To enhance the efficiency and accuracy of response analysis in practical multivariable complex engineering problems, we introduced a new interval analysis method—multi-body dynamic evolution sequence-assisted particle swarm optimization (DES-PSO) is introduced in this research. This method optimizes the heterogeneous comprehensive learning particle swarm optimization algorithm (HCLPSO) by incorporating a dynamic evolution sequence (DES), addressing the difficulty of HCLPSO in covering the search space, which makes this method suitable for solving multivariable interval analysis problems. The results of two numerical examples prove that both DES-PSO and HCLPSO can give the accurate upper and lower bounds of the response interval. Compared with HCLPSO, DES-PSO improves the computing speed by about 50%.
Citation: Xuanlong Wu, Peng Zhong, Weihao Lin, Jin Deng. Multi-body dynamic evolution sequence-assisted PSO for interval analysis[J]. AIMS Mathematics, 2024, 9(11): 31198-31216. doi: 10.3934/math.20241504
To enhance the efficiency and accuracy of response analysis in practical multivariable complex engineering problems, we introduced a new interval analysis method—multi-body dynamic evolution sequence-assisted particle swarm optimization (DES-PSO) is introduced in this research. This method optimizes the heterogeneous comprehensive learning particle swarm optimization algorithm (HCLPSO) by incorporating a dynamic evolution sequence (DES), addressing the difficulty of HCLPSO in covering the search space, which makes this method suitable for solving multivariable interval analysis problems. The results of two numerical examples prove that both DES-PSO and HCLPSO can give the accurate upper and lower bounds of the response interval. Compared with HCLPSO, DES-PSO improves the computing speed by about 50%.
[1] | F. Wu, D. W. Huang, X. M. Xu, K. Zhao, N. Zhou, An adaptive divided-difference perturbation method for solving stochastic problems, Struct. Saf., 103 (2023), 102346. https://doi.org/10.1016/j.strusafe.2023.102346 doi: 10.1016/j.strusafe.2023.102346 |
[2] | F. Wu, Q. Gao, X. M. Xu, W. X. Zhong, Expectation-based approach for one-dimensional randomly disordered phononic crystals, Phys. Lett. A, 378 (2014), 1043–1048. https://doi.org/10.1016/j.physleta.2014.02.031 doi: 10.1016/j.physleta.2014.02.031 |
[3] | H. B. Motra, J. Hildebrand, F. Wuttke, The Monte Carlo Method for evaluating measurement uncertainty: Application for determining the properties of materials, Probabilisti. Eng. Mech., 45 (2016), 220–228. https://doi.org/10.1016/j.probengmech.2016.04.005 doi: 10.1016/j.probengmech.2016.04.005 |
[4] | F. Wu, W. X. Zhong, A hybrid approach for the time domain analysis of linear stochastic structures, Comput. Method. Appl. M., 265 (2013), 71–82. https://doi.org/10.1016/j.cma.2013.06.006 |
[5] | F. Wu, Q. Gao, X. M. Xu, W. X. Zhong, A modified computational scheme for the stochastic perturbation finite element method, Lat. Am. J. Solids Struct., 12 (2015), 2480–2505. https://doi.org/10.1590/1679-78251772 doi: 10.1590/1679-78251772 |
[6] | D. W. Huang, F. Wu, S. Zhang, B. S. Chen, H. W. Zhang, A high-performance calculation scheme for stochastic dynamic problems, Mech. Syst. Signal Pr., 189 (2023), 110073. https://doi.org/10.1016/j.ymssp.2022.110073 doi: 10.1016/j.ymssp.2022.110073 |
