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complex engineering problems, we introduced a new interval analysis method—multi-body dynamic 

evolution sequence-assisted particle swarm optimization (DES-PSO) is introduced in this research. 

This method optimizes the heterogeneous comprehensive learning particle swarm optimization 

algorithm (HCLPSO) by incorporating a dynamic evolution sequence (DES), addressing the 

difficulty of HCLPSO in covering the search space, which makes this method suitable for solving 

multivariable interval analysis problems. The results of two numerical examples prove that both 

DES-PSO and HCLPSO can give the accurate upper and lower bounds of the response interval. 

Compared with HCLPSO, DES-PSO improves the computing speed by about 50%. 
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Abbreviations: PSO: particle swarm optimization; HCLPSO: heterogeneous comprehensive 

learning particle swarm optimization algorithm; DES: dynamic evolution sequence; DES-PSO: the 

method of improving HCLPSO with dynamic evolution sequence; LDS: low discrepancy sequence 

1. Introduction 

Uncertainty is pervasive in practical engineering problems, such as material properties [1–3], 

manufacturing errors [4–8], random loads [9–13], and service life [14,15]. The presence of 

uncertainty in measurement data and mathematical models is inevitable [16], and can significantly 

affect structural responses, necessitating evaluation. Coleman and Steele [17] pointed out that in an 

experiment where all measurements have only 1% uncertainty, the uncertainty of the experimental 

results can exceed 50%, implying that underestimating or incorrectly estimating uncertainty can 

severely impact the safety of engineering structures, potentially leading to catastrophic outcomes. 

Therefore, it is crucial to consider the impact of uncertainty factors in structural analysis [18]. In 

practical engineering problems, due to limitations in experimental conditions and costs, some 

parameters cannot be accurately modeled with probability distributions due to insufficient 

experimental samples, leaving only their variation intervals available [19]. Given the interval 

uncertainty of input parameters, structural responses also exhibit interval uncertainty, making it vital 

to evaluate the interval uncertainty of responses. Failure to correctly estimate the variation range of 

responses could lead to erroneous judgments about the safety of materials or structures, posing 

serious safety risks [20]. Therefore, designing precise and efficient interval analysis methods for 

structural responses is of significant engineering importance. 

Commonly used interval analysis methods include the Monte Carlo method (MCM), interval 

perturbation method, Chebyshev interval method, and vertex method. MCM provides stable 

solutions with sufficient sample data, which can ensure accuracy [21]. However, the computational 

costs will be greatly increased when facing large-scale engineering problems. Interval perturbation is 

a straightforward simplification method. Qiu et al. [22] solved displacement responses of uncertain 

parameters under small interval widths using the perturbation method, which later developed into the 

interval perturbation method [23]. However, the solution of this method may not converge under 

large interval dispersion. Xia et al. [24,25] proposed a sub-interval perturbation method to calculate 

the response domain of interval acoustic coupling systems. However, the computational burden grows 

significantly as the number of interval parameters and sub-intervals increases. Wu et al. [26,27] 

combined Chebyshev polynomial series expansion to address interval uncertainty, but the 

computational complexity of Chebyshev polynomial series increases exponentially with the number of 

parameters, leading to dimensionality issues. Qiu et al. [28,29] also combined finite element analysis 

with non-random convex models to propose the vertex method, suitable for solving exact boundaries of 

linear interval equations. However, this method is limited to monotonic cases, and its computational 

cost increases exponentially with interval parameters, making it impractical for large structural 

problems. 

The essence of interval analysis lies in calculating the upper and lower bounds of structural 

responses based on the interval range of input parameters, which can be viewed as finding the 

maximum and minimum values of structural responses, thus forming two optimization problems. 



31200 

AIMS Mathematics  Volume 9, Issue 11, 31198–31216. 

Therefore, interval analysis problems can be solved by optimization algorithms. Common 

optimization problem-solving methods can be divided into two categories: Traditional gradient-based 

algorithms, characterized by fast convergence and high computational efficiency, but prone to getting 

trapped in local optima when dealing with multi-modal problems, and meta-heuristic intelligent 

optimization algorithms, which are less efficient than traditional gradient methods but have a strong 

ability to escape local optima and are considered effective for finding global optima. Many scholars 

have attempted to apply intelligent optimization algorithms to interval analysis. Feng et al. [30] 

applied the Bayesian global optimization algorithm to the interval estimation of safety factors in 

deterministic slope stability. Cheng et al. [31] proposed an improved Pelican algorithm and used it for 

interval analysis of free vibration responses of 3D pyramidal truss core sandwich panels. Ta et al. [32] 

proposed a new interval particle swarm optimization algorithm based on particle swarm optimization, 

applying it to interval analysis of vehicle body vibration and optimization of aerial camera stability. 

