Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Multi-body dynamic evolution sequence-assisted PSO for interval analysis

  • Received: 03 September 2024 Revised: 16 October 2024 Accepted: 18 October 2024 Published: 01 November 2024
  • MSC : 68M15, 68T37

  • To enhance the efficiency and accuracy of response analysis in practical multivariable complex engineering problems, we introduced a new interval analysis method—multi-body dynamic evolution sequence-assisted particle swarm optimization (DES-PSO) is introduced in this research. This method optimizes the heterogeneous comprehensive learning particle swarm optimization algorithm (HCLPSO) by incorporating a dynamic evolution sequence (DES), addressing the difficulty of HCLPSO in covering the search space, which makes this method suitable for solving multivariable interval analysis problems. The results of two numerical examples prove that both DES-PSO and HCLPSO can give the accurate upper and lower bounds of the response interval. Compared with HCLPSO, DES-PSO improves the computing speed by about 50%.

    Citation: Xuanlong Wu, Peng Zhong, Weihao Lin, Jin Deng. Multi-body dynamic evolution sequence-assisted PSO for interval analysis[J]. AIMS Mathematics, 2024, 9(11): 31198-31216. doi: 10.3934/math.20241504

    Related Papers:

    [1] Kunting Yu, Yongming Li . Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay. AIMS Mathematics, 2020, 5(3): 2307-2325. doi: 10.3934/math.2020153
    [2] Guijun Xing, Huatao Chen, Zahra S. Aghayan, Jingfei Jiang, Juan L. G. Guirao . Tracking control for a class of fractional order uncertain systems with time-delay based on composite nonlinear feedback control. AIMS Mathematics, 2024, 9(5): 13058-13076. doi: 10.3934/math.2024637
    [3] Fang Zhu, Pengtong Li . Adaptive fuzzy consensus tracking control of multi-agent systems with predefined time. AIMS Mathematics, 2025, 10(3): 5307-5331. doi: 10.3934/math.2025245
    [4] Qike Zhang, Tao Xie, Wenxiang Fang . Fixed/predefined-time generalized synchronization for stochastic complex dynamical networks with delays. AIMS Mathematics, 2024, 9(3): 5482-5500. doi: 10.3934/math.2024266
    [5] Xuelian Jin . Exponential stability analysis and control design for nonlinear system with time-varying delay. AIMS Mathematics, 2021, 6(1): 102-113. doi: 10.3934/math.2021008
    [6] Chao Ma, Tianbo Wang, Wenjie You . Master-slave synchronization of Lurie systems with time-delay based on event-triggered control. AIMS Mathematics, 2023, 8(3): 5998-6008. doi: 10.3934/math.2023302
    [7] Miao Xiao, Zhe Lin, Qian Jiang, Dingcheng Yang, Xiongfeng Deng . Neural network-based adaptive finite-time tracking control for multiple inputs uncertain nonlinear systems with positive odd integer powers and unknown multiple faults. AIMS Mathematics, 2025, 10(3): 4819-4841. doi: 10.3934/math.2025221
    [8] Gaoran Wang, Weiwei Sun, Shuqing Wang . Stabilization of wind farm integrated transmission system with input delay. AIMS Mathematics, 2021, 6(9): 9177-9193. doi: 10.3934/math.2021533
    [9] Qiaoping Li, Yu Chen, Lingyuan Ma . Predefined-time control of chaotic finance/economic system based on event-triggered mechanism. AIMS Mathematics, 2023, 8(4): 8000-8017. doi: 10.3934/math.2023404
    [10] Weiwei Sun, Mengyang Qiu, Xinyu Lv . H filter design for a class of delayed Hamiltonian systems with fading channel and sensor saturation. AIMS Mathematics, 2020, 5(4): 2909-2922. doi: 10.3934/math.2020188
  • To enhance the efficiency and accuracy of response analysis in practical multivariable complex engineering problems, we introduced a new interval analysis method—multi-body dynamic evolution sequence-assisted particle swarm optimization (DES-PSO) is introduced in this research. This method optimizes the heterogeneous comprehensive learning particle swarm optimization algorithm (HCLPSO) by incorporating a dynamic evolution sequence (DES), addressing the difficulty of HCLPSO in covering the search space, which makes this method suitable for solving multivariable interval analysis problems. The results of two numerical examples prove that both DES-PSO and HCLPSO can give the accurate upper and lower bounds of the response interval. Compared with HCLPSO, DES-PSO improves the computing speed by about 50%.



    Actual nonlinear systems are subject to a wide variety of unknown disturbances, parameter uncertainties and delay phenomena [1,2]. Robust control and adaptive control methods have been proven successful at addressing these issues [3,4,5,6,7,8,9,10,11,12,13,14]. For nonlinear time-delay systems (NTDSs) with variable powers, [4] solved the adaptive robust tracking control problem. Taking into account the disturbance and time-varying delay of nonlinear Lipschitz systems, [5] designed a class of delay-dependent H dynamic observers. The literature [6] investigated the global adaptive state feedback control issue of stochastic NTDSs with unknown disturbances and time-dependent delays. A new adaptive tracking controller with minimum learning parameters was designed to solve an adaptive tracking issue in finite time caused by full-state constrained NTDSs under input saturation [8]. The Lyapunov-Krasovskii functional method was applied to investigate the adaptive robust control problem on finite time of NTDSs subject to uncertainty and disturbances [10]. For NTDSs with the triangular form, the robust output tracking control problem is solved by neural network [11]. For stochastic NTDSs with partially known jump rates, [12] investigated the continuous gain-scheduled robust fault detection issue. The above results developed several good infinite-time and finite-time methods. Although the finite-time control scheme presented above achieves faster convergence and greater robustness than the infinite-time scheme, its convergence time is determined by giving the initial state. Namely, its convergence time has an uncertain upper bound.

    As a result, a predefined-time control method is presented. As is well known, a closed-loop system (CLS) operated under a predefined-time strategy will maintain its convergence time uncorrelated with its initial state, and the upper bound of its convergence time is set beforehand, which improves the control accuracy of the CLS and compensates for the limitations of the finite-time control scheme. Consequently, the predefined-time control approach has received considerable focus from scholars, and some excellent results have been produced [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] on the mechanical system, time-varying system and uncertain system. Meanwhile, many effective predefined-time control methods have also been proposed like optimal control [16], time-varying feedback [17,18,19], backstepping [20], high-gain approach [26] and so on. Among them, the Lyapunov-like theorem proposed in [25] ensured that such dynamic systems reached stability in a predefined time and also constituted a framework based on predefined-time stability analysis. By introducing time transformations with terminal time terms, [26] investigated the stability in a predefined time of the nonlinear uncertain system. With a new scale-free backstepping method, [28] solved the predefined-time mean-square stability as well as the inverse optimality issues of nonlinear stochastic systems. By designing a double time-varying gain, [29] presented a new predefined-time adaptive control method and solved the predefined-time control problems involved in triangular NTDSs having unknown parameters. Even so, there are few predefined-time control results of NTDSs except [29]. Particularly, as far as the authors know, no predefined-time control result has been published regarding the NTDSs with external disturbances and parameter uncertainty simultaneously, which inspired the present work.

    As is well known, it is a very difficult task to study nonlinear systems due to lack of an effective research tool. Recently, the Hamiltonian method, as an important nonlinear research tool, has received much attention in the academic community and has been used to solve succesfully a large number of nonlinear problems. In fact, one of the advantages of using the Hamiltonian function method is that the Hamiltonian function in a Hamiltonian system can be chosen as a candidate Lyapunov function, which effectively overcomes the difficulty of constructing Lyapunov functions. Moreover, several well-established techniques for the design of Hamiltonian systems are given in the literature [34,35,36]. Among them, the authors also develop many strategies to obtain their Hamiltonian forms for given nonlinear systems. These methods are presented so that one can easily convert the system under study into its Hamiltonian version. However, the fact that the powers of the Hamiltonian functions in the literature [9,14,37,38] are the same for each state implies that the results have greater limitations.

    In the paper, we investigate a general class of NTDSs with uncertain parameter and external disturbance, and propose several predefined-time H and adaptive robust control results by applying the Hamiltonian function method with different powers. Here are some of the main contributions of this paper: (1) Contrary to the available results of infinite-time control as well as finite-time control, our predefined-time controller is capable of ensuring the CLS converges to zero within any given predefined constant number, and its convergence time cannot be affected by the initial state, making the system behavior better determined. (2) In contrast with the previous NTDS control results using the Hamiltonian approach (with the same power Hamiltonian form), this paper develops several more general results with different power Hamiltonian function forms, implying that these results have broader applications. (3) Compared with the recent predefined-time control result on the delay system in [29] (considering only the triangular form and unknown parameter), this paper examines a general class of NTDSs subject to uncertainties and disturbances and designs its predefined-time H controller and adaptive robust controller by applying different power Hamiltonian forms. As expected, the results are more in line with reality.

    The remaining sections of the paper are listed below. In Section 2, we present several preliminaries. Section 3 gives our main findings, Section 4 illustrates a case of river pollution that supports our new result and Section 5 is the conclusion.

    Consider the system

    ˙x=f(t,x,x(th),ρ), (2.1)

    where f:R+×Rn×RnRn indicates a nonlinear function, xRn represents the system state, h>0 is the constant delay, ρ denotes an uncertain constant parameter with appropriate dimension, and t indicates time variable defined on [t0,), where t0R+{0}, x0=x(t0) is the initial condition.

    In some practical cases, it would be desirable if the system (2.1) could achieve its original point in a given time Ta, where Ta is a constant and can be defined beforehand.

    Assume that M(Rn) is a non-empty set. If any solution x(t,x0) reaches M in tt0+Ta, then the predefined time Ta gets defined.

    Lemma 2.1. Suppose that V(t,xt):=V is a continuous radial unbounded function with V(t,0)=0 such that

    ˙V1qTaexp(Vq)V1q,xM, (2.2)

    holds, then M is predefined-time attractive, where xt is a delay function segment defined as xt:=x(t+ϱ),ϱ[h,0] with h>0, the constant 0<q1 and Ta is the predefined time.

    Proof. From Eq (2.2), it is easy to obtain:

    V(t,xt)[ln(1tt0Ta+exp((Vx0)q))]1q. (2.3)

    To give the upper boundary of t, using V(t,0)=0, we can obtain

    tt0+Ta[1exp((Vx0)q)],x0Rn, (2.4)

    where Vx0 denotes the initial value of V. From Eq (2.4), and 0<exp((Vx0)q)1, we have

    tt0+Ta,x0Rn, (2.5)

    implying Ta is the predefined time. Therefore, it has been proved.

    Lemma 2.2. [39] For real matrices ϝa,ϝb and a positive real number τ, the following equation holds:

    ϝTaϝb+ϝTbϝaτϝTaϝa+τ1ϝTbϝb. (2.6)

    Lemma 2.3. [35] When a scalar function g(x) has continuous partial derivatives of order n and g(0)=0(xRn), then g(x) may be characterized as g(x)=l1(x)x1++ln(x)xn with li(x)(i=1,2,,n) also being scalar functions.

    Assuming k(x)(Rn) is a smooth function and k(0)=0, then k(x):=M(x)x=

    [l11(x)l12(x)l1n(x)l21(x)l22(x)l2n(x)ln1(x)ln2(x)lnn(x)][x1x2xn]. (2.7)

    Lemma 2.4. [13] For any given real number d1, the inequality holds:

    nd1d(ni=1|xi|)1dni=1|xi|1d(ni=1|xi|)1d. (2.8)

    Consider the following NTDS

    ˙x=[J(x)R(x)]xH(x)+T(x)˜xH(˜x)+g1(x)u+g2(x)ω, (3.1)

    where the state vector is x(t)(Ω), Ω represents the bounded convex neighborhood of the zero point inside the space Rn, inverse symmetric structure matrix J(x)(Rn×n) and positive definite symmetric matrix R(x)(Rn×n) are given, ˜x:=x(th), Hamiltonian function H(x) reaches its minimum when x=0 that is H(0)=0, the gradient vector of H(x) is denoted by TxH(x), T(x)Rn×n with T(0)=0, g1(x) and g2(x) are the weighted matrices, u represents system input, ω denotes outside disturbance, and φ(η) denotes a vector-valued initial value function. Moreover, assume that g1(x) has full column rank.