[7] | D. W. Huang, F. Wu, C. Z. Li, H. W. Zhang, The application of adaptive divided-difference perturbation method for stochastic problems with multimodal distribution, 3rd International Conference on Applied Mathematics, Modelling and Intelligent Computing (CAMMIC 2023), Tangshan, China, 2023, 1275617. https://doi.org/10.1117/12.2685895 |
[8] | Y. L. Zong, N. G. Hu, B. Y. Duan, G. G. Yang, H. J. Cao, W. Y. Xu, Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures, Acta Astronaut., 120 (2016), 182–191. https://doi.org/10.1016/j.actaastro.2015.11.026 doi: 10.1016/j.actaastro.2015.11.026 |
[9] | F. Wu, K. Zhao, L. L. Zhao, C. Y. Chen, W. X. Zhong, Uncertainty analysis of the control rod drop based on the adaptive collocation stochastic perturbation method, Ann. Nucl. Energy, 190 (2023), 109873. https://doi.org/10.1016/j.anucene.2023.109873 doi: 10.1016/j.anucene.2023.109873 |
[10] | Y. X. Yang, K. Zhao, Y. L. Zhao, F. Wu, C. Y. Chen, J. Yan, et al., UA-CRD, a computational framework for uncertainty analysis of control rod drop with time-variant epistemic uncertain parameters, Ann. Nucl. Energy, 195 (2024), 110171. https://doi.org/10.1016/j.anucene.2023.110171 |
[11] | M. Salari, Fatigue crack growth reliability analysis under random loading, Int. J. Struct. Integr., 11 (2020), 157–168. https://doi.org/10.1108/IJSI-06-2019-0053 doi: 10.1108/IJSI-06-2019-0053 |
[12] | D. W. Huang, F. Wu, Y. L. Zhao, J. Yan, H. W. Zhang, Application of high-credible statistical results calculation scheme based on least squares Quasi-Monte Carlo method in multimodal stochastic problems, Comput. Method. Appl. M., 418 (2024), 116576. https://doi.org/10.1016/j.cma.2023.116576 doi: 10.1016/j.cma.2023.116576 |
[13] | L. Zhu, K. Q. Ye, D. W. Huang, F. Wu, W. X. Zhong, An adaptively filtered precise integration method considering perturbation for stochastic dynamics problems, Acta Mech. Solida Sin., 36 (2023), 317–326. https://doi.org/10.1007/s10338-023-00381-4 doi: 10.1007/s10338-023-00381-4 |
[14] | Y. F. Ma, Z. Z. Guo, L. Wang, J. R. Zhang, Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage, J. Struct. Eng., 146 (2020), 7. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002666 doi: 10.1061/(ASCE)ST.1943-541X.0002666 |
[15] | H. J. Peng, F. J. Sun, F. Wu, D. X. Yang, Dynamic reliability of mechanism based on direct probability integral method, Int. J. Mech. Sci., 270 (2024), 109105. https://doi.org/10.1016/j.ijmecsci.2024.109105 doi: 10.1016/j.ijmecsci.2024.109105 |
[16] | Y. B. Chen, M. L. Wen, Q. Y. Zhang, Y. Zhou, R. Kang, Generalized first-order second-moment method for uncertain random structures, AIMS Mathematics, 8 (2023), 13454–13472. https://doi.org/10.3934/math.2023682 doi: 10.3934/math.2023682 |
[17] | H. W. Coleman, W. G. Steele, Experimentation, validation, and uncertainty analysis for engineers, Hoboken: John Wiley & Sons, 2018. https://doi.org/10.1002/9781119417989 |
[18] | Y. Z. Wang, Y. F. Zong, J. L. McCreight, J. D. Hughes, A. M. Tartakovsky, Bayesian reduced-order deep learning surrogate model for dynamic systems described by partial differential equations, Comput. Method. Appl. M., 429 (2024), 117147. https://doi.org/10.1016/j.cma.2024.117147 doi: 10.1016/j.cma.2024.117147 |
[19] | D. M. Do, W. Gao, C. M. Song, M. Beer, Interval spectral stochastic finite element analysis of structures with aggregation of random field and bounded parameters, Int. J. Numer. Meth. Eng., 108 (2016), 1198–1229. https://doi.org/10.1002/nme.5251 doi: 10.1002/nme.5251 |