From the above research, it is known that the result of interval analysis problems based on 

optimization algorithms is closely related to the computational performance of the optimization 

algorithms used. PSO is an excellent intelligent optimization algorithm based on meta-heuristic, 

which has a strong ability to jump out of local optimal and fast convergence speed [33], thus suitable 

for solving complex multivariable interval analysis problems. PSO has many excellent variants. 

Among them, HCLPSO [34] proposed by Lynn and Suganthan balances the global and local search 

capabilities of the PSO algorithm, which is recognized as one of the most outstanding variants of the 

famous PSO algorithm. 

Wang et al. [35] present a novel saturated control method for a quadrotor to realize three–

dimensional spatial trajectory tracking with HCLPSO. Yousri et al. [36] introduce a robust method to 

determine the permanent magnet synchronous motor model parameters efficiently and expeditiously 

based on HCLPSO. Wu et al. [37] introduce more shape parameters by HCLPSO, developing a novel 

multi-parameter wave spectrum model that substantially amplifies the capacity to describe the diversity 

of wave spectra. Yousri et al. [38] accurately extract the unknown parameters of a novel fractional 

order dynamic photovoltaic model by combining HCLPSO with chaos maps. Zhang et al. [39] solve 

large-scale optimization problems by introducing a random elite cognitive learning strategy and a 

stochastic dominant cognitive learning strategy into HCLPSO. Wang et al. [40] guarantee the 

convergence of the auxiliary sliding surfaces of the hierarchical sliding-mode control by optimizing the 

control parameters with HCLPSO. There have been many successful applications of HCLPSO, but 

there is no research on the application of this method to interval uncertainty analysis. HCLPSO has 

outstanding global and local search capabilities, which is expected to provide important help for 

constructing efficient and accurate interval analysis algorithms. However, HCLPSO optimizes by 

generating random sequences. It is difficult to effectively cover the search space due to the uneven 

distribution of point sets [41], which limits its computational efficiency in solving the high-

dimensional complex interval uncertainty analysis problem. 

In this paper, HCLPSO is first introduced to solve the interval uncertainty analysis problem. 

Because of the shortcoming that the original HCLPSO is difficult to effectively cover the search 

space, the multi-body dynamic evolution sequence (DES) [41] is used to optimize the distribution 

space and search direction of the particle swarm. The space coverage capability of HCLPSO is 

strengthened, forming a new interval uncertainty analysis method called DES-PSO. Compared with 
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the original method, the ability of DES-PSO to jump out of the local optimal is stronger, and the 

convergence speed is improved by about 50%. The calculation cost of the traditional interval analysis 

method often increases exponentially with the number of variables. DES-PSO, as an interval analysis 

method based on intelligent optimization algorithm, is of great significance in engineering and 

practice because of its lower computational cost and remarkable efficiency in dealing with multi-

variable engineering problems. 

The remainder of this paper is structured as follows: In Section 2, the interval problem is briefly 

introduced. In Section 3, we review the algorithmic principles of HCLPSO are reviewed. In Section 

4, a new interval uncertainty analysis method DES-PSO is presented, which combines enhanced 

exploration and exploitation of heterogeneous particle swarm optimization with point sets generated 

by dynamic evolution algorithms. In Section 5, we validate the effectiveness of DES-PSO in 

handling interval uncertainty problems is validated through the solution of an interval equation 

system and an engineering case study involving the design of a smartwatch case. The conclusion is 

given in Section 6. 

2. Brief introduction to interval problems 

When dealing with practical engineering problems, it is often difficult to obtain a large amount 

of sample information, which makes it impossible to describe the uncertainty of random variables X  

with an exact probability distribution function. To address this issue, many scholars typically use the 

method of interval models to solve, which can greatly reduce time and computational costs. When 

characterizing its uncertainty using interval models, the uncertain variable X  is referred to as an 

interval variable and can be represented as 

 1 2, , , ,D i i ix x x a x b=  X ,                                                      (1) 

where the subscript 1, 2, ,i D , D denotes the number of variables, 
ia  and 

ib  represent the lower 

and upper bounds of the interval for the variable 
ix , respectively. 