    To present several predefined-time control results on the Hamiltonian system (3.1), we assume that

    H(x)=ni=1(x2i)αi2αi1(αi>1,i=1,,n) (3.2)

    and y=gT1(x)xH(x) is the system output signal.

    Remark 3.1. Note that the Hamiltonian function of the present paper has different powers, which is different from the existing results on the Hamiltonian system [9,14,37,38]. It should be mentioned as well that we presume the Hamiltonian function takes the form (3.2) so as to get certain predefined-time control outcomes on the Hamiltonian system (3.1). Obviously, a real system cannot satisfy the form. For a specific system, we have the following methods to develop its Hamiltonian form: the orthogonal decomposition method [40], Hamiltonian functional method [40], the energy shaping approach [40], the vector field decomposition method [41] and so on. In this section, we only present a theory result. Once the theory result is obtained, then one can design a suitable controller and apply the energy shaping approach to convert the general form to the form (3.2). Please refer to Section 4 for more details.

    Assumption 3.1. The disturbance ω satisfies

    Λ={ωRq:μ2+0ωT(t)ω(t)dt1}, (3.3)

    where μ>0 is a given positive constant.

    For the purpose of analysis, the set Ω is selected in the following form:

    Ω:={x:αTjx1,j=1,2,,n}, (3.4)

    where αj(j=1,2,,n) are known constant vectors, which describe n edges of Ω.

    We begin by defining the predefined-time H stabilization issue.

    The predefined-time H stabilization is to: Design a controller u=a(x) so that the CLS is stable for a predefined time when ω disappears. Meanwhile, when ωΛ is not zero, the zero-state response (φ(η)=0, η[h,0]) meets

    t0z(s)2dsγ2t0ω(s)2ds,0<t<, (3.5)

    where positive constant γ represents the disturbance suppression level, while z denotes the penalty signal described by

    z=h(x)y=h(x)g1T(x)xH(x), (3.6)

    with the weighted matrix h(x) having the appropriate dimension.

    Now, the main results of our study are presented.

    Theorem 3.1. Considering the system (3.1) under Assumption 3.1, for Ta>0 and γ>0, if

    (1) constant matrices L<0, P>0 and constant numbers ϵ>0, 0<rγ2 exist, the following inequalities hold:

    2R(x)+ϵ1In+r1g2(x)g2T(x)1γ2g1(x)g1T(x)L, (3.7)
    2xTH(x)xH(x)PϵTT(x)T(x)0, (3.8)

    (2) real numbers s>0 and μ>0 exist and

    [2sδγ22μ2sαTjsαjIn]0,j=1,2,,n, (3.9)

    then a predefined-time H controller of the NTDS (3.1) could be constructed as follows:

    g1(x)u=1σTaΦ(x)xH(x)˜xTH(˜x)P˜xH(˜x)+g1(x)v, (3.10)
    v=12[hT(x)h(x)+1γ2Im]g1T(x)xH(x), (3.11)

    where δ:=max{c2αmin22αmin1,c2αmax22αmax1} with c:=max{, \sigma : = W^{\frac{1}{\alpha_{max}}-\frac{1}{\alpha_{min }}} with H(x)\leq W when x \in \Omega , \alpha_{min } represents the minimum value of \alpha_{i} , \alpha_{max } represents the maximum value of \alpha_{i} , and \Phi(x) is the predefined-time stabilizing function that follows

    \begin{equation} \begin{aligned} \Phi(x) = 2^{\frac{1-3\alpha_{min}}{\alpha_{min}}}\dfrac{\alpha_{min}(2\alpha_{max}-1)^{2}}{\alpha_{max}^{2}(\alpha_{min}-1)}\exp[(2H(x))^{1-\frac{1}{\alpha_{min}}}] \nabla_{x}H(x).\end{aligned} \end{equation} (3.12)

    Proof. To prove the system (3.1) is a predefined-time H_\infty stabilization, we first show (3.5) holds for \omega \neq 0 , and then prove its stability in a predefined time when \omega disappears.

    The Lyapunov function is constructed in the following form:

    \begin{equation} V(x) = 2H(x). \end{equation} (3.13)

    Based on Lemma 2.2, one can derive

    \begin{equation} 2\nabla_{x}^\mathrm{T}H(x)g_{2}(x)\omega\leq r\omega^\mathrm{T}\omega +r^{-1}\nabla_{x}^\mathrm{T}H(x)g_{2}(x)g_{2}^\mathrm{T}(x)\nabla_{x}H(x). \nonumber \end{equation}

    Computing the derivative of V(x) and using {\nabla_{x}}^\mathrm{T}H(x)J(x)\nabla_{x}H(x) = 0 , one can obtain

    \begin{equation} \begin{aligned} \dot{V}(x) \leq&-2\nabla_{x}^\mathrm{T}H(x)R(x)\nabla_{x}H(x)+2\nabla_{x}^\mathrm{T}H(x)T(x)\nabla_{\tilde{x}}H(\tilde{x})+2\nabla_{x}^\mathrm{T}H(x)g_{1}(x) u+2\nabla_{x}^\mathrm{T}H(x)g_{2}(x)\omega\\ \leq&-2\nabla_{x}^\mathrm{T}H(x)R(x)\nabla_{x}H(x)+2\nabla_{x}^\mathrm{T}H(x)T(x)\nabla_{\tilde{x}}H(\tilde{x})+2\nabla_{x}^\mathrm{T}H(x)g_{1}(x) u+r\omega^\mathrm{T}\omega\\ &+r^{-1}\nabla_{x}^\mathrm{T}H(x)g_{2}(x)g_{2}^\mathrm{T}(x)\nabla_{x}H(x)\\ \leq& {\nabla_{x}}^\mathrm{T}H(x)[-2R(x)+r^{-1}g_{2}(x)g_{2}^\mathrm{T}(x)+\epsilon^{-1}I_{n}]\nabla_{x}H(x)+\nabla_{\tilde{x}}^\mathrm{T}H(\tilde{x})[-2\nabla_{x}^\mathrm{T}H(x)\nabla_{x}H(x)P\\ &+\epsilon T^\mathrm{T}(x)T(x)]\nabla_{\tilde{x}}H(\tilde{x})-2\nabla_{x}^\mathrm{T}H(x)\dfrac{1}{\sigma T_{a}}\Phi(x)+2\nabla_{x}^\mathrm{T}H(x)g_{1}(x)v+ r\parallel \omega \parallel^{2}\\ \leq& \nabla_{x}^\mathrm{T}H(x)[-2R(x)+\epsilon^{-1}I_{n}+r^{-1}g_{2}(x)g_{2}^\mathrm{T}(x)-\frac{1}{\gamma^{2}}g_{1}(x)g_{1}^\mathrm{T}(x)]\nabla_{x}H(x)\\ &+\nabla_{\tilde{x}}^\mathrm{T}H(\tilde{x})[-2\nabla_{x}^\mathrm{T}H(x)\nabla_{x}H(x)P+\epsilon T^\mathrm{T}(x)T(x)]\nabla_{\tilde{x}}H(\tilde{x})-2\nabla_{x}^\mathrm{T}H(x)\dfrac{1}{\sigma T_{a}}\Phi(x)\\ &-\parallel z \parallel^{2}+ r\parallel \omega \parallel^{2}\\ \leq& -\frac{2^{\frac{1-2\alpha_{min}}{\alpha_{min}}}}{\sigma T_{a}}\dfrac{\alpha_{min}(2\alpha_{max}-1)^{2}}{\alpha_{max}^{2}(\alpha_{min}-1)}\exp[(2H(x))^{1-\frac{1}{\alpha_{min}}}]\nabla_{x}^\mathrm{T}H(x)\nabla_{x}H(x)-\parallel z \parallel^{2}+ r\parallel \omega \parallel^{2}. \end{aligned} \end{equation} (3.14)

    Noting that \frac{2 \alpha_{i}}{2 \alpha_{i}-1} = \frac{1}{1-\frac{1}{2 \alpha_{i}}} is a decreasing function, we have

    \begin{equation} \begin{aligned} {\nabla_{x}}^\mathrm{T}H(x)\nabla_{x}H(x) = \sum\limits_{i = 1}^{n}\left(\frac{2 \alpha_{i}}{2 \alpha_{i}-1}\right)^{2}\left(x_{i}^{2}\right)^{\frac{1}{2 \alpha_{i}-1}} \geq\left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2} \sum\limits_{i = 1}^{n}\left(x_{i}^{2}\right)^{\frac{1}{2 \alpha_{i}-1}}. \end{aligned} \end{equation} (3.15)

    Next, when x \in \Omega , let H(x)\leq W . Since H(x)\leq W , we can obtain that \dfrac{1}{W}\sum_{i = 1}^{n}\left(x_{i}\right)^{\frac{2 \alpha_{i}}{2 \alpha_{i}-1}} < 1 . From that and Lemma 2.4, we get

    \begin{equation} \begin{aligned} \sum\limits_{i = 1}^{n}\left(\frac{2 \alpha_{i}}{2 \alpha_{i}-1}\right)^{2}\left(x_{i}^{2}\right)^{\frac{1}{2 \alpha_{i}-1}} & \geq\left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2} \sum\limits_{i = 1}^{n}\left(x_{i}^{2}\right)^{\frac{1}{2 \alpha_{i}-1}} \\ & = \left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2} \sum\limits_{i = 1}^{n}\left[\left(x_{i}^{2}\right)^{\frac{\alpha_{i}}{2 \alpha_{i}-1}}\right]^{\frac{1}{\alpha_{i}}}\\ &\geq\left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2}\left[\sum\limits_{i = 1}^{n}\left(x_{i}\right)^{\frac{2 \alpha_{i}}{2 \alpha_{i}-1}}\right]^{\frac{1}{\alpha_{i }}}\\ & = \left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2}W^{\frac{1}{\alpha_{i}}}\left[\dfrac{1}{W}\sum\limits_{i = 1}^{n}\left(x_{i}\right)^{\frac{2 \alpha_{i}}{2 \alpha_{i}-1}}\right]^{\frac{1}{\alpha_{i }}}\\ &\geq\left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2}W^{\frac{1}{\alpha_{i}}}\left[\dfrac{1}{W}\sum\limits_{i = 1}^{n}\left(x_{i}\right)^{\frac{2 \alpha_{i}}{2 \alpha_{i}-1}}\right]^{\frac{1}{\alpha_{min }}}\\ & = \left(\frac{2 \alpha_{max }}{2 \alpha_{max}-1}\right)^{2}W^{\frac{1}{\alpha_{i}}-\frac{1}{\alpha_{min }}}(H(x))^{\frac{1}{\alpha_{min }}}.\\ \end{aligned} \end{equation} (3.16)

    Note that the monotonicity of W^{\frac{1}{\alpha_{i}}-\frac{1}{\alpha_{min }}} is related to the value range of W . When 0 < W\leq1 , W^{\frac{1}{\alpha_{i}}-\frac{1}{\alpha_{min }}} is an increasing function of \alpha_i , then W^{\frac{1}{\alpha_{i}}-\frac{1}{\alpha_{min }}}\geq W^{\frac{1}{\alpha_{min}}-\frac{1}{\alpha_{min }}} = 1 and if W > 1 , W^{\frac{1}{\alpha_{i}}-\frac{1}{\alpha_{min }}} is a decreasing function on \alpha_i , we have W^{\frac{1}{\alpha_{i}}-\frac{1}{\alpha_{min }}}\geq W^{\frac{1}{\alpha_{max}}-\frac{1}{\alpha_{min }}} . Combining these two cases, we have W^{\frac{1}{\alpha_{i}}-\frac{1}{\alpha_{min }}}\geq\min\{1, \; W^{\frac{1}{\alpha_{max}}-\frac{1}{\alpha_{min }}}\} = W^{\frac{1}{\alpha_{max}}-\frac{1}{\alpha_{min }}} : = \sigma with \sigma being a positive constant. Substituting it into Eq (3.16), we have \sum_{i = 1}^{n}\left(\frac{2 \alpha_{i}}{2 \alpha_{i}-1}\right)^{2}\left(x_{i}^{2}\right)^{\frac{1}{2 \alpha_{i}-1}}\geq\sigma\left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2}(H(x))^{\frac{1}{\alpha_{min }}} , namely,

    \begin{equation} \nabla_{x}^{T} H(x) \nabla_{x} H(x) \geq\sigma\left(\frac{2 \alpha_{max }}{2 \alpha_{max }-1}\right)^{2}(H(x))^{\frac{1}{\alpha_{min }}} . \end{equation} (3.17)

    Substituting (3.17) into (3.14), one can get

    \begin{equation} \begin{aligned} \dot{V}(x)\leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2H(x))^{1-\frac{1}{\alpha_{min}}}](2H(x))^{\frac{1}{\alpha_{min}}}-\parallel z \parallel^{2}+ r\parallel \omega \parallel^{2}. \end{aligned} \end{equation} (3.18)

    Now, we prove (3.5) holds.