[20] | C. Hao, J. Ma, N. Xu, Q. Zhao, J. Y. Du, K. J. Zhu, Uncertainty propagation analysis for control rod worth of PWR based on the statistical sampling method, Ann. Nucl. Energy, 137 (2020), 107054. https://doi.org/10.1016/j.anucene.2019.107054 doi: 10.1016/j.anucene.2019.107054 |
[21] | H. Zhang, H. Z. Dai, M. Beer, W. Wang, Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method, Mech. Syst. Signal Pr., 37 (2013), 137–151. https://doi.org/10.1016/j.ymssp.2012.03.001 doi: 10.1016/j.ymssp.2012.03.001 |
[22] | Z. P. Qiu, S. H. Chen, D. T. Song, The displacement bound estimation for structures with an interval description of uncertain parameters, Commun. Numer. Meth. En., 12 (1996), 1–11. https://doi.org/10.1002/(sici)1099-0887(199601)12:1<1::aid-cnm884>3.0.co;2-n doi: 10.1002/(sici)1099-0887(199601)12:1<1::aid-cnm884>3.0.co;2-n |
[23] | Z. P. Qiu, I. Elishakoff, Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis, Comput. Method. Appl. M., 152 (1998), 361–372. https://doi.org/10.1016/S0045-7825(96)01211-X doi: 10.1016/S0045-7825(96)01211-X |
[24] | B. Z. Xia, D. J. Yu, J. Liu, Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters, J. Fluid. Struct., 38 (2013), 146–163. https://doi.org/10.1016/j.jfluidstructs.2012.12.003 doi: 10.1016/j.jfluidstructs.2012.12.003 |
[25] | B. Z. Xia, D. J. Yu, Modified interval and subinterval perturbation methods for the static response analysis of structures with interval parameters, J. Struct. Eng., 140 (2014), 04013113. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000936 doi: 10.1061/(ASCE)ST.1943-541X.0000936 |
[26] | J. L. Wu, Y. Q. Zhang, L. P. Chen, Z. Luo, A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Appl. Math. Model., 37 (2013), 4578–4591. https://doi.org/10.1016/j.apm.2012.09.073 doi: 10.1016/j.apm.2012.09.073 |
[27] | J. L. Wu, Z. Luo, Y. Q. Zhang, N. Zhang, L. P. Chen, Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions, Int. J. Numer. Meth. Eng., 95 (2013), 608–630. https://doi.org/10.1002/nme.4525 doi: 10.1002/nme.4525 |
[28] | Z. P. Qiu, Comparison of static response of structures using convex models and interval analysis method, Int. J. Numer. Meth. Eng., 56 (2003), 1735–1753. https://doi.org/10.1002/nme.636 doi: 10.1002/nme.636 |
[29] | Z. P. Qiu, Y. Y. Xia, J. L. Yang, The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem, Comput. Method. Appl. M., 196 (2007), 4965–4984. https://doi.org/10.1016/j.cma.2007.06.022 doi: 10.1016/j.cma.2007.06.022 |
[30] | C. X. Feng, M. Faes, M. Broggi, C. Dang, J. S. Yang, Z. B. Zheng, et al., Application of interval field method to the stability analysis of slopes in presence of uncertainties, Comput. Geotech., 153 (2023), 105060. https://doi.org/10.1016/j.compgeo.2022.105060 |
[31] | Y. G. Chen, R. Zhong, Q. S. Wang, L. M. Chen, B. Qin, Free vibration analysis and multi-objective robust optimization of three-dimensional pyramidal truss core sandwich plates with interval uncertain parameters, Eur. J. Mech. A-Solid., 108 (2024), 105401. https://doi.org/10.1016/j.euromechsol.2024.105401 doi: 10.1016/j.euromechsol.2024.105401 |
[32] | N. Ta, Z. W. Zheng, H. C. Xie, An interval particle swarm optimization method for interval nonlinear uncertain optimization problems, Adv. Mech. Eng., 15 (2023), 1–14. https://doi.org/10.1177/16878132231153266 doi: 10.1177/16878132231153266 |
[33] | K. Bhatt, H. Kumar, A new hybrid particle swarm optimization algorithm for optimal tasks scheduling in distributed computing system, Intelligent Systems with Applications, 18 (2023), 200219. https://doi.org/10.1016/j.iswa.2023.200219 doi: 10.1016/j.iswa.2023.200219 |
