics of cancer cell populations and different aspects of 

the tumor microenvironment under different anticancer therapies. The authors of [20] presented a 

mathematical model for breast cancer treatment, utilizing a system of ordinary differential equations 

to evaluate the effects of chemotherapy and a ketogenic diet. A key aspect of the research is the 

application of optimal control theory, which is used to determine the most effective combination of 

chemotherapy and a ketogenic diet in reducing cancerous cells, guided by Pontryagin’s maximum 

principle. The study’s theoretical results are supported by numerical simulations, underscoring the 

potential effectiveness of combining chemotherapy with a ketogenic diet in breast cancer treatment . 

In [21], four mathematical models of chemotherapy were analyzed, each based on different sets of 

ordinary differential equations and including treatments like chemotherapy, immunotherapy, and anti-

angiogenic therapy. The study found that optimally controlled therapy can significantly alter tumor 

outcomes, potentially leading to eradication, unlike with standard treatments or incorrect management. 

Reference [22] introduced optimal control theory and applied it to radiation and systemic therapy, 

supported by literature examples. It also highlighted the potential of integrating patient-specific 

mathematical models with optimal control theory to significantly improve patient outcomes. In [23], 

authors described a new approach in cancer treatment that focuses on adaptive drug therapies, which 

have shown greater efficiency compared to traditional continuous maximum tolerated dose (MTD) 

methods. This adaptive approach tailors drug dosages based on the evolving state of the tumor rather 

than following a fixed schedule. The novelty of this method lies in its systematic optimization of 

adaptive policies using an evolutionary game theory model of cancer dynamics combined with 

dynamic programming. Specifically, the study optimized two main objectives: reducing total drug 

usage and shortening the time to recovery. A summary of cancer treatment studies previously discussed is 

presented in Table 1. 

Many suggested treatment protocols involve continuous dosing, which can be hard to implement 

in real-life situations where discrete dosing is often preferred for better patient adherence and 

management of side effects. Balancing multiple goals, such as minimizing total drug use and speeding 

up recovery time, can be difficult and may require compromises between these goals. Some studies 

have employed open-loop methods, like the shooting method, which can lead to results that are not 

satisfactory and hard to apply in practice. The proposed treatment protocols may not easily translate 

to real-world situations due to the complexities of cancer progression and how patients respond to 

treatments. 

The IPOPT can manage complex constraints and objectives, allowing for the simultaneous 

optimization of various treatment factors, which is essential in cancer therapy. Meanwhile, ASRE and 

SDRE can be tailored to optimize treatment protocols for discrete dosing instead of continuous 

administration. This adjustment can enhance patient adherence and help manage side effects more 
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effectively. These methods support multi-objective optimization, enabling the simultaneous pursuit of 

different goals, such as minimizing drug usage and speeding up recovery times. By incorporating 

trade-offs into the optimization model, healthcare providers can identify a balanced approach that 

meets diverse treatment objectives without compromising patient care. Integrating ASRE, SDRE, and 

IPOPT into cancer treatment protocols can improve their practicality, refine dosing schedules, balance 

multiple treatment goals, and ultimately enhance patient outcomes by making therapies more 

responsive to individual needs. 

Table 1. Summary of cancer treatment research studies. 

Reference Technique used Description 

[7–9] SDRE, EKF 

Used the model from [10] with chemotherapy only; extended 

optimal control synthesis with EKF; results mathematically 

promising but not practical due to continuous treatment protocol. 

[11] 
Open loop method, 

variational of extremes 

Added delay parameter to model of [10]; used chemotherapy and 

immunotherapy; results were not satisfying nor practical. 

[12] 
Fractional-order model, 

adaptive sliding mode 

Used a fractional-order version of the model in [13] focusing on 

immunotherapy treatment. 

[14] 

CT4TD framework, 

dCRAB/RedCRAB 

optimization 

Developed CT4TD framework for therapy design using patient-

specific PK and PD models; focused on Imatinib in chronic 

myeloid leukemia; resulted in diversified and improved strategies. 

[15] Optimal control theory 

Used evolutionary game theory for mCRPC with abiraterone 

therapy; identified better treatment schedules for minimizing 

resistant cancer cells. 

[16] 
Control theory, machine 

learning methods 

Applied control theory and machine learning, like reinforcement 

learning, for designing cancer treatment schedules using various 

computational models. 

[17] 

Berberine: a novel 

therapeutic strategy for 

cancer 

Investigated how BBR’s anticancer properties are regulated by 

several molecular mechanisms. 

[18] Optimal control theory 

Discussed optimal control theory in radiation and systemic 

therapy; emphasized integrating patient-specific mathematical 

models for improving outcomes. 

[19] Optimal control theory 

Several mathematical models for both traditional and innovative 

cancer treatments are formulated as optimal control problems, 

aiming to develop the best treatment protocols. 

[20] 
Optimal control theory, 

Pontryagin’s principle 

Developed a model for breast cancer treatment combining 

chemotherapy and a ketogenic diet; focused on the effectiveness 

of treatment combinations. 

[21] 
Bock’s direct multiple 

shooting method 

Analyzed four chemotherapy models; emphasized the potential of 

optimally controlled therapy in altering tumor outcomes and 

the potential benefits of optimizing chemotherapy schedules. 

[22] Optimal control theory 

Outlined the use of optimal control theory in radiation and 

systemic cancer therapies; focused on personalizing therapy plans 

and integrating patient-specific models. 

[23] 
Evolutionary game theory, 

dynamic programming 

Described an adaptive drug therapy approach using evolutionary 

game theory and dynamic programming; focused on optimizing 

drug dosages and reducing total drug usage. 

[24] 

Adaptive therapy based on 

Darwinian evolution 
theory 

Reviewed adaptive therapy in cancer treatment, focusing on 

overcoming drug resistance by integrating evolutionary dynamics 
into treatment regimens. 
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3. Materials and methods 

3.1. Dynamical model 

While the precise understanding of the immune system’s involvement in eradicating cancerous 

tissue remains incomplete, we can advance our comprehension of immune modulation effects by 

developing models that depict the interaction between tumors and the immune system based on 

empirical data. Various scientific publications have explored mathematical models in this context  

(e.g., [10,14,24–26]). Notably, the model proposed by de Pillis [10] has garnered significant attention 

in the literature, being the model utilized here. The model has the following main components: 

1) Immune response: The model incorporates immune cells that can experience enhanced growth in 

response to the tumor’s presence. These immune cells have the ability to eliminate tumor cells 

through a dynamic process. The model assumes only the CD8+ and NK T cells. 

2) Competition terms: Within the model, there is competition for available resources between NK 

cells and tumor cells. Additionally, CD8+ immune cells and tumor cells engage in a predator-prey 

relationship, competing with each other. 

3) Chemotherapy and immunotherapy: The model includes the effect of a famous chemotherapy drug 

(doxorubicin) on all the modeled cells and the effect of the injected tumor-activated CD8+ T cells 

on the immune cells. 

The model of de Pillis was further enhanced in [27–29] to include the contribution of IL-2 

cytokines and other lymphocyte cells in addition to NK and CD8+  T cells; however, due to the 

complexity of these models, the model in [10] was used instead. This is a first-order, four-dimensional 

ODE model that includes four states and two control variables, classified as follows: 

States: 

𝐸(𝑡): Represent the CD8+ T cells. 

𝑇(𝑡): Represent the tumor cells. 

𝑁(𝑡): Represent the natural killer (NK) cells. 

𝑀(𝑡): Depict the level or amount of the chemotherapy drug present. 

Controls: 

𝑤(𝑡): Represent the injected tumor-activated CD8+ T cells. 

𝑣(𝑡): Represent the injected doxorubicin drug. 

The model is formulated in [10], and Table 2 gives the description of each equation. For more 

information about the origin of these parameters and how they were measured, please refer to [19,28], 

where the author did an astonishing job in explaining each parameter’s origin in detail along with the 

kind of study in which it was used (i.e., either in vitro or in vivo). Table 3 gives a description of each 

parameter of the model [28,29]. 

�̇�(𝑡) = 𝑠 +
𝜌∙𝐸(𝑡)∙𝑇(𝑡)

𝛼+𝑇(𝑡)
− 𝑐1 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡) − 𝑑1 ∙ 𝐸(𝑡) − 𝑎1 ∙ (1 − 𝑒

−𝑀(𝑡)) ∙ 𝐸(𝑡) + 𝑤(𝑡), 

�̇�(𝑡) = 𝑟1 ∙ 𝑇(𝑡) ∙ (1 − 𝑏1 ∙ 𝑇(𝑡)) − 𝑐2 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡) − 𝑐3 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡) − 𝑎2 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑇(𝑡), 

�̇�(𝑡) = 𝑟2 ∙ 𝑁(𝑡) ∙ (1 − 𝑏2 ∙ 𝑁(𝑡)) − 𝑐4 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡) − 𝑎3 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑁(𝑡), 

�̇�(𝑡) = 𝑣(𝑡)− 𝑑2 ∙ 𝑀(𝑡). 
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Table 2. Model equation descriptions [10,28]. 

Table 3. Model parameter descriptions. 