Based on the interval variable X , a general form of interval analysis model can be established 

as 

( )=Y f X ,                                                                    (2) 

where ( )f  is the structural response function, and Y  is the output uncertainty response. 

Since X  is interval variable, the output of the response function will vary within an interval 

rather than being a definite value, which is  1 2 , min , max, , , , ,M i i iy y y y y y =   Y . Each 
iy  

corresponds to a structural response function ( )if  . The purpose of interval uncertainty analysis is to 

determine the response interval of the response function, i.e., to ascertain the boundaries of the 

output response. Therefore, the problem of interval uncertainty analysis for a structure can be 

transformed into the following two optimization problems: 
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( )( )

( )( )

, min

, max

min

max

i i

i i

y f

y f

 =


=

X

X
.                                                          (3) 

3. Brief introduction to HCLPSO 

PSO is a population-driven evolutionary strategy [42]. In this strategy, each potential solution is 

symbolically represented as a soaring bird, which optimizes its position in the solution space based 

on its own flight experience and the experiences of other members of the population. Under the 

framework of HCLPSO [34], to achieve an in-depth exploration of the global search and fine 

exploitation of local search, the population is divided into two specialized subpopulations, each 

responsible for exploration and exploitation tasks. 

To simplify our subsequent analysis process, HCLPSO is presented in a matrix-vector form, and 

the population size of the problem is defined as N , the maximum number of iterations as G , the 

objective function as f , and the feasible solution as ( )
T 1

1 2, , , D

Dx x x R = x , where  ,i i ix a b . 

Let 

( ) ( )
T T

1 2 1 2, , , , , , ,D Da a a b b b= =a b .                                              (4) 

Let the population be represented as 

,1 ,2 ,, , ,g g g g N
 =  X x x x ,                                                           (5) 

where the subscript g  represents the g-th iteration step. The initial population in HCLPSO is 

( )0 0N=  +  − X a 1 ε b 1 a 1 ,                                                     (6) 

where   and  denote the Kronecker product and the Hadamard product, respectively, 
N1  is a 

vector of size 1 N , with each element being 1, and 
0ε  is a matrix of random numbers uniformly 

distributed between 0 and 1, with a matrix size of D N . 

When iterating the population of HCLPSO, the updating method is as follows: 

1, , 1, , 1, 2, ,g i g i g i i N+ += + =x x v ,                                                       (7) 

where 
1,g i+v  is the velocity of the i-th particle. The population of HCLPSO is divided into exploration 

and exploitation subpopulations, with the sizes of the two types of subpopulations being 
1N  and 

2N , 

respectively, and their velocity updating formulas are also different. The expression for the velocity 

updating formula of the exploration subpopulation is 

( )1, , ,1, , , 1, 1g i g g i g g i g i g iw k i N+ = + −  v v ε p x ,                                          (8) 

where 0.00 0.79 /gw g G= −  and 3 0.5 /gk g G= − , 
,1,g iε  is a vector of random numbers uniformly 
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distributed between 0 and 1, with a vector size of 1D  , and 
,g ip  is a random comprehensive 

learning vector, which enables the i-th particle to learn from the best experiences of all other particles. 

The relevant calculation formula for 
,g ip  can be found in Ref. [34]. The expression for the velocity 

updating formula of the exploitation subpopulation is 

( ) ( )1, , ,1 ,2, , , ,2 ,3, ,best , 1,g i g g i g g i g i g i g g i g g iw c c N i N+ = + − + −  v v ε p x ε x x ,                    (9) 

where 
,1 2.5 2gc g G= −  and 

,2 0.5 2gc g G= +  are used in HCLPSO, 
,2,g iε  and 

,3,g iε  are two vectors 

of random numbers uniformly distributed between 0 and 1, with both vector sizes being 1D  , and 

( )( ),best ,arg min , 1g g if i N=    x x . 

HCLPSO possesses outstanding global and local search capabilities, which are expected to 

provide significant assistance in constructing efficient and precise interval analysis algorithms. 

However, HCLPSO searches for optimization by generating random sequences, which has the 

drawback of potentially failing to effectively cover the search space due to the uneven distribution of 

the sequences. 

4. The proposed method 

In this section, an efficient interval analysis method is proposed to deal with multi-variable 

engineering problems. By introducing DES, this method improves the uniformity and coverage 

ability of the initial distribution of the particle swarm and expands the search range of the algorithm. 