    By letting \Gamma(t, x) = V(x)+\int_{0}^{t}(\parallel z(s) \parallel^{2}-\gamma^{2}\parallel \omega(s) \parallel^{2})ds , we next indicate that \Gamma(t, x)\leq0 .

    Noting that r \leq \gamma^{2} , we obtain

    \begin{equation} \begin{aligned} \dot{\Gamma}(t, x) = &\dot{V}(x)+\parallel z \parallel^{2}-\gamma^{2}\parallel \omega \parallel^{2}\\ \leq&-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2H(x))^{1-\frac{1}{\alpha_{min}}}](2H(x))^{\frac{1}{\alpha_{min}}}\\ &-\parallel z \parallel^{2}+ r\parallel \omega \parallel^{2}+\parallel z \parallel^{2}-\gamma^{2}\parallel \omega \parallel^{2}\\ \leq&(r-\gamma^{2})\parallel \omega \parallel^{2}\leq0. \end{aligned} \end{equation} (3.19)

    Using the condition of zero-state response and integrating (3.19) over 0 and t result in

    \begin{equation} V(x)+\int_{0}^{t}(\parallel z(s) \parallel^{2}-\gamma^{2}\parallel \omega(s) \parallel^{2})ds\leq 0. \end{equation} (3.20)

    Since V(x)\geq0 , one obtains

    \begin{equation} \int_{0}^{t}\parallel z \parallel^{2}ds\leq\gamma^{2}\int_{0}^{t}\parallel \omega(s) \parallel^{2})ds. \end{equation} (3.21)

    In addition, noting that \frac{\alpha_{i}}{2 \alpha_{i}-1} < 1 and x^{T} x = \sum_{i = 1}^{n}\left(x_{i}\right)^{2} , we have x^{T}x = c^{2} \sum_{i = 1}^{n}\left(\frac{x_{i}}{c}\right)^{2} \leq c^{2} \sum_{i = 1}^{n}\left[\left(\frac{x_{i}}{c}\right)^{2}\right]^{\frac{\alpha_{i}}{2 \alpha_{i}-1}} = \frac{c^{2}}{c^{\frac{2 \alpha_{i}}{2 \alpha_{i}-1}}} \sum_{i = 1}^{n}\left(x_{i}^{2}\right)^{\frac{\alpha_{i}}{2 \alpha_{i}-1}} = c^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} H(x) holds on \Omega .

    The monotonicity of c^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} is related to the value range of c . When 0 < c\leq1 , c^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} is a decreasing function of \alpha_i , then c^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}}\leq c^{\frac{2 \alpha_{min}-2}{2 \alpha_{min}-1}} and if c > 1 , c^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} is an increasing function of \alpha_i , we have c^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}}\leq c^{\frac{2 \alpha_{max}-2}{2 \alpha_{max}-1}} . Combining these two equations, we can reach the conclusion that c^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}}\leq\max\{c^{\frac{2 \alpha_{min}-2}{2 \alpha_{min}-1}}, \; c^{\frac{2 \alpha_{max}-2}{2 \alpha_{max}-1}}\} : = \delta , from which we have x^{T}x\leq\delta H(x) .

    Noting Assumption 3.1 and (3.20), we have x^{T}x\leq \delta H(x) = \frac{1}{2}\delta V\left(t, x\right) \leq \delta \frac{\gamma^{2}}{2} \int_{0}^{T}\|w(s)\|^{2} d s \leq \frac{\delta \gamma^{2}}{2 \mu^{2}} , namely, \|x\|^{2} \leq \frac{\delta \gamma^{2}}{2 \mu^{2}} .

    Afterward, it is shown that x(t) \in \Omega holds when \forall t > 0 , \varphi = 0 , \omega \in \Lambda . With (3.4), it must be demonstrated that

    \begin{equation} x^{T} x-\frac{\delta \gamma^{2}}{2 \mu^{2}} \leq 0, \text { s.t. } 2-2 \alpha_{j}^{T} x \geq 0 (j = 1, \cdots, n). \end{equation} (3.22)

    From [42], we have

    \begin{equation} \zeta^{T}\left[\begin{array}{cc} 2 s-\frac{\delta \gamma^{2}}{2 \mu^{2}}\; \; & -s \alpha_{j}^{T} \\ -s \alpha_{j} & I_{n} \end{array}\right] \zeta \geq 0(j = 1, 2, \cdots, n), \end{equation} (3.23)

    which indicates that (3.9) holds with free scalar s > 0 introduced by the S-procedure and \zeta = \left[1, x^{T}\right]^{T} .

    Thus, we conclude that x(t) remains in \Omega for all t > 0 , \varphi = 0 , \omega\in \Lambda .

    Next, we demonstrate the stability in a predefined time for the CLS (3.1) when \omega disappears.

    Noting (3.18), we get

    \begin{equation} \begin{aligned} \dot{V}(x)\leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2H(x))^{1-\frac{1}{\alpha_{min}}}](2H(x))^{\frac{1}{\alpha_{min}}}-\parallel z \parallel^{2}\\ \leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2H(x))^{1-\frac{1}{\alpha_{min}}}](2H(x))^{\frac{1}{\alpha_{min}}}\\ = &-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[V^{1-\frac{1}{\alpha_{min}}}]V^{\frac{1}{\alpha_{min}}}. \end{aligned} \end{equation} (3.24)

    It implies Lemma 2.1 holds. Thus, it has been proved.

    In Theorem 3.1, the controller (3.10) contains the delay term. Next, we present a controller without containing the delay term for the NTDS (3.1).

    Theorem 3.2. Consider the NTDS (3.1) under Assumption 3.1. For the presented T_{a} > 0 and \gamma > 0 , if

    (1) constant matrices L < 0, P > 0 and constant numbers \epsilon > 0 , r > 0 exist such that e^{\left(h \lambda_{\max }\{P\}\right) \chi^{2}}r\leq \gamma^{2} ,

    \begin{equation} \begin{aligned} 2H(x)P-2R(x)+\epsilon^{-1}I_{n}+r^{-1}g_{2}(x)g_{2}^\mathrm{T}(x)-\frac{1}{\gamma^{2}}g_{1}(x)g_{1}^\mathrm{T}(x)\leq L < 0, \end{aligned} \end{equation} (3.25)
    \begin{equation} -\epsilon T^\mathrm{T}(x)T(x)+2H(x)P\geq 0, \end{equation} (3.26)

    (2) real numbers s > 0 and \mu > 0 exist, and

    \begin{equation} \left[\begin{array}{cc} 2 s-\frac{\delta \gamma^{2}}{2 \mu^{2}}\; \; \; & -s \alpha_{j}^{\mathrm{T}} \\ -s \alpha_{j} & I_{n} \end{array}\right] \geqslant 0, j = 1, 2, \cdots, n, \end{equation} (3.27)

    where \delta: = \max\{\chi^{\frac{2 \alpha_{min}-2}{2 \alpha_{min}-1}}, \; \chi^{\frac{2 \alpha_{max}-2}{2 \alpha_{max}-1}}\} with \chi: = \max \left\{\left\|x_{t}\right\|: x \in \Omega\right\} , then a predefined-time H_\infty controller of the NTDS (3.1) could be constructed as follows:

    \begin{equation} g_{1}(x)u = -\dfrac{1}{\sigma T_{a}}\Phi(x)+g_{1}(x)v, \end{equation} (3.28)
    \begin{equation} v = -\frac{1}{2}[h^\mathrm{T}(x)h(x)+\frac{1}{\gamma^{2}}I_{m}]g_{1}^\mathrm{T}(x)\nabla_{x}H(x), \end{equation} (3.29)

    where \sigma : = W^{\frac{1}{\alpha_{max}}-\frac{1}{\alpha_{min }}} with H(x)\leq W when x \in \Omega , \alpha_{min } and \alpha_{max } are similar to these in Theorem 3.1, and \Phi(x) is the predefined-time stabilizing function that follows

    \begin{equation} \begin{aligned} \Phi(x) = &2^{\frac{1-3\alpha_{min}}{\alpha_{min}}}\dfrac{\alpha_{min}(2\alpha_{max}-1)^{2}}{\alpha_{max}^{2}(\alpha_{min}-1)}G(t)^{\dfrac{1-\alpha_{min }}{\alpha_{min }}}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}]\nabla_{x}H(x) \end{aligned} \end{equation} (3.30)

    and G(t): = e^{\int_{t-h}^{t} \nabla_{x}^{T} H(x(s)) P \nabla_{x} H(x(s)) d s} .

    Proof. To prove the system (3.1) has predefined-time H_\infty stability, we first show

    \begin{equation} \int_{0}^{t}\parallel z \parallel^{2}ds\leq\gamma^{2}\int_{0}^{t}\parallel \omega(s) \parallel^{2})ds \end{equation} (3.31)

    holds for \omega \neq 0 .

    Construct the Lyapunov function as:

    \begin{equation} \begin{aligned} V(t, x_t) = 2 e^{\int_{t-h}^{t} \nabla_{x}^{T} H(x(s)) P \nabla_{x} H(x(s)) d s} H(x): = 2 G(t) H(x). \end{aligned} \end{equation} (3.32)

    Computing the derivative of V(t, x_{t}) and using \nabla_{x}^\mathrm{T}H(x)J(x)\nabla_{x}H(x) = 0 , one can obtain

    \begin{equation} \begin{aligned} \dot{V}(t, x_{t})\leq&G(t)[2\nabla_{x}^\mathrm{T}H(x)H(x)P\nabla_{x}H(x)-2\nabla_{\tilde{x}}^\mathrm{T}H(\tilde{x})H(x)P\nabla_{\tilde{x}}H(\tilde{x})-2\nabla_{x}^\mathrm{T}H(x)R(x)\nabla_{x}H(x)\\ &+2\nabla_{x}^\mathrm{T}H(x)T(x)\nabla_{\tilde{x}}H(\tilde{x})+2\nabla_{x}^\mathrm{T}H(x)g_{1}(x) u+r{\omega}^\mathrm{T}\omega+r^{-1}\nabla_{x}^\mathrm{T}H(x)g_{2}(x){g_{2}}^\mathrm{T}(x)\nabla_{x}H(x)]\\ \leq&G(t)[ {\nabla_{x}}^\mathrm{T}H(x)[2H(x)P-2R(x)+\epsilon^{-1}I_{n}+r^{-1}g_{2}(x){g_{2}}^\mathrm{T}(x)]\nabla_{x}H(x)\\ &-{\nabla_{\tilde{x}}}^\mathrm{T}H(\tilde{x})[2H(x)P-\epsilon{T}^\mathrm{T}(x)T(x)]\nabla_{\tilde{x}}H(\tilde{x})-2\nabla_{x}^\mathrm{T}H(x)\dfrac{1}{\sigma T_{a}}\Phi(x)\\ &+2{\nabla_{x}}^\mathrm{T}H(x)g_{1}(x)v+ r\parallel \omega \parallel^{2}]\\ = & G(t)[{\nabla_{x}}^\mathrm{T}H(x)[2H(x)P-2R(x)+\epsilon^{-1}I_{n} +r^{-1}g_{2}(x){g_{2}}^\mathrm{T}(x)-\frac{1}{\gamma^{2}}g_{1}(x){g_{1}}^\mathrm{T}(x)]\nabla_{x}H(x)\\ &+{\nabla_{\tilde{x}}}^\mathrm{T}H(\tilde{x})[-2H(x)P+\epsilon{T}^\mathrm{T}(x)T(x)]\nabla_{\tilde{x}}H(\tilde{x}) -2\nabla_{x}^\mathrm{T}H(x)\dfrac{1}{\sigma T_{a}}\Phi(x)-\parallel z \parallel^{2}+ r\parallel \omega \parallel^{2}]\\ \leq& -\frac{2^{\frac{1-2\alpha_{min}}{\alpha_{min}}}}{\sigma T_{a}}\dfrac{\alpha_{min}(2\alpha_{max}-1)^{2}}{\alpha_{max}^{2}(\alpha_{min}-1)}G(t)^{\dfrac{1}{\alpha_{min }}}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}]{\nabla_{x}}^\mathrm{T}H(x)\nabla_{x}H(x)\\ &-G(t)\parallel z \parallel^{2}+ G(t) r\parallel \omega \parallel^{2}. \end{aligned} \end{equation} (3.33)