3.2. Optimal control theory 

OCT is a class of modern control theory that seeks to find the best control and state trajectories 

that either minimize or maximize a certain criterion while satisfying the physical constraints imposed 

on the system. The solutions provided by OCT can be broadly classified into open-loop or closed-loop 

Equation Term Description 

�̇� 𝑠 CD8+ T-cell normal growth rate 

𝜌 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡)/(𝛼 + 𝑇(𝑡)) CD8+T-cell stimulation by CD8+ T-cell-lysed tumor cell 

debris 

−𝑐1 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡) CD8+ T-cell death by exhaustion of tumor-killing resources 

−𝑑1 ∙ 𝐸(𝑡) CD8+ T-cell turnover 

−𝑎1 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝐸(𝑡) Death of CD8+ T-cells due to medicine toxicity 

𝑤(𝑡) Injected tumor-activated CD8+ T-cells 

�̇� 𝑟1 ∙ 𝑇(𝑡) ∙ (1 − 𝑏1 ∙ 𝑇(𝑡)) Logistic tumor growth 

−𝑐2 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡) CD8+ T-cell-induced tumor death 

−𝑐3 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡) NK-induced tumor death 

−𝑎2 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑇(𝑡) Chemotherapy-induced tumor death 

�̇� 𝑟2 ∙ 𝑁(𝑡) ∙ (1 − 𝑏2 ∙ 𝑁(𝑡)) Logistic NK growth 

−𝑐4 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡) NK death by exhaustion of tumor-killing resources 

−𝑎3 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑁(𝑡) Death of NK cells due to medicine toxicity 

�̇� −𝑑2 ∙ 𝑀(𝑡) Excretion and elimination of medicine toxicity 

𝑣(𝑡) Injected Doxorubicin drug 

Parameter Description 

𝜌 Rate of CD8+T-lysed tumor cell debris activation of CD8+ T-cells 

𝛼 Tumor size for half-maximal CD8+T-lysed debris CD8+ T activation 

𝑐1  Rate of CD8+ T-cell death due to tumor interaction 

𝑑1 Rate of activated CD8+ T-cell turnover 

𝑎1  Rate of CD8+ T-cell depletion from medicine toxicity 

𝑟1  Growth rate of tumor 

𝑏1  Inverse of carrying capacity of tumor 

𝑐3  Rate of NK-induced tumor death 

𝑎2 Rate of chemotherapy-induced tumor death 

𝑟2 Growth rate of NK cells 

𝑏2 Rate of NK cell turnover 

𝑐4  Rate of NK cell death due to tumor interaction 

𝑎3 Rate of NK depletion from medicine toxicity 

𝑑2 Rate of excretion and elimination of doxorubicin 
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solutions. An open-loop solution represents the optimal policy (control actions) that must be followed 

starting from a specific state initial condition, while the closed-loop solution only gives the optimal 

solution as a function of the current state of the system [7]. Many real-life problems can be formed as 

a nonlinear programming problem (NLP). In other real-life problems, the decision variables are not 

static but rather a continuous function of time; these are called optimal control problems. The OCP has 

the following mathematical formulation [8,29]: 

minimize
𝑢

𝐽(𝑢) = 𝜑(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓
𝑡0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: �̇�(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑤ℎ𝑒𝑟𝑒: 𝑥(𝑡0) = 𝑥0
𝑔1(𝑥(𝑡)) ≤ 0

𝑔2(𝑢(𝑡)) ≤ 0 }
 
 

 
 

𝑡 𝜖[0,∞].    (1) 

𝑥: 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 ℛ𝑁 × [𝑡0, 𝑡𝑓]; 

𝑢: 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 ℛ𝑀 × [𝑡0, 𝑡𝑓]; 

𝐽: ℛ𝐿 × [𝑡0, 𝑡𝑓] →  ℛ 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛; 

𝐿: ℛ𝐿 × [𝑡0, 𝑡𝑓] → [𝑡0, 𝑡𝑓] 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑡ℎ 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛; 

𝜑: ℛ × ℛ → ℛ 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛; 

𝑔1: ℛ
𝑁 →  ℛ𝑀1 , 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑖𝑛𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠; 

𝑔2: ℛ
𝑀 → ℛ𝑁1 , 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑛𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ; 

𝑎: ℛ𝑁 → ℛ𝑁, 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚. 

To derive the necessary conditions for optimality (NCO) [30,31], we will initially assume that 

there are no control inequality constraints. Subsequently, we can incorporate these constraints using 

Pontryagin’s minimum principle [32]. A new function, known as the Hamiltonian, which defines the 

NCO, is presented as follows: 

ℋ(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) = 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝜆𝑇(𝑡) ∙ 𝑎(𝑥(𝑡), 𝑢(𝑡), 𝑡).   (2) 

In the quadratic case, the function 𝐿 can be expressed as a sum of separate quadratic terms concerning 

both 𝑥 and 𝑢. This means that the cost associated with the control inputs and state variables can be 

disentangled, allowing for a clear distinction in how each variable affects the overall cost. 

Where 𝝀(𝑡) is a vector variable of the same size as 𝒙(𝑡) (i.e., ℛ𝑁 × [𝑡0, 𝑡𝑓]), named as the 

costate variable or Lagrange multiplier. Their main goal is to convert the dynamic constrained OCP 

into an unconstrained OCP at the expense of doubling the number of state variables. For more 

information on the derivation of the Hamiltonian equation of (2) and the NCO, please refer to [30,32]. 

From (2), the NCO can be written as: 

𝑥∗̇ (𝑡) =
𝜕ℋ(𝑥∗(𝑡),𝑢∗(𝑡),𝜆∗(𝑡),𝑡)

𝜕𝜆(𝑡)
→ 𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝜆∗̇(𝑡) = −
𝜕ℋ(𝑥∗(𝑡),𝑢∗(𝑡),𝜆∗(𝑡),𝑡)

𝜕𝜆(𝑡)
→ 𝑐𝑜𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

0 =
𝜕ℋ(𝑥∗(𝑡),𝑢∗(𝑡),𝜆∗(𝑡),𝑡)

𝜕𝑢(𝑡)
→ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛}

 
 

 
 

𝑡 𝜖[0,∞]𝑡 𝜖[0,∞].  (3) 

With the associated boundary conditions: 

𝑥∗(𝑡0) = 𝑥0

[
𝑑𝜑

𝑑𝑥
(𝑥∗(𝑡𝑓), 𝑡𝑓) − 𝜆

∗(𝑡𝑓)]
𝑇
∙ 𝛿𝑥𝑓 + [ℋ

∗|𝑡𝑓 +
𝑑𝜑

𝑑𝑥
(𝑥∗(𝑡𝑓), 𝑡𝑓)] ∙ 𝛿𝑡𝑓 = 0

}.   (4) 
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Where: 𝜑 is the final state function as defined in (1) and 𝛿𝒙𝑓, 𝛿𝑡𝑓 are the differentials of the 

terminating state 𝒙(𝑡𝑓) and final time 𝑡𝑓, respectively. If the final state 𝒙(𝑡𝑓) is not specified and 

𝑡𝑓 is specified, which is the case in many OCP problems, then the boundary condition can be written 

as: 

𝜆∗(𝑡𝑓) =
𝑑𝜑

𝑑𝑥
(𝑥∗(𝑡𝑓), 𝑡𝑓).         (5) 

Pontryagin showed that the optimal control necessary condition can be replaced with the following 

more general condition [30]: 

ℋ(𝑥∗(𝑡),𝑢∗(𝑡), 𝜆∗(𝑡), 𝑡) ≤  ℋ(𝑥∗(𝑡),𝑢(𝑡), 𝜆∗(𝑡), 𝑡).     (6) 

Equation (6) is called the Pontryagin minimum principle (PMM) and states that the Hamiltonian of the 

𝒖∗(𝑡) must be less than or equal to the Hamiltonian of any other admissible control 𝒖(𝑡) at all times [30,31]. 

Hereafter, the OCP is assumed to be of the quadratic regulation problem (QRP) form, where the 

objective is to drive the states 𝒙  from any initial condition 𝒙(0) = 𝒙𝟎  to the equilibrium state 

𝑥(𝑡𝑓) = 0 as 𝑡𝑓 → ∞. 