[34] | N. Lynn, P. N. Suganthan, Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation, Swarm Evol. Comput., 24 (2015), 11–24. https://doi.org/10.1016/j.swevo.2015.05.002 doi: 10.1016/j.swevo.2015.05.002 |
[35] | J. J. Wang, G. Y. Liu, Saturated control design of a quadrotor with heterogeneous comprehensive learning particle swarm optimization, Swarm Evol. Comput., 46 (2019), 84–96. https://doi.org/10.1016/j.swevo.2019.02.008 doi: 10.1016/j.swevo.2019.02.008 |
[36] | D. Yousri, D. Allam, M. B. Eteiba, P. N. Suganthan, Chaotic heterogeneous comprehensive learning particle swarm optimizer variants for permanent magnet synchronous motor models parameters estimation, Iran. J. Sci. Technol. Trans. Electr. Eng., 44 (2020), 1299–1318. https://doi.org/10.1007/s40998-019-00294-4 doi: 10.1007/s40998-019-00294-4 |
[37] | F. Wu, L. Zhu, Y. L. Zhao, C. F. Ai, X. Wang, F. Cai, et al., Wave spectrum fitting with multiple parameters based on optimization algorithms and its application, Ocean Eng., 312 (2024), 119073. https://doi.org/10.1016/j.oceaneng.2024.119073 |
[38] | D. Yousri, D. Allam, M. B. Eteiba, P. N. Suganthan, Static and dynamic photovoltaic models' parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants, Energy Convers. Manage., 182 (2019), 546–563. https://doi.org/10.1016/j.enconman.2018.12.022 doi: 10.1016/j.enconman.2018.12.022 |
[39] | E. Zhang, Z. H. Nie, Q. Yang, Y. Q. Wang, D. Liu, S. W. Jeon, et al., Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems, Inform. Sciences, 633 (2023), 321–342. https://doi.org/10.1016/j.ins.2023.03.086 |
[40] | J. J. Wang, G. Y. Liu, Hierarchical sliding-mode control of spatial inverted pendulum with heterogeneous comprehensive learning particle swarm optimization, Inform. Sciences, 495 (2019), 14–36. https://doi.org/10.1016/j.ins.2019.05.004 doi: 10.1016/j.ins.2019.05.004 |
[41] | F. Wu, Y. L. Zhao, K. Zhao, W. X. Zhong, A multi-body dynamical evolution model for generating the point set with best uniformity, Swarm Evol. Comput., 73 (2022), 101121. https://doi.org/10.1016/j.swevo.2022.101121 doi: 10.1016/j.swevo.2022.101121 |
[42] | Y. Sun, Y. L. Gao, An improved composite particle swarm optimization algorithm for solving constrained optimization problems and its engineering applications, AIMS Mathematics, 9 (2024), 7917–7944. https://doi.org/10.3934/math.2024385 doi: 10.3934/math.2024385 |
[43] | Y. L. Zhao, F. Wu, Y. X. Yang, X. D. Wei, Z. H. Hu, J. Yan, et al., Constructing uniform design tables based on restart discrete dynamical evolutionary algorithm, Soft Comput., 28 (2024), 11515–11534. https://doi.org/10.1007/s00500-024-09890-x |
[44] | F. Wu, W. X. Zhong, Constrained Hamilton variational principle for shallow water problems and Zu-class symplectic algorithm, Appl. Math. Mech., 37 (2016), 1–14. https://doi.org/10.1007/s10483-016-2051-9 doi: 10.1007/s10483-016-2051-9 |
[45] | F. Wu, L. Zhu, Y. L. Zhao, K. L. Zhang, J. Yan, W. X. Zhong, et al., Efficient computational method for matrix function in dynamic problems, Acta Mech. Sin., 39 (2023), 522451. https://doi.org/10.1007/s10409-023-22451-x |
[46] | K. Zhao, X. M. Xu, C. Y. Chen, F. Wu, D. W. Huang, Y. Y. Xi, et al., Nonlinear state equation and adaptive symplectic algorithm for the control rod drop, Ann. Nucl. Energy, 179 (2022), 109402. https://doi.org/10.1016/j.anucene.2022.109402 |