    From that and using (3.17), one obtains

    \begin{equation} \begin{aligned} \dot{V}(t, x_{t})\leq &-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}-G(t)\parallel z \parallel^{2}+G(t) r\parallel \omega \parallel^{2}. \end{aligned} \end{equation} (3.34)

    Now, we prove (3.5) holds. Do so by letting \Gamma_{1}(t, x) = V(t, x_{t})+\int_{0}^{t}(\parallel z(s) \parallel^{2}-\gamma^{2}\parallel \omega(s) \parallel^{2})ds . We next indicate that \Gamma_{1}(t, x)\leq0 .

    Assuming that \left\|x_{t}\right\| \leq \chi , it follows that G(t) \leq e^{\left(h \lambda_{\max }\{P\}\right) \chi^{2}} . Substituting \dot{V}(t, x_{t}) into \dot{\Gamma}_{1}(t, x) , and noting that e^{\left(h \lambda_{\max }\{P\}\right) \chi^{2}}r \leq \gamma^{2}, G(t)\geq1 , one gets

    \begin{equation} \begin{aligned} \dot{\Gamma}_{1}(t, x) = &\dot{V}(t, x_{t})+\parallel z \parallel^{2}-\gamma^{2}\parallel \omega \parallel^{2}\\ \leq&-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}\\ &-G(t)\parallel z \parallel^{2}+ G(t)r\parallel \omega \parallel^{2}+\parallel z \parallel^{2}-\gamma^{2}\parallel \omega \parallel^{2}\\ \leq&-(G(t)-1)\parallel z \parallel^{2}+(e^{\left(h \lambda_{\max }\{P\}\right) \chi^{2}}r-\gamma^{2})\parallel \omega \parallel^{2}\leq0. \end{aligned} \end{equation} (3.35)

    The condition of zero-state response and the integration of \dot{\Gamma}_{1}(t, x) over 0 and t result in

    \begin{equation} V(t, x_{t})+\int_{0}^{t}(\parallel z(s) \parallel^{2}-\gamma^{2}\parallel \omega(s) \parallel^{2})ds\leq 0, \end{equation} (3.36)

    and under V(t, x_{t})\geq0 , one obtains

    \begin{equation} \int_{0}^{t}\parallel z \parallel^{2}ds\leq\gamma^{2}\int_{0}^{t}\parallel \omega(s) \parallel^{2})ds. \end{equation} (3.37)

    Using \frac{\alpha_{i}}{2 \alpha_{i}-1} < 1 as well as x^{T} x = \sum_{i = 1}^{n}\left(x_{i}\right)^{2} , we have x^{T} x = \chi^{2} \sum_{i = 1}^{n}\left(\frac{x_{i}}{\chi}\right)^{2} \leq \chi^{2} \sum_{i = 1}^{n}\left[\left(\frac{x_{i}}{\chi}\right)^{2}\right]^{\frac{\alpha_{i}}{2 \alpha_{i}-1}} = \frac{\chi^{2}}{\chi^{\frac{2 \alpha_{i}}{2 \alpha_{i}-1}}} \sum_{i = 1}^{n}\left(x_{i}^{2}\right)^{\frac{\alpha_{i}}{2 \alpha_{i}-1}} = \chi^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} H(x) holds on \Omega .

    The monotonicity of \chi^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} is related to the value range of \chi . When 0 < \chi\leq1 , \chi^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} is a decreasing function, then \chi^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}}\leq \chi^{\frac{2 \alpha_{min}-2}{2 \alpha_{min}-1}} and if \chi > 1 , \chi^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} is an increasing function, we have \chi^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}}\leq \chi^{\frac{2 \alpha_{max}-2}{2 \alpha_{max}-1}} . Combining these two equations, we can conclude that \chi^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}}\leq\max\{\chi^{\frac{2 \alpha_{min}-2}{2 \alpha_{min}-1}}, \; \chi^{\frac{2 \alpha_{max}-2}{2 \alpha_{max}-1}}\} : = \delta , from which we have x^{T}x\leq\delta H(x) .

    Noting Assumption 3.1, Eq (3.36) and G(t)\geq1 , one has x^{T}x\leq \delta H(x)\leq G(t)\delta H(x) = \frac{1}{2}\delta V\left(t, x_{t}\right) \leq \delta \frac{\gamma^{2}}{2} \int_{0}^{T}\|\omega(s)\|^{2} d s \leq \frac{\delta \gamma^{2}}{2 \mu^{2}} , namely, \|x\|^{2} \leq \frac{\delta \gamma^{2}}{2 \mu^{2}} .

    Afterward, it is shown that x(t) \in \Omega holds when \forall t > 0 , \varphi = 0 , \omega \in \Lambda . With (3.4), it must be demonstrated that

    \begin{equation} x^{T} x-\frac{\delta \gamma^{2}}{2 \mu^{2}} \leq 0, \text { s.t. } 2-2 \alpha_{j}^{T} x \geq 0 (j = 1, \cdots, n). \end{equation} (3.38)

    From [42], we have

    \begin{equation} \xi^{T}\left[\begin{array}{cc} 2 s-\frac{\delta \gamma^{2}}{2 \mu^{2}}\; \; & -s \alpha_{j}^{T} \\ -s \alpha_{j} & I_{n} \end{array}\right] \xi \geq 0(j = 1, 2, \cdots, n), \end{equation} (3.39)

    which indicates that (3.27) holds with free scalar s > 0 introduced by the S-procedure and \xi = \left[1, x^{T}\right]^{T} . Thus, we conclude that x(t) remains in \Omega when all t > 0 , \varphi = 0 , \omega\in \Lambda .

    As the remainder of the proof is similar to Theorem 3.1, it is omitted.

    Now, we present an adaptive robust stabilization result with external disturbance and uncertainty.

    Consider the NTDS

    \begin{equation} \dot{x} = [J(x, p)-R(x, p)]\nabla_{x}H_{1}(x, p)+T(x)\nabla_{\tilde{x}}H_{1}(\tilde{x})+g_{1}(x) u+g_{2}(x)\omega, \end{equation} (3.40)

    where p represents constant bounded uncertainty, inverse symmetric structure matrix J(x, p) and symmetric matrix R(x, p) are given, J (x, 0) = J (x) , R (x, 0) = R (x) , J (x, p) = J (x) + \Delta J (x, p) , R (x, p) = R (x) + \Delta R (x, p) , Hamiltonian function H_{1}(x) , which is smooth, reaches its minimum when x = 0 that is H_{1}(0) = 0 , H_{1} (x, 0) = H_{1} (x) , \nabla_{x}H_{1} (x, p) = \nabla_{x}H_{1}(x) + \Delta H_{1} (x, p) , u \in \mathbb{R}^{m_{1}} represents system input, \omega \in \mathbb{R}^{q} indicates the external interference satisfying \int_{0}^{\infty}\omega^\mathrm{T}(t)\omega(t)dt < \infty , and \varphi(\eta) denotes a vector-valued initial value function. Moreover, assume that g_{1} (x) has full column rank.

    Assumption 3.2. [14,43,44,45] Assume \phi(x) satisfies

    \begin{equation} [J(x, p)-R(x, p)]\Delta H_{1}(x, p) = g_{1}(x)\phi^\mathrm{T}(x)\theta \end{equation} (3.41)

    for \forall x\in\Omega , where \theta \in R^{m_{2}} indicates the constant vector determined by the uncertain parameter p and assume the constant k > 0 exists such that \|\theta\|\leq k .

    Under Assumption 3.2, noting that J (x, p) = J (x) + \Delta J (x, p) , R (x, p) = R (x) + \Delta R (x, p) , the system (3.40) can be transformed into:

    \begin{equation} \begin{aligned} \dot{x}(t) = [J(x)-R(x)] \nabla_{x} H_{1}(x)+T(x) \nabla_{\tilde{x}} H_{1}(\tilde{x}) +g_{1}(x) u+g_{2}(x) \omega+g_{1}(x) \phi^{\mathrm{T}}(x) \theta+G(x, p), \end{aligned} \end{equation} (3.42)

    where G(x, p): = [\triangle J(x, p)-\triangle R(x, p)] \nabla_{x} H_{1}(x) .

    Based on the NTDS (3.40) and Lemma 2.3, we can easily know that matrix M(x) \in \mathbb{R}^{n \times n} as well as positive constant \varpi exist such that \nabla_{x}H_{1}(x) = M (x) x , and

    \begin{equation} \parallel G (x, p) \parallel ^{2} \leq \varpi\parallel x \parallel ^{2}, x \in \Omega, \end{equation} (3.43)

    where

    \begin{equation} \begin{aligned} \varpi = : \lambda_{\max }\{{M}^\mathrm{T}(x)[\Delta J(x, p)-\Delta R(x, p)] ^\mathrm{T} [\Delta J (x, p) - \Delta R (x, p)] M (x)\}. \end{aligned} \end{equation} (3.44)

    To investigate the predefined-time stabilizing issue, we need to convert the Hamiltonian function H_{1}(x) into:

    \begin{equation} H(x) = \sum\limits_{i = 1}^{n}\left(x_{i}^{2}\right)^{\frac{\alpha_{i}}{2 \alpha_{i}-1}}(\alpha_{i} > 1, i = 1, \cdots, n) . \end{equation} (3.45)

    To do this, the controller u is designed as

    \begin{equation} g_{1}(x)u = [J(x)-R(x)] \nabla_{x} H_{2}(x)+T(x) \nabla_{\tilde{x}} H_{2}(\tilde{x})+[\iota I_{n}-T(x)]\nabla_{\tilde{x}} H(\tilde{x}) +g_{1}(x) v, \end{equation} (3.46)

    where v represents a new input, \iota > 0 , and \iota^{2} = dH(x) with d being a positive constant, H_{2}(x) : = H(x)-H_{1}(x), v = v_{1}+v_{2} with v_1 and v_2 being determined later.

    Substituting (3.46) into (3.42), system (3.42) is expressed as

    \begin{equation} \begin{aligned} \dot{x}(t) = [J(x)-R(x)] \nabla_{x} H(x)+\iota I_{n}\nabla_{\tilde{x}} H(\tilde{x}) +g_{1}(x) v+g_{2}(x)\omega+g_{1}(x) \phi^{\mathrm{T}}(x) \theta+G(x, p). \end{aligned} \end{equation} (3.47)

    Consider the system (3.47), set \gamma > 0 as disturbance suppression level, and choose penalty signal z = h(x)g_{1}^\mathrm{T}(x)\nabla_{x}H(x) , where h(x) denotes the weight matrix of the appropriate dimension.