It should be noted that if the desired equilibrium point of the system was not 𝒙 = 𝟎 but rather 

𝒙 = 𝒙𝒇, then we can transfer this equilibrium point to the origin by change of variables [33]. The OCP 

problem of (1) is rewritten in the new QRP form with some changes in the constraints. 

minimize
𝑢

𝐽(𝑢) =
1

2
∙ ∫ [𝑥(𝑡)𝑇 ∙ 𝑄(𝑡) ∙ 𝑥(𝑡) + 𝑢(𝑡)𝑇 ∙ 𝑅(𝑡) ∙ 𝑢(𝑡)] 𝑑𝑡

∞

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: �̇�(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡))

𝑢𝑙 ≤ 𝑢(𝑡) ≤ 𝑢𝑢

}𝑡 𝜖[0,∞].  (7) 

The NCO for the OCP of (7) can be written using the conditions in (3) and the PMM equating of (6) 

as: 

�̇�∗(𝑡) = 𝑎(𝑥∗(𝑡),𝑢∗(𝑡)) → 𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

�̇�∗(𝑡) = −𝑄(𝑡) ∙ 𝑥∗(𝑡)− [
𝜕𝑎(𝑥∗(𝑡),𝑢∗(𝑡))

𝜕𝑥(𝑡)
]
𝑇

∙ 𝜆∗(𝑡) → 𝑐𝑜𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑢∗(𝑡) = −𝑅(𝑡)−1 ∙ [
𝜕𝑎(𝑥(𝑡),𝑢(𝑡))

𝜕𝑢(𝑡)
]
𝑇

∙ 𝜆∗(𝑡) → 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛}
 
 

 
 

𝑡 𝜖[0,∞]. (8) 

Where the boundary conditions can be written from (5) as: 

𝑥∗(0) = 𝑥0
𝜆∗(∞) = 0

}.          (9) 

To solve OCPs numerically, they must first be formulated in discrete form. The OCP of (8) can be 

discretized by using a proper sampling time ℎ as: 

minimize
𝑢

𝐽(𝑢) =
1

2
∙ ∑ 𝑥(𝑘)𝑇 ∙ 𝑄(𝑘) ∙ 𝑥(𝑘) + 𝑢(𝑘)𝑇 ∙ 𝑅(𝑘) ∙ 𝑢(𝑘)∞

𝑘=0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘),𝑢(𝑘))

𝑢𝑙 ≤ 𝑢(𝑘) ≤ 𝑢𝑢

} 𝑘 𝜖 ℤ.   (10) 

Where 𝒙(𝑡) is replaced with 𝒙(𝑘) for the 𝑡 𝜖 [𝑘 ∙ ℎ, (𝑘 + 1) ∙ ℎ], the same is true for 𝑸(𝑘), 𝑹(𝑘), 
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𝒖(𝑘); however, the dynamic constraints are discretized using any of the famous methods of forward 

Euler, e.g., trapezoidal or 4𝑡ℎ  order Runge-Kutta. To write the necessary conditions for optimality, 

we first need to write the Hamiltonian: 

ℋ(𝑥(𝑘), 𝑢(𝑘), 𝜆(𝑘)) 

=
1

2
∙ [𝑥(𝑘)𝑇 ∙ 𝑄(𝑘) ∙ 𝑥(𝑘) + 𝑢(𝑘)𝑇 ∙ 𝑅(𝑘) ∙ 𝑢(𝑘)] + 𝜆𝑇(𝑘 + 1) ∙ 𝑓(𝑥(𝑘), 𝑢(𝑘)). (11) 

Then, applying the necessary conditions of (3) on Eq (11) results in 

𝑥∗(𝑘 + 1) = 𝑓(𝑥∗(𝑘),𝑢∗(𝑘)) → 𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝜆∗(𝑘) = 𝑄(𝑘) ∙ 𝑥∗(𝑘) + [
𝜕𝑓(𝑥(𝑘),𝑢(𝑘))

𝜕𝑥(𝑘)
]
𝑇

∙ 𝜆∗(𝑘 + 1) → 𝑐𝑜𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑢∗(𝑘) = −𝑅(𝑘)−1 ∙ [
𝜕𝑓(𝑥(𝑘),𝑢(𝑘))

𝜕𝑢(𝑘)
]
𝑇

∙ 𝜆∗(𝑘 + 1) → 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛}
 
 

 
 

𝑘 𝜖 ℤ∗. (12) 

3.2.1. Direct multiple shooting transcription method 

This technique converts a continuous-time OCP into a discrete-time nonlinear programming 

(NLP) problem, a process known as transcription. The transcription described in Eq (10) is called 

direct single shooting because it only optimizes the controls 𝑢(0), 𝑢(1), …𝑢(𝑘) . However, this 

method does not ensure that the dynamic constraints are met (i.e., 𝑥(𝑘 + 1) ≠ 𝑓(𝑥(𝑘), 𝑢(𝑘)) ). An 

alternative approach, called direct multiple shooting, treats the state vector 𝑥(𝑘) as a decision variable 

in the optimization problem. Since this problem will be solved using a computer, 𝑡𝑓 should be set to 

a large finite number instead of infinity. Additionally, state inequality constraints can be included 

directly in the multiple shooting transcription. Note that 𝒖(𝑖) and 𝒖𝑖  will be used interchangeably. 

Below is the transcription of the OCP of (6) using the direct multiple shooting method: 

minimize
𝑢0, 𝑥0…𝑢𝐾−1, 𝑥𝐾−1

𝐽(𝑢) =
1

2
∙ ∑ 𝑥𝑘

𝑇 ∙ 𝑄𝑘 ∙ 𝑥𝑘 + 𝑢𝑘
𝑇 ∙ 𝑅𝑘 ∙ 𝑢𝑘

𝐾−1
𝑘=0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥(𝑘 + 1) − 𝑓(𝑥(𝑘), 𝑢(𝑘)) = 0

𝑢𝑙 ≤ 𝑢(𝑘) ≤ 𝑢𝑢
𝑔1(𝑥(𝑘)) ≤ 0 }

 
 

 
 

𝑘 𝜖 ℤ∗.  (13) 

Note that 𝐾 represents the number of samples for the whole-time interval, which can be related 

to the continuous time interval using the relation 𝐾 = ⌈
𝑡𝑓−𝑡0

ℎ
⌉. 

Where ℎ is the sampling period of the discretization process. Before getting into the details of 

the benchmark solver, a brief introduction to the famous mathematical framework computer algebra 

systems for algorithmic differentiation (CasADi) is presented. CasADi was mainly developed to solve 

OCPs, by first transforming them into an equivalent NLP problem using any transcription method [34]. 

Although CasADi is not used to solve NLP problems, it can be equipped with solvers that can tackle 

the NLP problem, which was originally formulated using CasADi without additional specific 

configuration for that solver. For additional information on CasADi, please refer to the original 

documentation [35]. One famous NLP solver built-in with CasADi solvers is the IPOPT [36]. 

The IPOPT method begins by transforming the constrained optimization problem into an 

unconstrained one by utilizing a barrier function. The complete optimization problem incorporating a 
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barrier function can be expressed as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) + 𝜇𝑔(𝑥).        (14) 

The new task now is to find the minimum point 𝒙 that minimizes (14), where 𝜇 is a manipulated 

parameter that determines the effect of the constraint 𝑔(𝒙) on the optimization criterion 𝑓(𝒙). Ideally, 

𝜇 should approach zero; however, the IPOPT problem solves the NLP problem of (14) iteratively. The 

algorithm finds the approximate optimal solution of each iteration by solving the corresponding first-

order necessary conditions of the NLP problem. These necessary conditions are often called Karush-

Kuhn-Tucker (KKT) conditions. For more details on this algorithm see [35]. 

3.2.2. State-dependent coefficient method 

The state-dependent coefficient (SDC) method utilizes linear quadratic regulator (LQR) theory to 

develop optimal control strategies for nonlinear systems. The integration of LQR theory with the state-

dependent coefficient method provides a robust framework for optimizing control in nonlinear systems, 

enhancing performance and adaptability as the following farmwork: 

1) In the SDC approach, the system dynamics are represented with coefficients that change according 

to the current state, allowing for a more precise depiction of complex, nonlinear behaviors. 

2) The SDC method parallels the traditional LQR formulation by deriving a state-dependent Riccati 

equation. This equation includes state-dependent coefficients, facilitating the application of LQR 

techniques in nonlinear scenarios. 

3) Solving the SDRE enables the derivation of an optimal feedback control policy that minimizes a 

quadratic cost function, leading to control laws that adjust dynamically in response to changes in 

the system state. 

4) The solution process frequently employs iterative methods to improve the approximations of the 

Riccati equation, ensuring both computational efficiency and accuracy. 