Therefore, this method overcomes the shortcomings of HCLPSO in the search process due to the 

lack of sampling uniformity, and obtains a stronger ability to jump out of local optimal and faster 

convergence speed. In Section 4.1, the construction method of DES is briefly introduced. The DES-

PSO obtained by improving HCLPSO based on DES is given in Section 4.2. 

4.1. Dynamic evolution sequence 

DES is a low discrepancy sequence (LDS) proposed in Refs. [41,43]. The concept of DES 

originates from an in-depth observation of physical phenomena, where many multi-body systems in 

nature have static solutions with good uniformity. In the DES, all particles in space are subject to 

gravitational forces acting between each other. 

Assuming that all particles in space are within a hypercube  0,1
D

=Ω , where D  denotes the 

spatial dimension, which is also the number of variables. The sample sequence is 

 , 1 , , ,D N i Nx=X x x , with each sample point considered as a star of mass m . The coordinates of 

the i-th star are ( )1, , ,i i ik iDx x x=x , and there are interactive forces between points. The 

Lagrangian equations for these N  stars are 
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0

1 *
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1 1 1 ,

dτ

, , , , ,
1 1

2

t

pN D

ik p
i k i j N q ij

S L

i j k N D N

L m x Q
d= =   

 =



  
 = −   

 



 
,                        (10) 

where 1Q =  is the generalized gravitational constant, 
,q ijd  is the generalized distance between the i-

th and j-th stars, q  and p  are control parameters that affect the optimization performance of the 

algorithm, with specific values available in Ref. [41], 
*N  denotes the set of positive integers. The 

expression for distance 
,q ijd  is 

( )

( )

22

, 2
1

1

1

D
ik jk ik jk

q ij

k q q q

ik jk ik jk

x x x x
d

x x x x
=

− − −
=

 − − + −
  

 .                                                (11) 

According to the variational principle of Hamilton [44], it can be derived that 

0, 1 , 1ik ikmx f i N k D+ =     ,                                                   (12) 

where 
ikf  is the external force on the i-th star in the k-dimension. The expression of 

ikf  is 

1

2
1 1, ,

1

p

p N
ijk

ik p p
i j N jq ij q ij

j i

a
f Q

d d

−

+
   =



 
= −   

 
  ,                                                    (13) 

where 

( ) ( ) ( )

( )

1
1

2
1

sgn 1 1
,

1

q
q

ik jk ijk ijk ijk ijk

ijk ijk ik jk

q qq

jik ijk

x x
a x x

+
+

+

 −  −  −  − 
  =  = −

 −  + 
  

.              (14) 

For all sample points to reach a stationary state, an artificial damping force is applied to each 

sample, thus Eq (12) can be represented as the following common dynamical formula [45]: 

0, 1 , 1ik ik ikmx cx f i N k D+ + =     ,                                          (15) 

where c  is the damping coefficient. 

Eqation (15) is a nonlinear dynamical equation. This subsection uses a symplectic algorithm [44,46] 

to discretize the equation: First, an initial sequence is given as ( ) ( ) ( ) 0 0 0

1 , , N=X x x , where 
( )0

ikx  

represents the i-th sample point in the k-th dimension at the initial iteration step. The basic iteration 

formula of the algorithm can be expressed as 
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( ) ( ) ( )

( )
( ) ( )

1 0 01 2

1
1 1 2

0

1

2
ik ik ik
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g ik ik ik
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x x m f t

A x A x f
x

A

−

−
+


= − 




− − =


,                                               (16) 

in which 

( )

( )( )

( )

( )( )

( )( )
( )

( )( )
( )

1
1
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1 1
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，
X X

X X

,                                          (17) 

( )0

F
X  is the Frobenius norm, t  and   are also control parameters that affect the optimization 

performance of the algorithm, with specific values available in Ref. [41]. 

When all particles are in a stationary state, the generated sequence exhibits excellent uniformity, 

and this sequence has been proven to perform well in areas such as statistical problem-solving, 

intelligent optimization, experimental design, and physical model simulation [47–49]. 

4.2. Dynamic evolution sequence-assisted HCLPSO (DES-PSO) 

From Eqs (6), (8), and (9), it can be seen that the initial population and velocity updating 

formulas of HCLPSO are random sequences, which have a relatively poor effect in covering the 

search space compared to uniformly distributed populations. In order to improve the search 

efficiency and solution quality of HCLPSO, the DES introduced in Subsection 4.1 is applied to 

HCLPSO in this subsection. 