    Theorem 3.3. Consider the NTDS (3.40) under Assumptions 3.1 and 3.2. For the presented T_{a} > 0 and \gamma > 0 , if

    (1) constant matrices L , P > 0 , Q\geq\frac{1}{2}k^{2}I_{n} and constant numbers r > 0 , b > 0 exist such that e^{\left(h \lambda_{\max }\{P\}\right) a^{2}}r\leq \gamma^{2} ,

    \begin{equation} \begin{aligned} 2H(x)P-2R(x)+r^{-1}g_{2}(x){g_{2}}^\mathrm{T}(x) -\frac{1}{\gamma^{2}}g_{1}(x){g_{1}}^\mathrm{T}(x)+2I_{n}+\varpi{N}^\mathrm{T}(x)N(x)\leq L < -b^{-1}I_{n}, \end{aligned} \end{equation} (3.48)
    \begin{equation} 2H(x)P-\iota^{2} I_{n}\geq 0 , \end{equation} (3.49)
    \begin{equation} \nabla_{x}^{\mathrm{T}} H(x)\nabla_{x} H(x)-b\phi(x) g_{1}^{\mathrm{T}}(x) g_{1}(x)\phi^{\mathrm{T}}(x)\geq 0 , \end{equation} (3.50)

    where k > 0 , \varpi and \iota are given in Assumption 3.2, (3.44) and (3.46), respectively, N(x): = \operatorname{Diag}\left\{(\frac{2 \alpha_{1}-1}{2 \alpha_{1}})x_{1}^{\frac{2 \alpha_{1}-2}{2 \alpha_{1}-1}}, (\frac{2 \alpha_{2}-1}{2 \alpha_{2}})x_{2}^{\frac{2 \alpha_{2}-2}{2 \alpha_{2}-1}}, \cdots, (\frac{2 \alpha_{n}-1}{2 \alpha_{n}})x_{n}^{\frac{2 \alpha_{n}-2}{2 \alpha_{n}-1}}\right\} , and

    (2) real numbers s > 0 and \mu > 0 exist, and

    \begin{equation} \left[\begin{array}{cc} 2 s-\frac{\delta \gamma^{2}}{2 \mu^{2}}\; \; \; & -s \alpha_{j}^{\mathrm{T}} \\ -s \alpha_{j} & I_{n} \end{array}\right] \geqslant 0, j = 1, 2, \cdots, n, \end{equation} (3.51)

    where \delta: = \max\{a^{\frac{2 \alpha_{min}-2}{2 \alpha_{min}-1}}, \; a^{\frac{2 \alpha_{max}-2}{2 \alpha_{max}-1}}\} with a: = \max \left\{\left\|x_{t}\right\|: x \in \Omega\right\} , then a predefined-time adaptive robust controller of the NTDS (3.47) could be constructed as

    \begin{equation} g_{1}(x)v_{1} = -\frac{1}{\sigma T_{a}}\Phi(x), \end{equation} (3.52)
    \begin{equation} \begin{aligned} g_{1}(x)v_{2} = &-\frac{1}{2}g_{1}(x)[{h}^\mathrm{T}(x)h(x)+\frac{1}{\gamma^{2}}I_{m}]{g_{1}}^\mathrm{T}(x)\nabla_{x}H(x)-Q\nabla_{x}H(x), \end{aligned} \end{equation} (3.53)

    where \sigma : = \min\{1, \; W^{\frac{1}{\alpha_{max}}-\frac{1}{\alpha_{min }}}\} with H(x)\leq W when x \in \Omega , \alpha_{min } and \alpha_{max } are similar to these in Theorem 3.1, and \Phi(x) is given in (3.30).

    Proof. V(t, x_{t}) is set as follows:

    \begin{equation} \begin{aligned} V(t, x_{t}) = 2 e^{\int_{t-h}^{t} \nabla_{x}^{T} H(x(s)) P \nabla_{x} H(x(s)) d s} H(x): = 2 G(t) H(x). \end{aligned} \end{equation} (3.54)

    When we compute the derivative of V(t, x_{t}) and use {\nabla_{x}}^\mathrm{T}H(x)J(x)\nabla_{x}H(x) = 0 , one can obtain

    \begin{equation} \begin{aligned} \dot{V}\left(t, x_{t}\right)\leqslant &G(t)[2\nabla_{x}^\mathrm{T}H(x)H(x)P\nabla_{x}H(x)-2\nabla_{\tilde{x}}^\mathrm{T}H(\tilde{x})H(x)P\nabla_{\tilde{x}}H(\tilde{x})\\ & -2 \nabla_{x}^{\mathrm{T}} H(x) R \nabla_{x} H(x)+\nabla_{x}^{\mathrm{T}} H(x) \nabla_{x} H(x)+\iota^{2}\nabla_{\tilde{x}}^{\mathrm{T}} H(\tilde{x}) \nabla_{\tilde{x}} H(\tilde{x})-2\nabla_{x}^{\mathrm{T}} H(x)\frac{1}{\sigma T_{a}}\Phi(x)\\ &-\parallel z \parallel^{2}-\dfrac{1}{\gamma^{2}} \nabla_{x}^{\mathrm{T}} H(x) g_{1}(x) g_{1}^{\mathrm{T}}(x) \nabla_{x} H(x)+r^{-1} \nabla_{x}^{\mathrm{T}} H(x) g_{2}(x) g_{2}^{\mathrm{T}}(x) \nabla_{x} H(x)+r \omega^{\mathrm{T}}\omega \\ &+\nabla_{x}^{\mathrm{T}} H(x) \nabla_{x} H(x)+G^{\mathrm{T}}(x, p) G(x, p) +2 \nabla_{x}^{\mathrm{T}} H(x) g_{1}(x) \phi^{\mathrm{T}}(x)\theta-2\nabla_{x}^{\mathrm{T}} H(x)Q\nabla_{x} H(x)]. \end{aligned} \end{equation} (3.55)

    There exists a matrix N(x): = \operatorname{Diag}\left\{(\frac{2 \alpha_{1}-1}{2 \alpha_{1}})x_{1}^{\frac{2 \alpha_{1}-2}{2 \alpha_{1}-1}}, (\frac{2 \alpha_{2}-1}{2 \alpha_{2}})x_{2}^{\frac{2 \alpha_{2}-2}{2 \alpha_{2}-1}}, \cdots, (\frac{2 \alpha_{n}-1}{2 \alpha_{n}})x_{n}^{\frac{2 \alpha_{n}-2}{2 \alpha_{n}-1}}\right\} such that x: = N(x)\nabla_{x}H(x) holds, and using (3.43), one can get

    \begin{equation} \begin{aligned} G^{\mathrm{T}}(x, p) G(x, p) \leq \varpi x^{\mathrm{T}} x : = \varpi{\nabla_{x}}^\mathrm{T}H(x){N}^\mathrm{T}(x)N(x)\nabla_{x}H(x). \end{aligned} \end{equation} (3.56)

    Substituting (3.56) and (3.17) into (3.55), we have

    \begin{equation} \begin{aligned} \dot{V}(t, x_{t}) \leqslant &G(t)[ \nabla_{x}^{\mathrm{T}} H(x) L \nabla_{x} H(x)-\parallel z \parallel^{2}-\nabla_{\tilde{x}}^{\mathrm{T}} H(\tilde{x}) [2H(x)P-\iota^{2} I_{n}]\nabla_{\tilde{x}} H(\tilde{x})\\ &-2\nabla_{x}^{\mathrm{T}} H(x)\frac{1}{\sigma T_{a}}\Phi(x) +r \omega^{\mathrm{T}} \omega +2 \nabla_{x}^{\mathrm{T}} H(x) g_{1}(x) \phi^{\mathrm{T}}(x)\theta-2\nabla_{x}^{\mathrm{T}} H(x)Q\nabla_{x} H(x)]\\ \leq& G(t)\nabla_{x}^{\mathrm{T}} H(x) L \nabla_{x} H(x) -\frac{2^{\frac{1-2\alpha_{min}}{\alpha_{min}}}}{\sigma T_{a}}\dfrac{\alpha_{min}(2\alpha_{max}-1)^{2}}{\alpha_{max}^{2}(\alpha_{min}-1)}G(t)^{\dfrac{1}{\alpha_{min }}}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}]\\&\times\nabla_{x}^\mathrm{T}H(x)\nabla_{x}H(x) -G(t)\parallel z \parallel^{2}+G(t) r\parallel \omega \parallel^{2}+2 G(t)\nabla_{x}^{\mathrm{T}} H(x) g_{1}(x) \phi^{\mathrm{T}}(x)\theta\\&-2G(t)\nabla_{x}^{\mathrm{T}} H(x)Q\nabla_{x} H(x)\\ \leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}} +G(t)\nabla_{x}^{\mathrm{T}} H(x) L \nabla_{x} H(x)\\&-G(t)\parallel z \parallel^{2}+G(t) r\parallel \omega \parallel^{2} +2 G(t)\nabla_{x}^{\mathrm{T}} H(x) g_{1}(x) \phi^{\mathrm{T}}(x)\theta-2G(t)\nabla_{x}^{\mathrm{T}} H(x)Q\nabla_{x} H(x). \end{aligned} \end{equation} (3.57)

    Noting that \parallel \theta\parallel^{2}\leq k^{2} and Q\geq\frac{1}{2}k^{2}I_{n} , one can obtain that -2Q\leq-k^{2}I_{n}\leq-\theta^{\mathrm{T}}\theta I_{n} , which is

    \begin{equation} -2\nabla_{x}^{\mathrm{T}} H(x)Q\nabla_{x} H(x)\leq-\theta^{\mathrm{T}}\nabla_{x}^{\mathrm{T}} H(x)\nabla_{x} H(x)\theta. \end{equation} (3.58)

    Substituting (3.58) into (3.57), and noting (3.48) and (3.50), one can get

    \begin{equation} \begin{aligned} \dot{V}(t, x_{t})\leq&-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}\\ &+G(t)[\nabla_{x}^{\mathrm{T}} H(x) L \nabla_{x} H(x)+2\nabla_{x}^{\mathrm{T}} H(x) g_{1}(x) \phi^{\mathrm{T}}(x)\theta-\theta^{\mathrm{T}}\nabla_{x}^{\mathrm{T}} H(x)\nabla_{x} H(x)\theta]\\ &-G(t)\parallel z \parallel^{2}+G(t) r\parallel \omega \parallel^{2}\\ \leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}\\ &+G(t)[\nabla_{x}^{\mathrm{T}} H(x) [L+b^{-1}I_{n}] \nabla_{x} H(x)\\&-\theta^{\mathrm{T}}[\nabla_{x}^{\mathrm{T}} H(x)\nabla_{x} H(x)-b\phi(x) g_{1}^{\mathrm{T}}(x) g_{1}(x)\phi^{\mathrm{T}}(x)]\theta]\\ &-G(t)\parallel z \parallel^{2}+G(t) r\parallel \omega \parallel^{2}\\ \leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}\\ &-G(t)\parallel z \parallel^{2}+G(t) r\parallel \omega \parallel^{2}. \end{aligned} \end{equation} (3.59)

    First, we prove (3.5) holds by letting D\left(t, x\right) = V(t, x_{t})+\int_{0}^{t}(\parallel z(s) \parallel^{2}-\gamma^{2}\parallel \omega(s) \parallel^{2})ds . Then we indicate that D\left(t, x\right)\leq0 .

    Substituting (3.59) into \dot{D}\left(t, x\right) , we get

    \begin{equation} \begin{aligned} \dot{D}\left(t, x\right) = &\dot{V}(t, x_{t})+\parallel z \parallel^{2}-\gamma^{2}\parallel \omega \parallel^{2}\\ \leq&-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}\\ &+(G(t)r-\gamma^{2})\parallel \omega \parallel^{2}+(-G(t)+1)\parallel z \parallel^{2}.\\ \end{aligned} \end{equation} (3.60)

    Assuming that \left\|x_{t}\right\| \leq a , it follows that G(t) \leq e^{\left(h \lambda_{\max }\{P\}\right) a^{2}} , from which we obtain \dot{D}\left(t, x\right)\leq -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}+(e^{\left(h \lambda_{\max }\{P\}\right) a^{2}}r-\gamma^{2})\parallel \omega \parallel^{2}+(-G(t)+1)\parallel z \parallel^{2}.