In the context of Eq (7), the system dynamics representation is as follows: 

ẋ(t) = a(x(t),u(t)).        (15) 

Applying the SDC parameterization yields the following system in which both the system and input 

matrices are explicit functions of current state variables (where the time dependences were 

dropped for convenience): 

ẋ = A(x) ∙ x + B(x) ∙ u.        (16) 

The dynamic system representation of Eq (16) is often called a nonlinear state-dependent affine control 

system. The SDC representation of Eq (16) is similar to the following linear system representation in 

state space [30]: 

�̇� = 𝐴 ∙ 𝑥 + 𝐵 ∙ 𝑢.         (17) 

After defining some terminologies, and before we start with the algorithm, the LQR for LTI systems 

with its solution is presented shortly. The LQR solution relays on the fact that the optimal value of the 

constate variable vector 𝝀 is represented as: 

𝜆∗(𝑡) = 𝑃 ∙ 𝑥∗(𝑡).         (18) 
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Using the necessary conditions for optimality and Eq (18), it is possible to write: 

𝑃 ∙ 𝐴 + 𝐴𝑇 ∙ 𝑃 − 𝑃 ∙ 𝐵 ∙ 𝑅−1 ∙ 𝐵𝑇 ∙ 𝑃 + 𝑄 = 0.     (19) 

Where Eq (19) is famously known as the algebraic Riccati equation (ARE), where the only unknown 

of this equation is the 𝑷 matrix, and by solving this equation we can write the optimal control 𝒖∗(𝑡) as [30]: 

𝑢∗(𝑡) = −𝑅−1 ∙ 𝐵𝑇 ∙ 𝜆∗(𝑡) = −𝑅−1 ∙ 𝐵𝑇 ∙ 𝑃 ∙ 𝑥∗(𝑡) = −𝐾 ∙ 𝑥∗(𝑡).  (20) 

The SDRE [37] technique fundamentally relies on the concept of extended linearization. Extended 

linearization is the action of generalizing the linear systems–based technique to be applied to the class 

of nonlinear systems. The SDRE technique redefines the system of (7) as: 

minimize
𝑢

𝐽(𝑢) =
1

2
∙ ∫ [𝑥𝑇 ∙ 𝑄(𝑥) ∙ 𝑥 + 𝑢𝑇 ∙ 𝑅(𝑥) ∙ 𝑢] 𝑑𝑡

∞

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: �̇� = 𝐴(𝑥) ∙ 𝑥 + 𝐵(𝑥) ∙ 𝑢
𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢

} 𝑡 𝜖[0,∞].   (21) 

Then, by the extended linearization concept, we can write the following set of equations, which were 

mimicked from the linear case. The costate-state matrix relation: 

𝜆∗ = 𝑃(𝑥∗) ∙ 𝑥∗         (22) 

and  

𝑃(𝑥∗) ∙ 𝐴(𝑥∗)+ 𝐴(𝑥∗)𝑇 ∙ 𝑃(𝑥∗) − 𝑃(𝑥∗) ∙ 𝐵(𝑥∗) ∙ 𝑅(𝑥∗)−1 ∙ 𝐵(𝑥∗)𝑇 ∙ 𝑃(𝑥∗) + 𝑄(𝑥∗) = 0. (23) 

If the matrix 𝑃(𝑥∗) was obtained from Eq (23), then the control 𝑢∗(𝑡) can be written in terms of the 

states 𝑥∗(𝑡) as: 

𝑢∗ = −𝑅(𝑥∗)−1 ∙ 𝐵(𝑥∗)𝑇 ∙ 𝜆∗ = −𝑅(𝑥∗)−1 ∙ 𝐵(𝑥∗)𝑇 ∙ 𝑃(𝑥∗) ∙ 𝑥∗ = −𝐾(𝑥∗). 𝑥∗.  (24) 

Note that since the derivation of the SDRE method rises from the extended linearization concept, 

the optimal control of (24) is not the optimal solution for the OCP of (21) but rather a suboptimal 

solution. However, the SDRE technique’s suboptimal solution was proven to be very near to the 

optimal solution in many nonlinear systems [8,38]. In order for the SDRE method to be successfully 

applied, the (𝐴(𝑥), 𝐵(𝑥)) must be completely controllable in the state admissible region. Note that it 

was assumed that the 𝑷(𝒙∗) can be solved in Eq (23). However, this is generally not always possible, 

since it requires very complex symbolic solvers. In practice and with the aid of a computer, the SDRE 

equation of (23) is often solved numerically using very fast and accurate algorithms such as Schur and 

Kleinman-Newton [38]. The numerical procedure of the SDRE starts by discretizing the system of (21) 

as: 

minimize
𝑢

𝐽(𝑢) =
1

2
∙ ∑ 𝑥(𝑘)𝑇 ∙ 𝑄(𝑘) ∙ 𝑥(𝑘) + 𝑢(𝑘)𝑇 ∙ 𝑅(𝑘) ∙ 𝑢(𝑘)∞

𝑘=0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥(𝑘 + 1) = 𝑥(𝑘) + ℎ ∙ [𝐴(𝑥(𝑘)) ∙ 𝑥(𝑘) + 𝐵(𝑥(𝑘)) ∙ 𝑢(𝑘)]
} 𝑘 𝜖 ℤ∗. (25) 

(Note that the forward Euler technique was used.) Note that at each time step 𝑘, the system in (8) 

represents a linear time invariant system, for example at 𝑘 = 0: 

𝑥(1) = 𝑥0 + ℎ ∙ [𝐴(𝑥0) ∙ 𝑥0 + 𝐵(𝑥0) ∙ 𝑢(0)].     (26) 
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The SDRE of Eq (26) is now turned into an ARE, which can be efficiently solved for 𝑃(𝑥0), which is 

then used to compute the optimal control 𝒖∗(0) as: 

𝑢∗(0) = −𝑅−1 ∙ 𝐵(𝑥0)
𝑇 ∙ 𝑃(𝑥0) ∙ 𝑥0.       (27) 

Equation (27) is then substituted into Eq (26) to obtain 𝒙(1), and the algorithm continues, where at 

each time step 𝑘, an ARE is solved, and the resultant 𝑃(𝑥(𝑘)) matrix is used to compute the 𝑢∗(𝑘) 
using (27). Hence, the SDRE algorithm can be represented with the following two equations: 

The discrete SDRE equation: 

𝑃(𝑥(𝑘)) ∙ 𝐴(𝑥(𝑘)) + 𝐴(𝑥(𝑘))
𝑇
∙ 𝑃(𝑥(𝑘)) 

−𝑃(𝑥(𝑘)) ∙ 𝐵(𝑥(𝑘)) ∙ 𝑅(𝑥(𝑘))
−1
∙ 𝐵(𝑥(𝑘))𝑇 ∙ 𝑃(𝑥(𝑘))𝑄(𝑥(𝑘)) = 0.  (28) 

The optimal control equation: 

𝑢∗(𝑘) = −𝑅−1 ∙ 𝐵(𝑥(𝑘))𝑇 ∙ 𝑃(𝑥(𝑘)) ∙ 𝑥(𝑘).     (29) 

Since the control signal 𝒖∗(𝒌)  is computed independently at each time step 𝑘 , this allows the 

possibility to account for the control inequality constraints of: 

𝑢𝑙 ≤ 𝑢(𝑘) ≤ 𝑢𝑢;  𝑘 𝜖 ℤ
∗.        (30) 

The control signal 𝒖∗(𝑘) is first computed using Eq (29), then we apply the PMM principle of (7) as 

follows: 

If the optimal control at time step 𝑘 was computed to be equal to 𝒖𝑴 (where 𝒖𝑴 > 𝒖𝒖  in at 

least one component of 𝒖 ), then by the PMM [30] principle, the Hamiltonian cannot assume a 

minimum value than the one achieved by setting 𝒖∗(𝑘) = 𝒖𝒖. The same idea follows for the case of 

𝒖∗(𝑘) = 𝒖𝒎 < 𝒖𝒍 , then 𝒖∗(𝑘)  is set to 𝒖𝒍 , we can formally write the refined optimal control 

equation of (29) in the following form: 

𝒖∗(𝒌) =

{
 
 

 
 𝒖𝒍 𝒊𝒇 𝒖𝒍 > −𝑹−𝟏 ∙ 𝑩(𝒙(𝒌))𝑻 ∙ 𝑷(𝒙(𝒌)) ∙ 𝒙(𝒌)

                   

−𝑹−𝟏 ∙ 𝑩(𝒙(𝒌))
𝑻
∙ 𝑷(𝒙(𝒌)) ∙ 𝒙(𝒌)

                   
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝒖𝒖 𝒊𝒇 𝒖𝒖 < −𝑹
−𝟏 ∙ 𝑩(𝒙(𝒌))𝑻 ∙ 𝑷(𝒙(𝒌)) ∙ 𝒙(𝒌)

. (31) 

Equation (31) simply means that the control single is first computed using Eq (29) and then fed to a 

nonlinear saturation system of lower and upper limits of 𝒖𝒍, 𝒖𝒖 . 

3.2.3. Approximate sequence Riccati equation 

Although the SDRE offers a suboptimal robust and stable solution for the OCP, the SDC 

parametrization of (17) assumes that the system can be represented in the following nonlinear state-

dependent affine form: �̇� = 𝐴(𝑥) ∙ 𝑥 + 𝐵(𝑥) ∙ 𝑢. 

Nevertheless, the SDRE technique is not applicable to general nonlinear nonaffine optimal control 

problems (OCPs) with nonquadratic performance indices. The proposed algorithm utilizes the globally 

converged solution obtained from a series of approximating Riccati equations (ASRE) to explicitly 
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design time-varying feedback controllers for the subsequent general nonlinear nonaffine state equation, 

as described in [37]. 

�̇� = 𝐴(𝑥) ∙ 𝑥 + 𝐵(𝑥, 𝑢) ∙ 𝑢.       (32) 

Before proceeding with the ASRE algorithm, the LQR theory for linear time-variant (LTV) systems is 

presented. The performance criterion and the system dynamics are represented as follows:  

𝐽 =
1

2
∙ ∫ [𝑥𝑇(𝑡) ∙ 𝑄(𝑡) ∙ 𝑥(𝑡) + 𝑢𝑇(𝑡) ∙ 𝑅(𝑡) ∙ 𝑢(𝑡)]𝑑𝑡

∞

0
.    (33) 

�̇�(𝑡) = 𝐴(𝑡) ∙ 𝑥(𝑡) + 𝐵(𝑡) ∙ 𝑢(𝑡).       (34) 

The SBVP, which follows from the necessary conditions of state and costate equations, can be written 

as: 

[
�̇�(𝑡)

�̇�(𝑡)
] = [

𝐴(𝑡) −𝑆(𝑡)

−𝑄(𝑡) −𝐴(𝑡)
] ∙ [

𝑥(𝑡)

𝜆(𝑡)
].      (35) 

The matrix 𝑺(𝑡) is defined as 𝑆(𝑡) = 𝐵(𝑡) ∙ 𝑅−1(𝑡) ∙ 𝐵𝑇(𝑡). 