In this subsection, the random sequences in the velocity updating formulas of HCLPSO are 

replaced with the DES, and Eqs (8) and (9) are rewritten as 

( ) ( )1

1, , , , 1, 1g i g g i g i g i g iw k i N+ = + −  v v P p x ,                                            (18) 

( ) ( ) ( )2

1, , ,1 , , ,2 ,3, ,best , 1,g i g g i g i g i g i g g i g g iw c c N i N+ = + − + −  v v P p x ε x x ,                 (19) 

where ( ) ( ) ( )( )
1

1 1 1

1 , , N=P P P  is a DES of size 
1D N , and ( ) ( ) ( )( )

1

2 2 2

1 , , N N−=P P P  is a DES of size 

( )1D N N − . 

Similarly, the random initial population of HCLPSO is replaced with an initial population 
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generated by the DES, i.e., 

( ) ( )0

0 N=  +  − X a 1 P b 1 a 1 ,                                               (20) 

where 
( )0

P  is a DES of size D N . 

This paper names the method of improving HCLPSO with dynamic evolution sequence as DES-

PSO. The DES-PSO pseudocode is shown in Table 1: 

Table 1. The psseudocode of DES-PSO. 

1. Input D , a , b , 
1N , 

2N  and G ; 
1 2N N N= + ; 0g = ; 

2. Initialize population 
0X  according to Eq (20); 

3. While g G  

4.         1g g= + ; 

5.         Find ( )( ),best ,arg min ,  1g g if x i N=  x ; 

6.         For 1:i N=  

7.                If 
11 i N   

8.                    Update 
1,g i+v  according to Eq (18); 

9.                Else 

10.                    Update 
1,g i+v  according to Eq (19); 

11.                End 

12.                
1, , 1,g i g i g i+ += +x x v ; 

13.         End 

14. End 

15. Find ( )( ),best ,arg min ,  1G G if x i N=  x ; 

16. Output 
,bestGx  as the solution. 

By comparing Eqs (8) and (9) with Eqs (18) and (19), it can be seen that DES-PSO and 

HCLPSO have the same algorithm complexity. However, the result of each iteration of DES-PSO is 

better than that of HCLPSO because DES-PSO has a stronger ability to cover the search space. 

Therefore, the overall number of iteration steps required is lower and the efficiency is higher. Two 

numerical examples will be selected for comparison in the next section to verify the correctness and 

efficiency of DES-PSO. 

5. Numerical examples 

5.1. Linear interval equation systems 

This example considers the solution of the following linear interval equation system, as shown 

in the following equation: 
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1

2

4,43,6 3,1.5

1.5,3 3,6 4,4

x

x

 − −    
=    

− −      

.                                           (21) 

This problem was studied in Ref. [50] and the solution domain was plotted, as shown in Figure 

1. From Figure 1, it can be seen that the solution domain of this problem is non-convex, and the 

optimization problem at this time may have more than one extreme point. This requires the use of a 

stochastic optimization algorithm for solving. 

 

Figure 1. The solution domain of Eq (21). The region enclosed by the four-pointed star is 

the possible distribution region of all the solutions ( )1 2,x x  of the Eq (21). 

In this subsection, the DES-PSO proposed in Subsection 4.2 and the original HCLPSO 

algorithm are used to solve this interval equation system simultaneously. The computational results 

show that both algorithms can obtain the exact upper and lower bounds, namely 

   1 16 / 3,16 / 3x = −  and    2 16 / 3,16 / 3x = − . This proves that both the DES-PSO and the original 

HCLPSO algorithms have good optimization accuracy. To further compare the computational 

efficiency of the two algorithms, the number of convergence steps required for each algorithm to find 

the exact solution of the interval upper and lower bounds is counted, and the results are listed in 

Table 2. 

Table 2. Comparison of convergence steps of two algorithms. 