    Noting that e^{\left(h \lambda_{\max }\{P\}\right) a^{2}}r \leq \gamma^{2} and G(t)\geq1 , one gets

    \begin{equation} \begin{aligned} \dot{D}\left(t, x\right) \leq&-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}} < 0. \end{aligned} \end{equation} (3.61)

    The condition of zero-state response and the integration of \dot{D}\left(t, x\right) over 0 and t result in

    \begin{equation} V(t, x_{t})+\int_{0}^{t}(\parallel z(s) \parallel^{2}-\gamma^{2}\parallel \omega(s) \parallel^{2})ds\leq 0, \end{equation} (3.62)

    and with V(t, x_{t})\geq0 , we get

    \begin{equation} \int_{0}^{t}\parallel z \parallel^{2}ds\leq\gamma^{2}\int_{0}^{t}\parallel \omega(s) \parallel^{2})ds. \end{equation} (3.63)

    Furthermore, using \frac{\alpha_{i}}{2 \alpha_{i}-1} < 1 and x^{T} x = \sum_{i = 1}^{n}\left(x_{i}\right)^{2} , it is easy to obtain that x^{T} x = a^{2} \sum_{i = 1}^{n}\left(\frac{x_{i}}{a}\right)^{2} \leq a^{2} \sum_{i = 1}^{n}\left[\left(\frac{x_{i}}{a}\right)^{2}\right]^{\frac{\alpha_{i}}{2 \alpha_{i}-1}} = \frac{a^{2}}{a^{\frac{2 \alpha_{i}}{2 \alpha_{i}-1}}} \sum_{i = 1}^{n}\left(x_{i}^{2}\right)^{\frac{\alpha_{i}}{2 \alpha_{i}-1}} = a^{\frac{2 \alpha_{i}-2}{2 \alpha_{i}-1}} H(x) holds on \Omega .

    Similar to Theorem 3.1, we can get x^{T}x\leq\delta H(x) .

    Noting Assumption 3.1 and Eq (3.62), we have x^{T}x\leq \delta H(x)\leq G(t)\delta H(x) = \frac{1}{2}\delta V\left(t, x_{t}\right) \leq \delta \frac{\gamma^{2}}{2}\\\times \int_{0}^{T}\|\omega(s)\|^{2} d s \leq \frac{\delta \gamma^{2}}{2 \mu^{2}} , namely, \|x\|^{2} \leq \frac{\delta \gamma^{2}}{2 \mu^{2}} .

    Afterward, it is shown that x(t) \in \Omega holds when \forall t > 0 , \varphi = 0 , \omega \in \Lambda . With (3.4), it must be demonstrated that

    \begin{equation} x^{T} x-\frac{\delta \gamma^{2}}{2 \mu^{2}} \leq 0, \text { s.t. } 2-2 \alpha_{j}^{T} x \geq 0 (j = 1, \cdots, n). \end{equation} (3.64)

    From [42], we have

    \begin{equation} \varsigma^{T}\left[\begin{array}{cc} 2 s-\frac{\delta \gamma^{2}}{2 \mu^{2}}\; \; \; & -s \alpha_{j}^{T} \\ -s \alpha_{j} & I_{n} \end{array}\right] \varsigma \geq 0(j = 1, 2, \cdots, n), \end{equation} (3.65)

    which indicates that (3.64) holds with free scalar s > 0 introduced by the S-procedure and \zeta = \left[1, x^{T}\right]^{T} . Thus, we conclude that x(t) remains in \Omega for all t > 0 , \varphi = 0 , \omega\in \Lambda .

    Next, we demonstrate the stability in the predefined time for the NTDS (3.47) when \omega disappears.

    Noting (3.59), one obtains

    \begin{equation} \begin{aligned} \dot{V}(t, x_{t})\leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}-G(t)\parallel z \parallel^{2}\\ \leq& -\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[(2G(t)H(x))^{1-\frac{1}{\alpha_{min}}}](2G(t)H(x))^{\frac{1}{\alpha_{min}}}\\ = &-\frac{\alpha_{min}}{T_{a}(\alpha_{min}-1)}\exp[V^{1-\frac{1}{\alpha_{min}}}]V^{\frac{1}{\alpha_{min}}}, \end{aligned} \end{equation} (3.66)

    which implies that Lemma 2.1 holds when \omega = 0 . Thus, it has been proved.

    Take into account the following pollution control system with the single delay for rivers [46,47]:

    \begin{equation} \dot{x} = \left(A_{0}\right. \left.+\Delta A_{0}(t)\right) x+\left(A_{1}+\Delta A_{1}(t)\right) \tilde{x}+B u(t)+\bar{\omega}(t), \end{equation} (4.1)

    where A_{1} = \beta_{0} \eta_{2} I_{2} , \Delta A_{1}(t) = \Delta \beta \eta_{2} I_{2} , B = \operatorname{Diag}\left\{\eta_{1}, 1\right\}, \begin{array}{c} A_{0} = \left[\begin{array}{cc} -k_{10}-\eta_{1}-\eta_{2} & 0 \\ -k_{30} & -k_{20}-\eta_{1}-\eta_{2} \end{array}\right], \Delta A_{0}(t) = \left[\begin{array}{cc} -\Delta k_{1}(t) & 0 \\ -\Delta k_{3}(t) & -\Delta k_{2}(t) \end{array}\right]. \end{array}

    From Ref. [47], we are aware that \triangle A_{0}(t) = B \Psi(t) , \bar{\omega}(t) = B \omega(t) and constants \rho_{i}(i = 1, 2) > 0 , where \|\Psi(t)\| \leq \sqrt{\rho_{1}}, \; \|\omega(t)\| \leq \sqrt{\rho_{2}} . Ref. [46] explains the physical meaning of the above parameters (for more details, please see Ref. [46]). Furthermore, assume that x = \left[x_{1}, x_{2}\right]^{T} \in \Omega = \left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right| \leq 2.5, \left|x_{2}\right| \leq 2.5\right\} and \triangle A_{0}(t) = \left[\begin{array}{ll}p \; & 0 \\ p \; & p\end{array}\right] .

    First, the Hamiltonian form of system (4.1) is expressed as follows:

    \begin{equation} \begin{aligned} \dot{x} = (J-R) \nabla_{x} H_{a}(x)+T \nabla_{\tilde{x}} H_{a}(\tilde{x})+g_{1} u(t) +g_{2}\omega(t)+\Delta A_{0}(t) x, \end{aligned} \end{equation} (4.2)

    where H_{a}(x) = 0.5\left(x_{1}^{2}+x_{2}^{2}\right) , T = A_{1}+\triangle A_{1}(t) , g_{1} = g_{2} = B and J-R = : A_{0}. Besides, since \|G(x, p)\| = 0 , we can easily see that (3.43) holds on \Omega with \varpi = 0 .

    In the following, we can obtain

    \begin{equation} \begin{aligned} \triangle A_{0}(t) x = \left[x_{1}, x_{1}+x_{2}\right]^{T} p = B\left[\frac{1}{\eta_{1}} x_{1}, x_{1}+x_{2}\right]^{T} p = g_{1}(x) \phi^{T}(x) \theta, \end{aligned} \end{equation} (4.3)

    where \theta = p and \phi(x) = \left[\frac{1}{\eta_{1}} x_{1}, x_{1}+x_{2}\right] . Substituting (4.3) into (4.2), one gets

    \begin{equation} \begin{aligned} \dot{x} = {[J-R] \nabla_{x} H_{a}(x)+T \nabla_{\tilde{x}} H_{a}(\tilde{x})+g_{1}(x) u } +g_{1}(x) \omega+g_{1}(x) \phi^{T}(x) \theta. \end{aligned} \end{equation} (4.4)

    Next, design the controller in the following manner:

    \begin{equation} \begin{aligned} g_{1}(x) u = [J-R] \nabla_{x} H_{b}(x)+T \nabla_{\tilde{x}} H_{b}(\tilde{x}) +\left[\iota I_{n}-T\right] \nabla_{\tilde{x}} H(\tilde{x})+g_{1}(x) v, \end{aligned} \end{equation} (4.5)

    where v represents a new input, \iota: = (dH(x))^{\frac{1}{2}} = (0.0001H(x))^{\frac{1}{2}} , and H_{b}(x): = H(x)- H_{a}(x) with H(x) = x_{1}^{\frac{4}{3}}+x_{2}^{\frac{6}{5}}(\alpha_{1} = 2, \alpha_{2} = 3) . Noting that H(x)\leq W when x \in \Omega and selecting W = 8 , one can obtain \sigma : = \min\{1, \; W^{\frac{1}{\alpha_{max}}-\frac{1}{\alpha_{min }}}\} = \dfrac{\sqrt{2}}{2} . As a result, the system (4.4) can be expressed as follows:

    \begin{equation} \begin{aligned} \dot{x} = [J-R] \nabla_{x} H(x)+\iota I_{n} \nabla_{\tilde{x}} H(\tilde{x})+g_{1}(x) v +g_{1}(x) \omega+g_{1}(x) \phi^{T}(x) \theta. \end{aligned} \end{equation} (4.6)

    In addition, set \gamma = 0.19 as disturbance suppression level, and choose penalty signal z = h(x) g_{1}^{T} \nabla_{x} H(x) = \frac{4 \eta_{1}}{3} x_{1}^{\frac{1}{3}}+ \frac{6}{5} x_{2}^{\frac{1}{5}} , where h(x) = [1,1] denotes the weight matrix of the appropriate dimension.

    Now, we demonstrate that all conditions of Theorem 3.3 hold for the system by choosing k_{10} = 19 , k_{20} = 5 , k_{30} = 10 , \beta_{0} = 0.6 , \triangle\beta = 0.02 , \eta_{1} = 0.3 , \eta_{2} = 0.7 , and then we can obtain J(x) = \left[\begin{array}{cc} 0 \; & 5 \\ -5 \; & 0 \end{array}\right], R(x) = \left[\begin{array}{cc} 20 \; & 5 \\ 5 \; & 6 \end{array}\right] , T = 0.434 I_{2} .

    Meanwhile, set the parameters as follows: T_{a} = 0.1s and 0.05s , respectively, k = 4 , b = 0.1661 , r = 0.035 , P = 0.15 I_{2} , Q = 10 I_{2} . From x: = N(x)\nabla_{x}H(x) , we have N = \operatorname{Diag}\left\{\dfrac{3}{4}x_{1}^{\frac{2}{3}}, \dfrac{5}{6}x_{2}^{\frac{4}{5}}\right\} . Then, condition (1) holds for 0 < h < 0.5 .

    Selecting \alpha_{j} = 0.1(j = 1, 2) , s = 10 and \mu = 0.06 , the equations \alpha_{j}\left|x_{j}\right| \leq 1 and (3.51) are valid. It follows that condition (2) of Theorem 3.3 holds.