With the same boundary conditions 𝒙∗(0) = 𝒙0  of and 𝝀∗(∞) = 0 . Following the same 

assumption of state-costate dependency, i.e., 𝝀∗(𝑡) = 𝑷(𝑡) ∙ 𝒙∗(𝑡) , the time-dependent Riccati 

equation is formed: 

𝑃(𝑡) ∙ 𝐴(𝑡) + 𝐴(𝑡)𝑇 ∙ 𝑃(𝑡) − 𝑃(𝑡) ∙ 𝑆(𝑡) ∙ 𝑃(𝑡) + 𝑄(𝑡) = 0.   (36) 

Solving for the time varying matrix 𝑷(𝑡) results in the optimal control equation: 

𝑢∗(𝑡) = −𝑅−1(𝑡) ∙ 𝐵(𝑡)𝑇 ∙ 𝑃(𝑡) ∙ 𝑥∗(𝑡).     (37) 

Although the ASRE can be applied to general nonlinear nonaffine systems with nonquadratic cost 

functions, the methodology derived here applies only to OCP with quadratic cost functions. The 

nonlinear nonquadratic optimization problem, which involves minimizing the quadratic cost of Eq (8) 

while adhering to the dynamics specified in Eq (32), can be converted into an equivalent linear-

quadratic, time-varying problem by introducing the subsequent LTV sequence as described in Eq (38). 

It is important to note that the time dependency (t) has been omitted for the sake of convenience. 

�̇� [0] = 𝐴(𝑥0) ∙ 𝑥
[0]+ 𝐵(𝑥0, 0) ∙ 𝑢

[0] 𝑖 = 0

�̇� [𝑖] = 𝐴(𝑥 [𝑖−1]) ∙ 𝑥 [𝑖]+ 𝐵(𝑥[𝑖−1], 𝑢[𝑖−1]) ∙ 𝑢[𝑖] 𝑖 ≥ 1

𝑥 [𝑖](𝑡0) = 𝑥0 𝑖 ≥ 0

}.     (38) 

And the corresponding performance criterion at each iteration 𝑖 is: 

𝐽[0] =
1

2
∙ ∫ [𝑥[0]𝑇 ∙ 𝑄(𝑥0) ∙ 𝑥

[0] + 𝑢[0]𝑇 ∙ 𝑅(𝑥0) ∙ 𝑢
[0]]𝑑𝑡

∞

0
𝑖 = 0

𝐽[𝑖] =
1

2
∙ ∫ [𝑥[𝑖]𝑇 ∙ 𝑄(𝑥 [𝑖−1]) ∙ 𝑥 [𝑖]+ 𝑢[𝑖]𝑇 ∙ 𝑅(𝑥 [𝑖−1]) ∙ 𝑢[𝑖]]𝑑𝑡

∞

0
𝑖 ≥ 1

}.  (39) 

Where the superscript [𝑖] represent the current iteration (starting from 0). The first approximation 

(i.e., the 𝑖 = 0 case in (38)) does not truly represent an LTV system, since the matrices 𝑨,𝑩 are 

constant over the entire time 𝑡 and are only a function of the initial state 𝒙0. However, for all the 

consecutive iterations (i.e., the 𝑖 ≥ 1 case in (38)), the system is represented by an LTV system whose 
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matrices 𝑨,𝑩  are evaluated from the previous iteration, i.e., 𝑖 − 1 . The feedback optimal policy 

(control) for each iteration 𝑖 for the corresponding system dynamics in (38) and the performance 

criterion (39) takes the form: 

𝑢[𝑖] = −𝑅−1(𝑥 [𝑖−1]) ∙ 𝐵𝑇(𝑥[𝑖−1], 𝑢[𝑖−1]) ∙ 𝑃[𝑖] ∙ 𝑥 [𝑖] = −𝑘[𝑖] ∙ 𝑥 [𝑖].   (40) 

Where 𝑷[𝑖]  is the 𝑁 ×𝑁  symmetric matrix and is calculated continuously (if possible, using 

advanced symbolic solver tool) from the following Riccati equation: 

𝑃[𝑖] ∙ 𝐴(𝑥 [𝑖−1]) + 𝐴𝑇(𝑥 [𝑖−1]) ∙ 𝑃[𝑖]− 𝑃[𝑖] ∙ 𝑆(𝑥 [𝑖−1], 𝑢[𝑖−1]) ∙ 𝑃[𝑖]+𝑄(𝑥 [𝑖−1]) = 0.  (41) 

Or numerically using appropriate sampling interval ℎ at each time step 𝑘 using the following ARE, 

which is often used in practice: 

𝑃[𝑖](𝑘) ∙ 𝐴 (𝑥 [𝑖−1](𝑘)) + 𝐴𝑇 (𝑥 [𝑖−1](𝑘)) ∙ 𝑃[𝑖](𝑘) 

−𝑃[𝑖](𝑘) ∙ 𝑆(𝑥 [𝑖−1](𝑘), 𝑢[𝑖−1](𝑘)) ∙ 𝑃[𝑖](𝑘) + 𝑄(𝑥 [𝑖−1](𝑘)) = 0.   (42) 

The author in [38] does an excellent job of describing the global convergence of the ASRE technique, 

which states that as the iteration index 𝑖  increases, the system converges to the optimal solution, 

where the convergence criterion is lim
𝑖→∞

‖𝑥[𝑖](𝑡) − 𝑥 [𝑖−1](𝑡)‖ = 0. 

3.3. Model manipulation 

Before solving the OCP of the cancer therapy system, we first need to manipulate the model, so 

that the OCP can be formulated as a QRP and thus the derived techniques can be applied. The first step 

is to rewrite the model using the states 𝑥(𝑡) and controls 𝑢(𝑡) notation; the resultant reformulation 

is shown as [25]: 

�̇�1(𝑡) = 𝑠 +
𝜌∙𝑥1(𝑡)∙𝑥2(𝑡)

𝛼+𝑥2(𝑡)
− 𝑐1 ∙ 𝑥1(𝑡) ∙ 𝑥2(𝑡) − 𝑑1 ∙ 𝑥1(𝑡) − 𝑎1 ∙ (1 − 𝑒

−𝑥4(𝑡)) ∙ 𝑥1(𝑡) + 𝑢1(𝑡). 

�̇�2(𝑡) = 𝑟1 ∙ 𝑥2(𝑡) ∙ (1 − 𝑏1 ∙ 𝑥2(𝑡)) − 𝑐2 ∙ 𝑥1(𝑡) ∙ 𝑥2(𝑡) − 𝑐3 ∙ 𝑥2(𝑡) ∙ 𝑥3(𝑡) − 𝑎2 ∙ (1 − 𝑒
−𝑥4(𝑡)) ∙ 𝑥2(𝑡). 

�̇�3(𝑡)𝑟2 ∙ 𝑥3(𝑡) ∙ (1 − 𝑏2 ∙ 𝑥3(𝑡))− 𝑐4 ∙ 𝑥2(𝑡) ∙ 𝑥3(𝑡) − 𝑎3 ∙ (1 − 𝑒
−𝑥4(𝑡)) ∙ 𝑥3(𝑡). 

�̇�4(𝑡) = 𝑢2(𝑡) − 𝑑2 ∙ 𝑥4(𝑡). 

Note that the mapping between the original states and the new states as well as the control signals 

are as follows: 

𝑥1(𝑡) = 𝐸(𝑡),  𝑥2(𝑡) = 𝑇(𝑡),  𝑥3(𝑡) = 𝑁(𝑡),  𝑥4(𝑡) = 𝑀(𝑡), 𝑢1(𝑡) = 𝑤(𝑡) 𝑎𝑛𝑑 𝑢2(𝑡) = 𝑣(𝑡). 

The next step is to find the equilibrium points of the system by setting all the dynamic equations 

to zero and solving for the value of the states (note that at equilibrium points, the control signals are 
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also set to zero). Setting control signals to zero when determining equilibrium points in a cancer model 

enables researchers to examine the system’s inherent dynamics free from external factors. This process 

is essential for recognizing stable states and gaining insights into how various elements affect tumor 

growth or reduction in a controlled setting. The solutions can be classified into the following 

categories [25]: 

Tumor-free: The equilibrium point has the solution form: (
𝑠

𝑑1
, 0,

1

𝑏2
, 0). 

Dead: If at any equilibrium point, the normal cell population is zero, the point is considered dead. The 

solution form for the equilibrium point is (
𝑠

𝑑1
, 0,0,0). 

Next, in order to formulate the cancer therapy system as a QRP, we first need to shift the 

equilibrium point to the origin, and this can be easily done by defining the following new set of 

variables: 

𝜃(𝑡) =

[
 
 
 
𝜃1(𝑡)

𝜃2(𝑡)

𝜃3(𝑡)

𝜃4(𝑡)]
 
 
 
=

[
 
 
 
 
𝑥1(𝑡) − 𝑥𝑓,1
𝑥2(𝑡) − 𝑥𝑓,2
𝑥3(𝑡) − 𝑥𝑓,3
𝑥4(𝑡) − 𝑥𝑓,4]

 
 
 
 

. 

Where 𝒙𝒇,𝒊 is the 𝑖𝑡ℎ component of 𝒙𝑓, which is given by: 

𝑥𝑓 = [

𝑠/𝑑1
0

1/𝑏2
0

]. 

Note that 𝜃𝑖 is just a dummy variable, and for convenience, it will be replaced by 𝑥𝑖 for 𝑖 =

1…4. Hence, the resultant shifted system dynamic equations are: 

𝑥1̇(𝑡) = −𝑐1 ∙ (𝑥1(𝑡) +
𝑠

𝑑1
) ∙ 𝑥2(𝑡) +

𝜌∙(𝑥1(𝑡)+
𝑠
𝑑1
)∙𝑥2(𝑡)

𝛼+𝑥2(𝑡)
− 𝑑1 ∙ 𝑥1(𝑡) − 𝑎1 ∙ (𝑥1(𝑡) +

𝑠

𝑑1
) . (1 − 𝑒−𝑥4(𝑡)) + 𝑢1(𝑡). 

𝑥2̇(𝑡) = 𝑟1 ∙ 𝑥2(𝑡) ∙ (1 − 𝑏1 ∙ 𝑥2(𝑡)) − 𝑐2 ∙ (𝑥1(𝑡) +
𝑠

𝑑1
) ∙ 𝑥2(𝑡) − 𝑎2 ∙ (1 − 𝑒

−𝑥4(𝑡)) ∙ 𝑥2(𝑡) − 𝑐3 ∙ 𝑥2(𝑡) ∙ (𝑥3(𝑡) +
1

𝑏2
). 

𝑥3̇(𝑡) = −𝑟2 ∙ 𝑥3(𝑡) ∙ (1 + 𝑏2 ∙ 𝑥3(𝑡)) − 𝑎3 ∙ (1 − 𝑒
−𝑥4(𝑡)) ∙ (𝑥3(𝑡) +

1

𝑏2
) − 𝑐4 ∙ 𝑥2(𝑡) ∙ (𝑥3(𝑡) +

1

𝑏2
). 

𝑥4̇(𝑡) = 𝑢2(𝑡) − 𝑑2 ∙ 𝑥4(𝑡). 

We notice that it can be written in the nonlinear affine system format, where the matrices 

𝐴(𝑥), 𝐵(𝑥) are formulated as follows: 

𝐴(𝑥) = [

𝑎11
𝑎21
0
0

𝑎12
𝑎22
𝑎32
0

𝑎13
𝑎23
𝑎33
0

𝑎14
𝑎24
𝑎34
𝑎44

] , 𝐵(𝑥) = [

1
0
0
0

0
0
0
1

]. 

Where: 
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𝑎11 = −𝑑1, 𝑎12 =
𝜌∙(𝑥1(𝑡)+

𝑠
𝑑1
)

𝛼+𝑥2(𝑡)
− 𝑐1 ∙ (𝑥1(𝑡) +

𝑠

𝑑1
), 𝑎13 = −

𝑎1∙(1−𝑒
−𝑥4(𝑡))∙(𝑥1(𝑡)+

𝑠
𝑑1
)

𝑥4
, 𝑎14 = −

𝑎1∙(1−𝑒
−𝑥4(𝑡))∙(𝑥1(𝑡)+

𝑠
𝑑1
)

𝑥4
, 

𝑎21 = −𝑐2 ∙ 𝑥2(𝑡), 𝑎22 = 𝑟1 ∙ (1 − 𝑏1 ∙ 𝑥2(𝑡)) −
𝑐2∙𝑠

𝑑1
−

𝑐3

𝑏2
, 𝑎23 = −𝑐3 ∙ 𝑥2(𝑡), 𝑎24 = −

𝑎2∙(1−𝑒
−𝑥4(𝑡))∙𝑥2(𝑡)

𝑥4
, 

𝑎32 = −𝑐4 ∙ (𝑥3(𝑡) +
1

𝑏2
), 𝑎33 = −𝑟2 ∙ (1 + 𝑏2 ∙ 𝑥3(𝑡)), 𝑎34 = −

𝑎3∙(1−𝑒
−𝑥4(𝑡))∙(𝑥3(𝑡)+

1
𝑏2
)

𝑥4
, 𝑎44 = −𝑑2. 

In order to check whether the choice of 𝑨(𝒙), 𝑩(𝒙)  pair is controllable or not, we need to 

compute the controllability matrix 𝑴𝒄(𝒙) . However, computing this controllability matrix is 

computationally difficult. Nevertheless, it can be shown that if the states system plus the tumor-free 

equilibrium point is strictly positive at any time instance, then by using the controls 𝑢1, 𝑢2, the system 

can always be brought to the tumor-free state [16,21]. 

3.4. Problem formulation 

We can proceed by defining the system optimization criterion and the inequality constraints. Since 

the cancer therapy system will be formulated as a QRP, the optimization criterion will take the 

following form: 

𝐽(𝑢) =
1

2
∙ ∫ [𝑥(𝑡)𝑇𝑄(𝑡)𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑡)𝑢(𝑡)]𝑑𝑡

𝑡𝑓
0

. 

Note that for implementation purposes, the upper limit of the integration is not set to infinity but rather 

a finite large number 𝑡𝑓. 

The state inequality constraints are of two types: 

1) Non-negativity. 

2) Normal cells 𝑥3(𝑡) stay above a lower bound of 𝑁𝑚 of the total carrying capacity [10]. 

The mathematical representation of these constraints can be expressed as follows: 

𝑥(𝑡) + 𝑥𝑓 ≥ 0

𝑥3(𝑡) + 𝑥𝑓,3 ≥ 𝑁𝑚 → 𝑔(𝑥3(𝑡)) = 𝑁𝑚 − 𝑥3(𝑡) − 𝑥𝑓,3 ≤ 0
} 𝑡 𝜖[0,∞]. 

The control inequality constraints represent the upper and lower limits of the drug doses. The upper 

and lower limits are given by 1 and 0, respectively. As in [8], these constraints can be written in 

mathematical terms as 0 ≤ 𝑢(𝑡) ≤ 1, 𝑡𝜖[0,∞]. 
The 𝑹(𝑡)  matrix is simply chosen to be a constant diagonal matrix of the form: 𝑅(𝑡) =

[
𝑅1 0
0 𝑅2

]. 

The 𝑸(𝑡) matrix is also chosen to be a constant diagonal matrix; the resultant 𝑸(𝑡) matrix is: 

𝑄(𝑡) = [

𝑄1
0
0
0

0
𝑄2
0
0

0
0

𝑄𝑁(𝑡)
0

0
0
0
𝑄4

]. 

Where 𝑄𝑁(𝑡) is given by: 
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𝑄𝑁(𝑡) = 𝑄3 + 𝜇 ∙ {

0 𝑔(𝑥3(𝑡)) ≤ −𝛿

(𝑔(𝑥3(𝑡))+𝛿)
2

4∙𝛿
−𝛿 < 𝑔(𝑥3(𝑡)) < 𝛿

𝑔(𝑥3(𝑡)) 𝑔(𝑥3(𝑡)) ≥ 𝛿

. 

Since the selected Q(t) cannot be expressed as a continuous mathematical function, the QRP must be 

addressed in discrete time. Various numerical integration methods can be employed to convert the 

continuous-time OCP, including techniques like Runge-Kutta, Trapezoidal, and Simpson’s rule. 

However, for simplicity, the commonly used forward Euler approximation was applied with an 

appropriate sampling time h. Therefore, the discrete QRP for the cancer chemo-immune therapy 

system can be formulated as follows [39,40]: 

minimize
𝑢

𝐽(𝑢) =
1

2
∙ ∑ 𝑥(𝑘)𝑇 ∙ 𝑄(𝑘) ∙ 𝑥(𝑘) + 𝑢(𝑘)𝑇 ∙ 𝑅 ∙ 𝑢(𝑘)𝑁−1

𝑘=0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥(𝑘 + 1) = 𝑥(𝑘) + ℎ ∙ (𝐴(𝑘) ∙ 𝑥(𝑘) + 𝐵(𝑘) ∙ 𝑢(𝑘))

0 ≤ 𝑢(𝑘) ≤ 1

}

𝑥(0) = 𝑥0

𝑘𝜖ℤ. 