Variable name 
Interval lower bound Interval upper bound 

DES-PSO HCLPSO DES-PSO HCLPSO 

1x  2452 3371 2249 3211 

2x  1904 3779 1379 3077 
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From Table 2, it can be seen that the convergence speed of DES-PSO is much faster than the 

convergence speed of the original HCLPSO. To better measure the degree of speed improvement, we 

introduce the relative speedup percentage as a measure of acceleration. The relative percentage can 

be expressed as (HCLPSO convergence steps - DES-PSO convergence steps)/DES-PSO convergence 

steps 100% . When solving the lower bound of 
1x , DES-PSO can achieve a relative speedup of 

27.26%, and when solving the upper bound of 
1x , DES-PSO can achieve a relative speedup of 

30.93%. When solving the lower bound of 
2x , DES-PSO can achieve a relative speedup of 49.61%, 

and when solving the upper bound of 
2x , DES-PSO can achieve a relative speedup of 55.18%. 

Combining the results from Table 2, it can be concluded that our improved algorithm is more 

computationally efficient when dealing with interval problems. 

5.2. Uncertainty interval analysis of smartwatches 

3 Impact Points

DisplayLens

Bracket

Mainboard

Device Housing

m

 

Figure 2. Schematic diagram of the smart watch. 

Dynamic impact analysis [51–53] and heat conduction analysis [54–56] play significant roles in 

the field of engineering applications, especially for precision electronic devices [57]. Wearable 

electronic devices have a high degree of integration, during the design process, it is necessary to 

consider the requirements of mechanical, electrical, and thermal performance simultaneously. For 

example, it is necessary to ensure that the stress and the temperature of the embedded chips in the 

watch are within a reliable working range under impact conditions and high-temperature 

environments. This example uses the smartwatch model provided in Ref. [58], which is shown in 

Figure 2. This example studies the stress 1

N , 2

N , and 3

N  distribution intervals of the three different 

impact points shown in Figure 2, under impact conditions, and the stress 
H  of the solder between 

the display and the mainboard, as well as the temperature 
1T  and 

2T  distribution intervals of the two 

embedded chips in the smartwatch under high-temperature environments. 

The random variables and their distribution intervals in the watch are shown in Table 3. The 

interval random variables such as the smartwatch shell thickness, mainboard thickness, bracket 

thickness, and display thickness have a significant impact on the stress at the impact points and the 

chip temperature. Therefore, 65 finite element samples are used in [58], considering the 10 interval 
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random variables in Table 3, to construct the response surface functions for the stress and 

temperature of the smartwatch, as detailed in Table 4. 

Table 3. Interval parameters of random variables. 

Variable name Random variable Distribution interval 

Shell thickness ( )1 mmX  ( )0.91,1.09  

Mainboard thickness ( )2 mmX  ( )0.91,1.09  

Bracket thickness ( )3 mmX  ( )0.91,1.09  

Display thickness ( )4 mmX  ( )0.91,1.09  

Lens thickness ( )5 mmX  ( )0.91,1.09  

Young modulus of mainboard ( )1 MPaP  ( )10400,11600  

Young modulus of Display ( )2 MPaP  ( )22600,23400  

Young modulus of Lens ( )3 MPaP  ( )2380,2580  

Power consumption of chip 1 ( )4 WP  ( )0.09,0.21  

Power consumption of chip 2 ( )5 WP  ( )0.09,0.21  

Table 4. Six response surface functions. 

Variable Response surface function 

( )1 MPaN  

( )2 2 6 2

1 2 2 3 2 3 1

2

1 3 1 4 1 5 3 3 4

2 2

3 5 4 4 5 5

0.001848 0.3688 973.18 1.609 10 30.19

1.133 33.10 1.313 0.4128 3.7317

0.26871 56.55 65.54 55.32 129.86

N P P P P P X

X X X X X X X X X

X X X X X X

 −= − + +  −

+ + + + −

− − + − +

 

( )2 MPaN  

( )2 2 6 2

2 2 2 3 2 3 1

2

1 3 1 4 1 5 3 3 4

2 2

3 5 4 4 5 5

0.03509 0.1813 1277 1.461 10 35.80

6.112 32.86 2.891 6.809 4.303

9.209 63.71 67.43 64.37 135.2

N P P P P P X

X X X X X X X X X

X X X X X X

 −= − + + −  −

+ + + − +

+ − + − +

 

( )3 MPaN  

( )2 2 6 2

3 2 2 3 2 3 1

2

1 3 1 4 1 5 3 3 4

2 2

3 5 4 4 5 5

0.03054 0.95 802.6 4.645 10 28.19

4.188 28.63 0.2030 9.152 16.12

15.75 42.17 62.61 36.32 119.5

N P P P P P X

X X X X X X X X X

X X X X X X

 −= − + +  −

+ + + + −

− − + − +

 