    For this system, Theorem 3.3 is fulfilled when 0 < h < 0.5 . Based on Theorem 3.3, we design a adaptive robust controller in the predefined time for the system (4.2) as

    \begin{equation} \left[\begin{array}{c} u_1 = -139.0735 x_{1}^{\frac{1}{3}}-0.6 x_{2}^{\frac{1}{5}}+66.6667 x_{1}\\-1.4467\tilde{x}_{1}+0.0444(\sqrt{x_{1}^{\frac{4}{3}}+x_{2}^{\frac{6}{5}}})\tilde{x}_{1}^{\frac{1}{3}} \\ -\dfrac{6.1728 x_{1}^{\frac{1}{3}}}{ T_{a}\sqrt{\exp(0.1333x_{1}^{\frac{2}{3}}+0.108x_{2}^{\frac{2}{5}})}} \\ \times\exp(\sqrt{(2x_{1}^{\frac{4}{3}}+2x_{2}^{\frac{6}{5}})\exp(0.1333x_{1}^{\frac{2}{3}}+0.108x_{2}^{\frac{2}{5}})}), \\ u_2 = -13.5333x_{1}^{\frac{1}{3}}-36.4205 x_{2}^{\frac{1}{5}}+10x_{1}+6x_{2}\\-0.434\tilde{x}_{2}+0.012(\sqrt{x_{1}^{\frac{4}{3}}+x_{2}^{\frac{6}{5}}})\tilde{x}_{2}^{\frac{1}{5}} \\ -\dfrac{1.6667 x_{2}^{\frac{1}{5}}}{T_{a} \sqrt{\exp(0.1333x_{1}^{\frac{2}{3}}+0.108x_{2}^{\frac{2}{5}})}}\\ \times\exp(\sqrt{(2x_{1}^{\frac{4}{3}}+2x_{2}^{\frac{6}{5}})\exp(0.1333x_{1}^{\frac{2}{3}}+0.108x_{2}^{\frac{2}{5}})})\\ \end{array}\right]. \end{equation} (4.7)

    Choose h = 0.5 and p = 0.5 . To assess how robust the controller (4.7) is against disturbances from outside, a disturbance with magnitude [120, \; 120]^{T} is introduced into our system in the time interval [0.01s \sim 0.03s] . Figures 14 are the simulation results.

    Figure 1.  The behavior of x within predefined-time T_{a} = 0.05s.
    Figure 2.  The behavior of x within predefined-time T_{a} = 0.1s.
    Figure 3.  The behavior of x in an infinite-time controller.
    Figure 4.  The behavior of x in a finite-time controller.

    Applying the predefined-time adaptive robust controller (4.7) to the system (4.2) with \varphi = (1.9, 0.5) , T_{a} = 0.05s and T_{a} = 0.1s , the simulation outcomes can be seen in Figure 1 as well as 2, and the behaviors of the corresponding control inputs are shown in Figures 5 and 6, indicating the system converges to zero within 0.05s and 0.1s . In addition, when the infinite-time controller designed in [34] is applied to the system (4.6) with the same initial conditions and disturbance, the result is shown in Figure 3, and the behavior of the corresponding control inputs is shown in Figure 7, and it is obvious that the system states converge to zero in 0.35s .

    Figure 5.  The behavior of u within predefined-time T_{a} = 0.05s.
    Figure 6.  The behavior of u within predefined-time T_{a} = 0.1s.
    Figure 7.  The behavior of u in an infinite-time controller.

    In addition, we also give a comparison with the finite-time controller from [14] with the same initial conditions and disturbance, Figure 4 illustrates the simulation result, and Figure 8 shows the behavior of the corresponding control inputs. According to Figure 4, the states stabilize within 0.15s .

    Figure 8.  The behavior of u in a finite-time controller.

    Comparing Figures 1 and 2, Figures 3 and 4, the predefined-time, infinite-time and finite-time control schemes were applied to the same system (4.6) under the same initial conditions, the same applied perturbations and the same parameters, respectively, and the comparison results are shown in Table 1. Through Table 1, we can find that the system converges faster under predefined-time control. Moreover, under the same disturbances, the CLS with the above-mentioned predefined-time controller has a smaller amplitude and returns to equilibrium rapidly after the perturbation ends. Consequently, the controller presented in this paper is shown that is very effective for robust stabilization calming.

    Table 1.  Comparison results of predefined time, finite time and infinite time control schemes.
    Total system convergence time Convergence time of the system after the disappearance of the disturbance System amplitude after adding the same disturbance
    Predefined-time control with T=0.05s 0.039s 0.009s 0.6
    Predifined-time control with T=0.1s 0.045s 0.015s 0.8
    Finite-time control 0.1s 0.07s 1.55
    Infinite-time control 0.31s 0.28s 1.58

     | Show Table
    DownLoad: CSV

    Throughout the work, we have studied the predefined-time control problem for NTDSs based on the Hamiltonian function approach. By choosing a suitable Hamiltonian form of different powers and constructing appropriate Lyapunov functions, we have presented two corresponding predefined-time control results, namely, H_\infty control and adaptive robust control ones, which have guaranteed the systems to be quickly calibrated in a predefined time and have shortened the calibration time and improved the control accuracy. The simulation results have indicated that the predefined-time adaptive robust scheme presented here has quicker convergence and greater robustness over existing infinite-time and finite-time control schemes. Moreover, unlike the results of existing Hamiltonian systems (where the powers are the same), this paper uses a more realistic form of different power Hamiltonian functions, implying its wider application.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This article received support from the National Natural Science Foundation of China (G61773015), the Natural Science Foundation of Shandong Province (ZR2023MF019), the Research Leader Studio of Jinan (202228119).

    All the authors declare no conflict of interest.