[47] | F. Wu, Y. L. Zhao, Y. X. Yang, X. P. Zhang, N. Zhou, A new discrepancy for sample generation in stochastic response analyses of aerospace problems with uncertain parameters, Chinese J. Aeronaut., in press. https://doi.org/10.1016/j.cja.2024.09.044 |
[48] | Y. L. Zhao, F. Wu, J. H. Pang, W. X. Zhong, Updating velocities in heterogeneous comprehensive learning particle swarm optimization with low-discrepancy sequences, 2022, arXiv: 2209.09438. https://doi.org/10.48550/arXiv.2209.09438 |
[49] | F. Wu, Y. L. Zhao, J. H. Pang, J. Yan, W. X. Zhong, Low-discrepancy sampling in the expanded dimensional space: An acceleration technique for particle swarm optimization, 2023, arXiv: 2303.03055. https://doi.org/10.48550/arXiv.2303.03055 |
[50] | D. G. Wang, J. Li, A reliable approach to compute the static response of uncertain structural system, Chinese Journal of Computational Mechanics, 20 (2003), 662–669. https://doi.org/10.3969/j.issn.1007-4708.2003.06.004 doi: 10.3969/j.issn.1007-4708.2003.06.004 |
[51] | F. Wu, K. Zhao, X. L. Wu, H. J. Peng, L. L. Zhao, W. X. Zhong, A time-averaged method to analyze slender rods moving in tubes, Int. J. Mech. Sci., 279 (2024), 109510. https://doi.org/10.1016/j.ijmecsci.2024.109510 doi: 10.1016/j.ijmecsci.2024.109510 |
[52] | J. Zhang, Q. Gao, F. Wu, W. X. Zhong, A linear complementarity method for the solution of vertical vehicle–track interaction, Vehicle Syst. Dyn., 56 (2018), 281–296. https://doi.org/10.1080/00423114.2017.1372585 doi: 10.1080/00423114.2017.1372585 |
[53] | S. Campbell, B. Vacchini, Collision models in open system dynamics: A versatile tool for deeper insights, Europhysics Letters, 133 (2021), 60001. https://doi.org/10.1209/0295-5075/133/60001 doi: 10.1209/0295-5075/133/60001 |
[54] | D. W. Huang, Y. L. Zhao, K. Q. Ye, F. Wu, H. W. Zhang, W. X. Zhong, The efficient calculation methods for stochastic nonlinear transient heat conduction problems, J. Comput. Sci., 67 (2023), 101939. https://doi.org/10.1016/j.jocs.2022.101939 doi: 10.1016/j.jocs.2022.101939 |
[55] | F. Wu, W. X. Zhong, A modified stochastic perturbation method for stochastic hyperbolic heat conduction problems, Comput. Method. Appl. M., 305 (2016), 739–758. https://doi.org/10.1016/j.cma.2016.03.032 doi: 10.1016/j.cma.2016.03.032 |
[56] | F. Wu, Q. Gao, W. X. Zhong, Fast precise integration method for hyperbolic heat conduction problems, Appl. Math. Mech., 34 (2013), 791–800. https://doi.org/10.1007/s10483-013-1707-6 doi: 10.1007/s10483-013-1707-6 |
[57] | X. L. Zhang, Z. Ji, J. F. Wang, X. Lv, Research progress on structural optimization design of microchannel heat sinks applied to electronic devices, Appl. Therm. Eng., 235 (2023), 121294. https://doi.org/10.1016/j.applthermaleng.2023.121294 doi: 10.1016/j.applthermaleng.2023.121294 |
[58] | Z. L. Huang, C. Jiang, Y. S. Zhou, Z. Luo, Z. Zhang, An incremental shifting vector approach for reliability-based design optimization, Struct. Multidisc. Optim., 53 (2016), 523–543. https://doi.org/10.1007/s00158-015-1352-7 doi: 10.1007/s00158-015-1352-7 |
[59] | B. Y. Ni, C. Jiang, Interval field model and interval finite element analysis, Comput. Method. Appl. M., 360 (2020), 112713. https://doi.org/10.1016/j.cma.2019.112713 doi: 10.1016/j.cma.2019.112713 |
[60] | B. Y. Ni, C. Jiang, J. W. Li, W. Y. Tian, Interval K-L expansion of interval process model for dynamic uncertainty analysis, J. Sound Vib., 474 (2020), 115254. https://doi.org/10.1016/j.jsv.2020.115254 doi: 10.1016/j.jsv.2020.115254 |