( )MPaH  

2 2

1 1 2 1 1 2

2 2

1 3 2 2 3 3

0.0000002578 0.00002501 0.9103 0.02502

0.6950 0.1007 0.0125 2.372 37.54

H P P X X X X

X X X X X X

 = − − +

+ + + − +
 

( )o

1 CT  

2 2

1 1 1 2 1 3 2

2

2 3 3 4 5 4 5

0.5473 2.932 0.3207 5.589

2.970 1.206 71.85 72.81 299.3 62.05

T X X X X X X

X X X P P P P

= − − +

− − + + + +
 

( )o

2 CT  

2 2

2 1 1 2 1 3 2

2

2 3 3 4 5 4 5

0.5448 2.923 0.3219 5.569

2.973 1.204 61.10 96.78 255.2 61.11

T X X X X X X

X X X P P P P

= − − +

− − + + + +
 

The DES-PSO proposed in Subsection 4.2 and the original HCLPSO are used to simultaneously 

optimize the six response surface functions listed in Table 4, with the computational results presented 

in Table 5. It can be seen from Table 5 that both algorithms can obtain the exact upper and lower 

bounds for the six surrogate models, indicating that both the improved HCLPSO algorithm and the 

original HCLPSO algorithm have good optimization accuracy. To further compare the computational 

efficiency of the two algorithms, the number of convergence steps required for each algorithm to find 
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the exact solutions for the interval upper and lower bounds is counted and listed in Table 6. 

Table 5. Comparison of the results of two algorithms. 

Variable 
Lower bound of the interval Upper bound of the interval 

DES-PSO HCLPSO DES-PSO HCLPSO 

( )1 MPaN  89.060 89.060 105.318 105.318 

( )2 MPaN  66.908 66.908 89.221 89.221 

( )3 MPaN  26.612 26.612 47.865 47.865 

( )MPaH  62.230 62.230 69.937 69.937 

( )o

1 CT  75.104 75.104 105.603 105.603 

( )o

2 CT  74.984 74.984 105.475 105.475 

From Table 6, it can be seen that DES-PSO has a significantly faster convergence rate than the 

original HCLPSO algorithm. In the process of determining the lower bounds of the six response 

surface functions, the convergence speed of DES-PSO is on average 57.96% faster than the original 

algorithm, with the highest improvement being 62.80%. In the process of determining the upper 

bounds of the six response surface functions, the convergence speed of the improved algorithm is on 

average 56.71% faster than the original algorithm, with the maximum improvement being 60.56%. 

These results indicate that DES-PSO can efficiently handle multivariable uncertainty interval 

analysis problems. 

Table 6. Comparison of convergence steps of two algorithms. 

Variable 
Lower bound of the interval Upper bound of the interval 

DES-PSO HCLPSO DES-PSO HCLPSO 

1

N  958 2287 985 2249 

2

N  1114 2499 1070 2436 

3

N  1061 2415 1105 2480 
H  667 1793 773 1960 

1T  922 2224 1000 2313 

2T  998 2314 1095 2446 

Average improvement 57.96% 56.71% 

6. Conclusions 

In order to construct an accurate and efficient method for interval uncertainty analysis, 

HCLPSO is introduced into interval analysis in this paper. Aiming at the issue of high computational 

cost in traditional HCLPSO, we optimize the random search mechanism of HCLPSO is optimized 

with the DES, constructing a new efficient interval analysis method, DES-PSO. The newly proposed 

method is applied to the solution of interval equation systems and the design of smartwatch casings. 

It is proved that the newly proposed DES-PSO can significantly improve computational efficiency 

while ensuring calculation accuracy, thus having a good ability to solve multi-variable engineering 

problems. 

The study, while valuable, has certain limitations. Although DES can be constructed in advance, 

the computational costs for the first time to construct DES with dimensions higher than 20 or particle 
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numbers greater than 1000 can not be negligible. Meanwhile, it needs to rely on experience to 

determine the number of particles needed to solve the problem when solving specific problems. 

When the number of particles is insufficient, there is a risk that the optimal solution will not be found. 

When the number of particles is too large, the calculation time is large. In addition, we use only the 

DES-PSO algorithm is only used to solve the interval model problem in this paper. In future research, 

we aim to employ DES-PSO to interval processes and interval field problems [59,60]. 
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