The QRP of the above equation is applied to two different case studies. To each case, two different 

therapy rules are applied. These case studies are restated again for convenience: 

Case 1: In the scenario where a young patient is diagnosed with cancer but does not have any other 

resistant diseases, the oncologist’s objective during chemotherapy is to primarily focus on decreasing 

the population of cancerous cells. This is because the patient’s young age allows their body to 

compensate for the reduction in the number of normal cells and immune cells that may occur during 

chemotherapy. From an optimal control standpoint, minimizing the number of tumor cells is prioritized 

rather than maximizing the number of immune cells. This objective can be accomplished by 

appropriately adjusting the weighting matrices in the optimal control problem. 

Case 2: In the instance where an elderly patient is diagnosed with cancer along with other refractory 

conditions like cardiac disease, it becomes risky to destroy normal cells (including immune cells). 

Consequently, the oncologist places greater emphasis on immunotherapy treatment rather than 

chemotherapy. The preservation of normal cells (or immune cells) takes precedence over reducing the 

number of cancerous cells in this situation. Similar to the previous case, the optimal control problem 

incorporates this prioritization by selecting appropriate weights in the weighting matrices. 

In the case of younger patients, parameter weights are generally modified to focus on reducing 

tumor growth, as their bodies can better handle decreases in normal and immune cell counts. This 

results in assigning higher weights to the minimization of tumor cell populations and lower weights to 

the preservation of normal cells. Conversely, for older patients, the priority shifts to safeguarding 

healthy cells due to their greater susceptibility and possible comorbidities. Consequently, maintaining 

normal cell populations receives higher weights, which may result in a less aggressive strategy for 

tumor reduction. For patients who do not clearly fall into the young or elderly categories, parameter 

weights need to be tailored to their specific situations. Important factors to consider include: 

• Age: Middle-aged patients may exhibit different tolerances and responses than younger or 

older individuals. 

• Health status: Existing health conditions and overall well-being can affect the aggressiveness 

of the treatment approach. 
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• Tumor characteristics: The severity of the tumor and its responsiveness to treatments should 

also be taken into account. 

• Patient preferences: Integrating patient values and preferences regarding treatment objectives 

can facilitate more personalized care. 

4. Results and discussion 

We are prepared to implement the optimal control techniques outlined in the previous section to 

address the QRP. Before we begin, Table 4 lists the precise numerical values for the parameters of the 

cancer therapy OCP, while Table 5 details the parameters of the cancer model. These parameters remain 

constant across all examined techniques to facilitate a performance comparison with [41]. Each 

technique was applied for each case classified as continuous and dosed treatment (either Q21D or 

Q16D). Cancer treatment is considered continuous when it consists of ongoing therapies designed to 

manage the disease over a prolonged period, rather than providing a one-time or short-term 

intervention. This method is frequently used in situations where cancer cannot be entirely cured but 

can be effectively controlled or managed. In contrast, cancer treatment is categorized as discrete when 

therapies are administered at specific intervals, such as Q21D or Q16D, instead of continuously. 

Each time, all techniques (IPOPT, SDRE, and ASRE) are applied and compared with each other 

and with other methods [LQR and single network adaptive critic (SNAC)] studied in [41], which used 

the same model [10]. Figures 1–4 contain the four states of the system (i.e., CD8+ and NK T cells, 

tumor cells, and chemotherapy drug) and the two control therapies (i.e., immunotherapy and 

chemotherapy) and the optimization criterion of OCP for each technique. 

• IPOPT: The quadratic regulation problem (QRP) was first formulated using CasADi 

framework; then, a problem instance was created and then solved using the IPOPT solver. 

• SDRE: The solution of the ARE was computed using a very fast and efficient MATLAB built-

in function called icare, which is an implicit solver for continuous-time algebraic Riccati 

equations. 

• ASRE: Similar to the SDRE technique, the ASRE technique uses the icare MATLAB [42–46] 

built-in function to solve the ARE at each time step 𝑘 in each iteration 𝑖 of the algorithm. 

Before starting to interpret and compare the results of the cancer therapy OCP, the purpose for 

each kind of therapy (i.e., continuous and dosed) will be elaborated. Continuous therapy is not a real 

type of therapy and cannot be applied in practice for obvious reasons; however, it is included in this 

paper for mathematical purposes. 

Continuous therapy represents the actual solution for the OCP of the discrete QRP of the cancer 

chemo-immune therapy system and it is the one that can be used to compare the performance of the 

studied techniques. All optimal control techniques generated nearly the same control sequences for 

both 𝑢1 and 𝑢2. The IPOPT technique generated the best response (in terms of the value of the 

optimization criterion); the IPOPT solver used very sophisticated heuristic techniques in computing 

the optimal solution. The SDRE and the ASRE techniques came in second place as they did not find 

the optimal solution of the OCP due to the extended linearization theory. Looking at the same figure 

again, we can hardly tell the difference between the optimal control techniques studied in the 

optimization criterion section. This suggests that the results of these techniques are very similar. 
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Table 4. Exact numerical values of the parameters of the cancer therapy OCP [25,41]. 

Table 5. Model parameters values. 

Parameter Description Case 1 Case 2 

𝑁 Number of sample points 2000 2000 

ℎ Sampling period 0.05 [day] 0.05 [day] 

𝒙0 Initial states [0.15,1,1,0.1]𝑇 [0.15,1,1,0.1]𝑇 

𝑁𝑚 Lower limit of NK cells 0.3 0.6 

𝑅 Control weighing matrix 𝑑𝑖𝑎𝑔([1,1]) 𝑑𝑖𝑎𝑔([1,1]) 

𝑄 static Static state weighting matrix 𝑑𝑖𝑎𝑔([10, 100, 10, 0.01]) 𝑑𝑖𝑎𝑔([10, 20, 10, 0.01]) 

𝜇 NK dynamic weight 100 100 

𝛿 
NK maximum constraint 

deviation 
0.05 0.05 

- Dose period 
Q21D. (Latin abbreviation for 

once every 21 days) [28] 

Q16D. (Latin abbreviation 

for once every 16 days) 

Parameter Value Unit References 

𝜌 1.245 × 10−2 𝐷𝑎𝑦−1 [10,28] 

𝛼 2.5036 × 10−3 𝐼𝑈/𝑙−1 [29] 

𝑐1  3.422 × 10−10 𝑐𝑒𝑙𝑙𝑠−1/𝐷𝑎𝑦−1 [28] 

𝑑1 9 × 10−3 𝐷𝑎𝑦−1 [10,29] 

𝑎1  4.86 × 10−2 𝐷𝑎𝑦−1 [29] 

𝑟1  4.31 × 10−1 𝐷𝑎𝑦−1 [28] 

𝑏1  1.02 × 10−9 𝐷𝑎𝑦−1 [27,28] 

𝑐3  2.9077 × 10−3 𝑙/𝑐𝑒𝑙𝑙𝑠−1/𝐷𝑎𝑦−1 [28] 

𝑎2 9 × 10−1 𝐷𝑎𝑦−1 [29] 

𝑟2 6.75 × 10−2 𝐷𝑎𝑦−1 [10] 

𝑏2 1.25 × 10−2 𝐷𝑎𝑦−1 [10] 

𝑐4  2.794 × 10−13 𝑐𝑒𝑙𝑙𝑠−1/𝐷𝑎𝑦−1 [10] 

𝑎3 6.75 × 10−2 𝐷𝑎𝑦−1 [10,28] 

𝑑2 5.199 × 10−2 𝐷𝑎𝑦−1 [29] 
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Figure 1. Continuous therapy solution using optimal control techniques for case 1. 

 

Figure 2. Dosed therapy solution using optimal control techniques for case 1. 
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Figure 3. Continuous therapy solution using optimal control techniques for case 2. 

 

Figure 4. Dosed therapy solution using optimal control techniques for case 2. 



31762 

AIMS Mathematics  Volume 9, Issue 11, 31740–31769. 

Comparing the figures of continuous therapy solutions for all techniques for cases 1 and 2, we 

can notice an interesting result regarding treatment policies. Although the control weighting matrix 𝑹 

was identical for both cases, the response of the optimal control techniques showed a noticeable 

difference, where in the simulation results all these techniques agreed to use less of the chemotherapy 

drug and rely more heavily on the use of immunotherapy. The reason behind this difference is how the 

state weighting matrix 𝑸 was formulated in both cases: in case 1, there was a large weighing on the 

tumor population with respect to the immune cells (i.e., the CD8+ and NK T cells) and hence the 

optimal control techniques produced a response that will eradicate the tumor as fast as possible. 

However, in case 2, the scenario changed a bit, where the static weight of the tumor cells was lowered 

as compared to the weight used in case 1, which can be interpreted as “we still want to eradicate the 

tumor cells but not as much, and we also want to keep the immune cells as high as possible”. Hence, 

we can observe how these weighting matrices could affect the response significantly; in general, we 

can use time-varying matrices that focus on eradicating the tumor cells when they have a relatively 

large population and on increasing the immune cells when their population is relatively low. Table 6 

summarizes the final values of the state variables and optimization criterion of all studied techniques 

for both the continuous (after 20 days) and dosed treatment (after 90 days) for case 1, while Table 7 

does the same for case 2. 

The SDRE and ASRE methods are considered closed-loop solutions in cancer treatment because 

they continually adjust treatment plans based on real-time patient monitoring. This flexibility helps 

ensure that therapies remain effective as the patient’s condition evolves, leading to better disease 

management. SDRE modifies treatment inputs according to the current state of the patient and tumor 

dynamics. This allows for immediate changes to the treatment plan as new information is received, 

using feedback from how the patient responds to therapy. It dynamically optimizes dosages of 

chemotherapy and immunotherapy, keeping treatments effective while minimizing side effects. ASRE, 

on the other hand, is specifically designed for nonlinear systems, which is important in cancer 

treatment due to the unpredictable nature of tumor behavior. It uses a feedback mechanism to 

approximate optimal control based on observed patient responses. Combining open-loop and closed-

loop methods for cancer treatment presents an innovative approach to enhancing therapeutic 

effectiveness. Open-loop methods deliver a predetermined dose without real-time feedback, which can 

lead to suboptimal drug levels and potential toxicity. In contrast, closed-loop systems continuously 

monitor patient responses and adjust treatment dynamically, improving the precision of drug delivery. 

Integrating these two approaches could lead to a more personalized treatment regimen. Open-loop 

methods could establish a baseline treatment plan based on initial assessments, while closed-loop 

systems could fine-tune therapy in response to ongoing patient feedback and changing conditions. This 

synergy could enhance the overall effectiveness of cancer therapies by ensuring that patients receive 

the right dose at the right time, ultimately improving outcomes and reducing adverse effects. By 

leveraging the strengths of both open-loop and closed-loop strategies, healthcare providers may be 

able to create more effective and safer cancer treatment protocols that adapt to individual patient needs 

throughout the course of therapy. 
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Table 6. Terminating values of the optimization criterion and the state variables for the 

two treatment protocols for case 1. 

Note: (C) for continuous and (D) for dosed [41]. 

Table 7. Terminating values of the optimization criterion and the state variables for the 

two treatment protocols for case 2. 

Note: (C) for continuous and (D) for dosed [41]. 

In contrast, closed-loop systems continuously monitor patient responses and make dynamic 

adjustments, enhancing the precision of drug delivery. Integrating these two approaches could lead to 

more personalized treatment plans. Open-loop methods can establish a baseline treatment based on 

initial evaluations, while closed-loop systems can refine therapy in response to ongoing patient 

     Method  Proposed work Ref. [41]  

          Technique 

  Variable 
Therapy IPOPT SDRE ASRE SNAC LQR 𝒙𝑓 

Optimization 

criterion 

C 52.3573 52.424 52.424 52.3585 56.6678 - 

D 580.9231 583.6575 583.6575 584.1334 686.5033 - 

CD8+ T cells 
C 1.6499 1.6499 1.6499 1.6514 1.6499 1.65 

D 1.6499 1.6498 1.6498 1.6503 1.6488 1.65 

Tumor cells 
C 0.0007 0.0006 0.0006 0.0007 0.001 0 

D 0 0 0 0 0.0001 0 

NK T cells 
C 0.999 0.999 0.999 0.999 0.9985 1 

D 1 1 1 1 0.9999 1 

Chemotherapy drug 
C 0 0 0 0 0 0 

D 0 0 0 0 0 0 

     Method 
 Proposed work Ref. [41]  

        Technique 

 Variable 
Therapy IPOPT SDRE ASRE SNAC LQR 𝒙𝑓 

Optimization 

criterion 

C 20.0379 20.0728 20.0728 20.0454 20.369 - 

D 231.0686 237.9594 237.9594 241.4729 261.7581 - 

CD8+ T cells 
C 1.6499 1.6499 1.6499 1.6502 1.6499 1.650 

D 1.65 1.65 1.65 1.6498 1.65 1.650 

Tumor cells 
C 0.0009 0.0008 0.0008 0.0009 0.001 0 

D 0 0 0 0 0 0 

NK T cells 
C 0.9987 0.9988 0.9988 0.9987 0.9985 1 

D 1 1 1 1 1 1 

Chemotherapy drug 
C 0 0 0 0 0 0 

D 0 0 0  0 0 
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feedback and changing conditions. This combination could improve the overall effectiveness of cancer 

treatments by ensuring patients receive the right dose at the right time, ultimately enhancing outcomes 

and reducing side effects. By utilizing both open-loop and closed-loop strategies, healthcare providers 

can develop safer and more effective cancer treatment protocols tailored to individual patient needs 

throughout their therapy. 

Each method has its unique advantages and challenges in the context of cancer treatment. 

• IPOPT is suitable for complex, large-scale problems but may struggle with real-time applications. 

• SDRE offers adaptability and real-time optimization but requires precise modeling and can be 

computationally intense. 

• ASRE provides a balance between efficiency and control but might sacrifice some accuracy due 

to its approximations. 

The choice of method will depend on the specific requirements of the treatment strategy, including 

the need for real-time adjustments, computational resources, and the complexity of the tumor dynamics. 

Table 8 presents the comparison between IPOPT, SDRA, and ASRE based on different criteria. 

Table 8. Criteria comparison for IPOPT, SDRA, and ASRE. 

Criteria IPOPT SDRE ASRE 

Flexibility High Moderate Moderate 

Computational demand High High Low 

Real-time application Limited Yes Yes 

Adaptability Moderate High Moderate 

Modeling complexity Moderate High Moderate 

Accuracy High High Moderate 

Stability guarantees Moderate High Moderate 

Table 9. Requirement comparison of IPOPT, SDRA, and ASRE for the continuous therapy 

of case 1. 

      Aspect 

 

Technique 

 
Computation 

time (s) 

Additional 

required material 
Comments 

IPOPT 

Proposed 

work 

6.279403 CasADi package 
This package is required to formulate and 

solve the problem. 

SDRE 1.039006 icare function 
This function is called once at every time 

step. 

ASRE 48.026831 icare function 
This function is called once at every time 

step at every iteration for 50 iterations. 

LQR 

Ref. [41] 

0.144471 icare function This function is only called once. 

SNAC 50.483002 NN toolbox 

This toolbox is used to formulate and 

train the critic network. The performance 

of the network is slow when applied to 

inputs one at a time. 

These techniques can also be compared by computational requirements such as speed and 
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computer memory, since in real-time application, the available memory and maximum sampling time 

will determine which technique should be used. Unfortunately, we cannot measure the exact memory 

required by MATLAB code, since MATLAB internally releases memory during code execution. Hence, 

only the additional required material used to execute the MATLAB code is mentioned (this includes 

any prewritten code that is crucial for the technique to be executed). All techniques were implemented 

and executed on MATLAB 2023a software run on a PC Intel(R) Core (TM) i7-8550U CPU @ 1.80GHz 

with 16GBs RAM and Windows 11 (64-bit) operating system. Table 9 compares the computer 

computational requirements for the studied optimal control techniques based on continuous therapy of 

case 1. 

For future work, while the Pontryagin method offers a strong basis for optimal control in cancer 

therapies, investigating the Hamilton-Jacobi-Bellman (HJB) equation could lead to enhanced dosing 

strategies and improved patient outcomes. Utilizing the HJB equation might enable the development 

of an optimal control law that considers the entire range of patient responses instead of just immediate 

feedback, thereby increasing the accuracy of dosage modifications. The HJB approach is particularly 

useful for addressing nonlinear systems, which are prevalent in cancer treatment. It may produce 

different outcomes compared to the Pontryagin method, especially in complex situations with 

unpredictable tumor behavior. Further exploration of this approach would be valuable for a thorough 

understanding of optimal control in cancer therapy. 

5. Conclusions 

We delved into the application of three distinct optimal control problem (OCP) techniques: IPOPT, 

SDRE, and ASRE. These originate from diverse mathematical areas, such as the calculus of variations 

and dynamic programming. Utilizing a QRP formulation, we integrated chemotherapy and 

immunotherapy for two cancer patients, aiming to derive the optimal therapy protocols, both 

continuous and dosed, for each case. A key revelation of our study is the striking similarity in results 

yielded by the different techniques, suggesting that each approach approximates an optimal solution 

closely, often classified as suboptimal. Despite the comparable outcomes, certain distinctions were 

noted in their applicability. For instance, open-loop methods like IPOPT are not suitable for real-time 

applications. Conversely, each closed-loop technique has its unique domain of efficacy. 

In terms of resource utilization, the proposed method recorded a value of 580.9231 for IPOPT 

and 583.6575 for both SDRE and ASRE. NK T cell levels remained stable at 0.999 for C in all 

techniques, while D values reached 1 consistently across methods. The chemotherapy drug 

administration showed no active dosing in all cases, with both C and D values at 0. 

Each method has its unique advantages and challenges in the context of cancer treatment. 

• IPOPT is suitable for complex, large-scale problems but may struggle with real-time applications. 

• SDRE offers adaptability and real-time optimization but requires precise modeling and can be 

computationally intense. 

• ASRE provides a balance between efficiency and control but might sacrifice some accuracy due 

to its approximations. 

It is important to utilize advanced optimization techniques to tackle the challenges and limitations 

of applying optimal control principles in cancer treatment. Additionally, thorough validation studies 

using clinical data are crucial to evaluating the effectiveness and applicability of these methods across 

various patient groups and types of cancer. 
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