    [1] F. Wu, D. W. Huang, X. M. Xu, K. Zhao, N. Zhou, An adaptive divided-difference perturbation method for solving stochastic problems, Struct. Saf., 103 (2023), 102346. https://doi.org/10.1016/j.strusafe.2023.102346 doi: 10.1016/j.strusafe.2023.102346
    [2] F. Wu, Q. Gao, X. M. Xu, W. X. Zhong, Expectation-based approach for one-dimensional randomly disordered phononic crystals, Phys. Lett. A, 378 (2014), 1043–1048. https://doi.org/10.1016/j.physleta.2014.02.031 doi: 10.1016/j.physleta.2014.02.031
    [3] H. B. Motra, J. Hildebrand, F. Wuttke, The Monte Carlo Method for evaluating measurement uncertainty: Application for determining the properties of materials, Probabilisti. Eng. Mech., 45 (2016), 220–228. https://doi.org/10.1016/j.probengmech.2016.04.005 doi: 10.1016/j.probengmech.2016.04.005
    [4] F. Wu, W. X. Zhong, A hybrid approach for the time domain analysis of linear stochastic structures, Comput. Method. Appl. M., 265 (2013), 71–82. https://doi.org/10.1016/j.cma.2013.06.006
    [5] F. Wu, Q. Gao, X. M. Xu, W. X. Zhong, A modified computational scheme for the stochastic perturbation finite element method, Lat. Am. J. Solids Struct., 12 (2015), 2480–2505. https://doi.org/10.1590/1679-78251772 doi: 10.1590/1679-78251772
    [6] D. W. Huang, F. Wu, S. Zhang, B. S. Chen, H. W. Zhang, A high-performance calculation scheme for stochastic dynamic problems, Mech. Syst. Signal Pr., 189 (2023), 110073. https://doi.org/10.1016/j.ymssp.2022.110073 doi: 10.1016/j.ymssp.2022.110073
    [7] D. W. Huang, F. Wu, C. Z. Li, H. W. Zhang, The application of adaptive divided-difference perturbation method for stochastic problems with multimodal distribution, 3rd International Conference on Applied Mathematics, Modelling and Intelligent Computing (CAMMIC 2023), Tangshan, China, 2023, 1275617. https://doi.org/10.1117/12.2685895
    [8] Y. L. Zong, N. G. Hu, B. Y. Duan, G. G. Yang, H. J. Cao, W. Y. Xu, Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures, Acta Astronaut., 120 (2016), 182–191. https://doi.org/10.1016/j.actaastro.2015.11.026 doi: 10.1016/j.actaastro.2015.11.026
    [9] F. Wu, K. Zhao, L. L. Zhao, C. Y. Chen, W. X. Zhong, Uncertainty analysis of the control rod drop based on the adaptive collocation stochastic perturbation method, Ann. Nucl. Energy, 190 (2023), 109873. https://doi.org/10.1016/j.anucene.2023.109873 doi: 10.1016/j.anucene.2023.109873
    [10] Y. X. Yang, K. Zhao, Y. L. Zhao, F. Wu, C. Y. Chen, J. Yan, et al., UA-CRD, a computational framework for uncertainty analysis of control rod drop with time-variant epistemic uncertain parameters, Ann. Nucl. Energy, 195 (2024), 110171. https://doi.org/10.1016/j.anucene.2023.110171
    [11] M. Salari, Fatigue crack growth reliability analysis under random loading, Int. J. Struct. Integr., 11 (2020), 157–168. https://doi.org/10.1108/IJSI-06-2019-0053 doi: 10.1108/IJSI-06-2019-0053
    [12] D. W. Huang, F. Wu, Y. L. Zhao, J. Yan, H. W. Zhang, Application of high-credible statistical results calculation scheme based on least squares Quasi-Monte Carlo method in multimodal stochastic problems, Comput. Method. Appl. M., 418 (2024), 116576. https://doi.org/10.1016/j.cma.2023.116576 doi: 10.1016/j.cma.2023.116576
    [13] L. Zhu, K. Q. Ye, D. W. Huang, F. Wu, W. X. Zhong, An adaptively filtered precise integration method considering perturbation for stochastic dynamics problems, Acta Mech. Solida Sin., 36 (2023), 317–326. https://doi.org/10.1007/s10338-023-00381-4 doi: 10.1007/s10338-023-00381-4
    [14] Y. F. Ma, Z. Z. Guo, L. Wang, J. R. Zhang, Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage, J. Struct. Eng., 146 (2020), 7. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002666 doi: 10.1061/(ASCE)ST.1943-541X.0002666
    [15] H. J. Peng, F. J. Sun, F. Wu, D. X. Yang, Dynamic reliability of mechanism based on direct probability integral method, Int. J. Mech. Sci., 270 (2024), 109105. https://doi.org/10.1016/j.ijmecsci.2024.109105 doi: 10.1016/j.ijmecsci.2024.109105
    [16] Y. B. Chen, M. L. Wen, Q. Y. Zhang, Y. Zhou, R. Kang, Generalized first-order second-moment method for uncertain random structures, AIMS Mathematics, 8 (2023), 13454–13472. https://doi.org/10.3934/math.2023682 doi: 10.3934/math.2023682
    [17] H. W. Coleman, W. G. Steele, Experimentation, validation, and uncertainty analysis for engineers, Hoboken: John Wiley & Sons, 2018. https://doi.org/10.1002/9781119417989
    [18] Y. Z. Wang, Y. F. Zong, J. L. McCreight, J. D. Hughes, A. M. Tartakovsky, Bayesian reduced-order deep learning surrogate model for dynamic systems described by partial differential equations, Comput. Method. Appl. M., 429 (2024), 117147. https://doi.org/10.1016/j.cma.2024.117147 doi: 10.1016/j.cma.2024.117147
    [19] D. M. Do, W. Gao, C. M. Song, M. Beer, Interval spectral stochastic finite element analysis of structures with aggregation of random field and bounded parameters, Int. J. Numer. Meth. Eng., 108 (2016), 1198–1229. https://doi.org/10.1002/nme.5251 doi: 10.1002/nme.5251
    [20] C. Hao, J. Ma, N. Xu, Q. Zhao, J. Y. Du, K. J. Zhu, Uncertainty propagation analysis for control rod worth of PWR based on the statistical sampling method, Ann. Nucl. Energy, 137 (2020), 107054. https://doi.org/10.1016/j.anucene.2019.107054 doi: 10.1016/j.anucene.2019.107054
    [21] H. Zhang, H. Z. Dai, M. Beer, W. Wang, Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method, Mech. Syst. Signal Pr., 37 (2013), 137–151. https://doi.org/10.1016/j.ymssp.2012.03.001 doi: 10.1016/j.ymssp.2012.03.001
    [22] Z. P. Qiu, S. H. Chen, D. T. Song, The displacement bound estimation for structures with an interval description of uncertain parameters, Commun. Numer. Meth. En., 12 (1996), 1–11. https://doi.org/10.1002/(sici)1099-0887(199601)12:1<1::aid-cnm884>3.0.co;2-n doi: 10.1002/(sici)1099-0887(199601)12:1<1::aid-cnm884>3.0.co;2-n
    [23] Z. P. Qiu, I. Elishakoff, Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis, Comput. Method. Appl. M., 152 (1998), 361–372. https://doi.org/10.1016/S0045-7825(96)01211-X doi: 10.1016/S0045-7825(96)01211-X
    [24] B. Z. Xia, D. J. Yu, J. Liu, Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters, J. Fluid. Struct., 38 (2013), 146–163. https://doi.org/10.1016/j.jfluidstructs.2012.12.003 doi: 10.1016/j.jfluidstructs.2012.12.003
    [25] B. Z. Xia, D. J. Yu, Modified interval and subinterval perturbation methods for the static response analysis of structures with interval parameters, J. Struct. Eng., 140 (2014), 04013113. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000936 doi: 10.1061/(ASCE)ST.1943-541X.0000936
    [26] J. L. Wu, Y. Q. Zhang, L. P. Chen, Z. Luo, A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Appl. Math. Model., 37 (2013), 4578–4591. https://doi.org/10.1016/j.apm.2012.09.073 doi: 10.1016/j.apm.2012.09.073
    [27] J. L. Wu, Z. Luo, Y. Q. Zhang, N. Zhang, L. P. Chen, Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions, Int. J. Numer. Meth. Eng., 95 (2013), 608–630. https://doi.org/10.1002/nme.4525 doi: 10.1002/nme.4525
    [28] Z. P. Qiu, Comparison of static response of structures using convex models and interval analysis method, Int. J. Numer. Meth. Eng., 56 (2003), 1735–1753. https://doi.org/10.1002/nme.636 doi: 10.1002/nme.636
    [29] Z. P. Qiu, Y. Y. Xia, J. L. Yang, The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem, Comput. Method. Appl. M., 196 (2007), 4965–4984. https://doi.org/10.1016/j.cma.2007.06.022 doi: 10.1016/j.cma.2007.06.022
    [30] C. X. Feng, M. Faes, M. Broggi, C. Dang, J. S. Yang, Z. B. Zheng, et al., Application of interval field method to the stability analysis of slopes in presence of uncertainties, Comput. Geotech., 153 (2023), 105060. https://doi.org/10.1016/j.compgeo.2022.105060
    [31] Y. G. Chen, R. Zhong, Q. S. Wang, L. M. Chen, B. Qin, Free vibration analysis and multi-objective robust optimization of three-dimensional pyramidal truss core sandwich plates with interval uncertain parameters, Eur. J. Mech. A-Solid., 108 (2024), 105401. https://doi.org/10.1016/j.euromechsol.2024.105401 doi: 10.1016/j.euromechsol.2024.105401
    [32] N. Ta, Z. W. Zheng, H. C. Xie, An interval particle swarm optimization method for interval nonlinear uncertain optimization problems, Adv. Mech. Eng., 15 (2023), 1–14. https://doi.org/10.1177/16878132231153266 doi: 10.1177/16878132231153266
    [33] K. Bhatt, H. Kumar, A new hybrid particle swarm optimization algorithm for optimal tasks scheduling in distributed computing system, Intelligent Systems with Applications, 18 (2023), 200219. https://doi.org/10.1016/j.iswa.2023.200219 doi: 10.1016/j.iswa.2023.200219
    [34] N. Lynn, P. N. Suganthan, Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation, Swarm Evol. Comput., 24 (2015), 11–24. https://doi.org/10.1016/j.swevo.2015.05.002 doi: 10.1016/j.swevo.2015.05.002
    [35] J. J. Wang, G. Y. Liu, Saturated control design of a quadrotor with heterogeneous comprehensive learning particle swarm optimization, Swarm Evol. Comput., 46 (2019), 84–96. https://doi.org/10.1016/j.swevo.2019.02.008 doi: 10.1016/j.swevo.2019.02.008
    [36] D. Yousri, D. Allam, M. B. Eteiba, P. N. Suganthan, Chaotic heterogeneous comprehensive learning particle swarm optimizer variants for permanent magnet synchronous motor models parameters estimation, Iran. J. Sci. Technol. Trans. Electr. Eng., 44 (2020), 1299–1318. https://doi.org/10.1007/s40998-019-00294-4 doi: 10.1007/s40998-019-00294-4
    [37] F. Wu, L. Zhu, Y. L. Zhao, C. F. Ai, X. Wang, F. Cai, et al., Wave spectrum fitting with multiple parameters based on optimization algorithms and its application, Ocean Eng., 312 (2024), 119073. https://doi.org/10.1016/j.oceaneng.2024.119073
    [38] D. Yousri, D. Allam, M. B. Eteiba, P. N. Suganthan, Static and dynamic photovoltaic models' parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants, Energy Convers. Manage., 182 (2019), 546–563. https://doi.org/10.1016/j.enconman.2018.12.022 doi: 10.1016/j.enconman.2018.12.022
    [39] E. Zhang, Z. H. Nie, Q. Yang, Y. Q. Wang, D. Liu, S. W. Jeon, et al., Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems, Inform. Sciences, 633 (2023), 321–342. https://doi.org/10.1016/j.ins.2023.03.086
    [40] J. J. Wang, G. Y. Liu, Hierarchical sliding-mode control of spatial inverted pendulum with heterogeneous comprehensive learning particle swarm optimization, Inform. Sciences, 495 (2019), 14–36. https://doi.org/10.1016/j.ins.2019.05.004 doi: 10.1016/j.ins.2019.05.004
    [41] F. Wu, Y. L. Zhao, K. Zhao, W. X. Zhong, A multi-body dynamical evolution model for generating the point set with best uniformity, Swarm Evol. Comput., 73 (2022), 101121. https://doi.org/10.1016/j.swevo.2022.101121 doi: 10.1016/j.swevo.2022.101121
    [42] Y. Sun, Y. L. Gao, An improved composite particle swarm optimization algorithm for solving constrained optimization problems and its engineering applications, AIMS Mathematics, 9 (2024), 7917–7944. https://doi.org/10.3934/math.2024385 doi: 10.3934/math.2024385
    [43] Y. L. Zhao, F. Wu, Y. X. Yang, X. D. Wei, Z. H. Hu, J. Yan, et al., Constructing uniform design tables based on restart discrete dynamical evolutionary algorithm, Soft Comput., 28 (2024), 11515–11534. https://doi.org/10.1007/s00500-024-09890-x
    [44] F. Wu, W. X. Zhong, Constrained Hamilton variational principle for shallow water problems and Zu-class symplectic algorithm, Appl. Math. Mech., 37 (2016), 1–14. https://doi.org/10.1007/s10483-016-2051-9 doi: 10.1007/s10483-016-2051-9
    [45] F. Wu, L. Zhu, Y. L. Zhao, K. L. Zhang, J. Yan, W. X. Zhong, et al., Efficient computational method for matrix function in dynamic problems, Acta Mech. Sin., 39 (2023), 522451. https://doi.org/10.1007/s10409-023-22451-x
    [46] K. Zhao, X. M. Xu, C. Y. Chen, F. Wu, D. W. Huang, Y. Y. Xi, et al., Nonlinear state equation and adaptive symplectic algorithm for the control rod drop, Ann. Nucl. Energy, 179 (2022), 109402. https://doi.org/10.1016/j.anucene.2022.109402
    [47] F. Wu, Y. L. Zhao, Y. X. Yang, X. P. Zhang, N. Zhou, A new discrepancy for sample generation in stochastic response analyses of aerospace problems with uncertain parameters, Chinese J. Aeronaut., in press. https://doi.org/10.1016/j.cja.2024.09.044
    [48] Y. L. Zhao, F. Wu, J. H. Pang, W. X. Zhong, Updating velocities in heterogeneous comprehensive learning particle swarm optimization with low-discrepancy sequences, 2022, arXiv: 2209.09438. https://doi.org/10.48550/arXiv.2209.09438
    [49] F. Wu, Y. L. Zhao, J. H. Pang, J. Yan, W. X. Zhong, Low-discrepancy sampling in the expanded dimensional space: An acceleration technique for particle swarm optimization, 2023, arXiv: 2303.03055. https://doi.org/10.48550/arXiv.2303.03055
    [50] D. G. Wang, J. Li, A reliable approach to compute the static response of uncertain structural system, Chinese Journal of Computational Mechanics, 20 (2003), 662–669. https://doi.org/10.3969/j.issn.1007-4708.2003.06.004 doi: 10.3969/j.issn.1007-4708.2003.06.004
    [51] F. Wu, K. Zhao, X. L. Wu, H. J. Peng, L. L. Zhao, W. X. Zhong, A time-averaged method to analyze slender rods moving in tubes, Int. J. Mech. Sci., 279 (2024), 109510. https://doi.org/10.1016/j.ijmecsci.2024.109510 doi: 10.1016/j.ijmecsci.2024.109510
    [52] J. Zhang, Q. Gao, F. Wu, W. X. Zhong, A linear complementarity method for the solution of vertical vehicle–track interaction, Vehicle Syst. Dyn., 56 (2018), 281–296. https://doi.org/10.1080/00423114.2017.1372585 doi: 10.1080/00423114.2017.1372585
    [53] S. Campbell, B. Vacchini, Collision models in open system dynamics: A versatile tool for deeper insights, Europhysics Letters, 133 (2021), 60001. https://doi.org/10.1209/0295-5075/133/60001 doi: 10.1209/0295-5075/133/60001
    [54] D. W. Huang, Y. L. Zhao, K. Q. Ye, F. Wu, H. W. Zhang, W. X. Zhong, The efficient calculation methods for stochastic nonlinear transient heat conduction problems, J. Comput. Sci., 67 (2023), 101939. https://doi.org/10.1016/j.jocs.2022.101939 doi: 10.1016/j.jocs.2022.101939
    [55] F. Wu, W. X. Zhong, A modified stochastic perturbation method for stochastic hyperbolic heat conduction problems, Comput. Method. Appl. M., 305 (2016), 739–758. https://doi.org/10.1016/j.cma.2016.03.032 doi: 10.1016/j.cma.2016.03.032
    [56] F. Wu, Q. Gao, W. X. Zhong, Fast precise integration method for hyperbolic heat conduction problems, Appl. Math. Mech., 34 (2013), 791–800. https://doi.org/10.1007/s10483-013-1707-6 doi: 10.1007/s10483-013-1707-6
    [57] X. L. Zhang, Z. Ji, J. F. Wang, X. Lv, Research progress on structural optimization design of microchannel heat sinks applied to electronic devices, Appl. Therm. Eng., 235 (2023), 121294. https://doi.org/10.1016/j.applthermaleng.2023.121294 doi: 10.1016/j.applthermaleng.2023.121294
    [58] Z. L. Huang, C. Jiang, Y. S. Zhou, Z. Luo, Z. Zhang, An incremental shifting vector approach for reliability-based design optimization, Struct. Multidisc. Optim., 53 (2016), 523–543. https://doi.org/10.1007/s00158-015-1352-7 doi: 10.1007/s00158-015-1352-7
    [59] B. Y. Ni, C. Jiang, Interval field model and interval finite element analysis, Comput. Method. Appl. M., 360 (2020), 112713. https://doi.org/10.1016/j.cma.2019.112713 doi: 10.1016/j.cma.2019.112713
    [60] B. Y. Ni, C. Jiang, J. W. Li, W. Y. Tian, Interval K-L expansion of interval process model for dynamic uncertainty analysis, J. Sound Vib., 474 (2020), 115254. https://doi.org/10.1016/j.jsv.2020.115254 doi: 10.1016/j.jsv.2020.115254
  • This article has been cited by:

    1. Dongmei Xia, Kaiyuan Chen, Lin Sun, Guojin Qin, Research on reachable set boundary of neutral system with various types of disturbances, 2025, 20, 1932-6203, e0317398, 10.1371/journal.pone.0317398
    2. Xiaotong Liu, Renming Yang, Predefined-time adaptive robust simultaneous stabilisation control for two nonlinear singular time-delay systems, 2025, 2330-7706, 1, 10.1080/23307706.2025.2454530
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(657) PDF downloads(48) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog