We improve Kaliman's weak Jacobian Conjecture by the Hurwitz formula and resolution of singular curves. Furthermore, we give a more general form of Kaliman's weak Jacobian Conjecture.
Citation: Yan Tian, Chaochao Sun. A note on Kaliman's weak Jacobian Conjecture[J]. AIMS Mathematics, 2024, 9(11): 30406-30412. doi: 10.3934/math.20241467
We improve Kaliman's weak Jacobian Conjecture by the Hurwitz formula and resolution of singular curves. Furthermore, we give a more general form of Kaliman's weak Jacobian Conjecture.
[1] | H. Bass, E. H. Connell, D. Wright, The Jacobian Conjection: Reduction of degree and formal of expansion of the inverse, Bull. Aust. Math. Soc., 7 (1982), 287–330. |
[2] | M. De Bondt, D. Yan, Irreducibility properties of Keller maps, Algebra Colloq., 23 (2016), 663–680. https://doi.org/10.48550/arXiv.1304.0634 doi: 10.48550/arXiv.1304.0634 |
[3] | N. Chau, Pencils of irreducible rational curves and plane Jacobian Conjecture, Ann. Polon. Math., 101 (2011), 47–53. https://doi.org/10.48550/arXiv.0905.3939 doi: 10.48550/arXiv.0905.3939 |
[4] | A. Essen, Polynomial Automorphisms and the Jacobian Conjecture, Berlin: Birkhäuser Verlag, 190 (2000). http://doi.org/10.1007/978-3-0348-8440-2 |
[5] | P. Jedrzejewicz, J. Zieliński, An approach to the Jacobian Conjecture in terms of irreducibility and square-freeness, Eur. J. Math., 3 (2017), 199–207. http://dx.doi.org/10.1007/s40879-017-0145-5 doi: 10.1007/s40879-017-0145-5 |
[6] | S. Kaliman, On the Jacobian Conjecture, Proc. Amer. Math. Soc., 117 (1993), 45–51. http://dx.doi.org/10.2307/2159696 doi: 10.2307/2159696 |
[7] | Q. Liu, Algebraic geometry and arithmetic curves, New York: Oxford University Press, 2002. |
[8] | M. Miyanishi, A geometric approach to the Jacobian Conjecture in dimension two, J. Algebra., 304 (2006), 1014–1025. http://dx.doi.org/10.1016/j.jalgebra.2006.02.020 doi: 10.1016/j.jalgebra.2006.02.020 |
[9] | D. Mumford, Algebraic geometry I: Complex projective varieties, New York: Springer-Verlag, 1976. |
[10] | J. H. Silverman, The arithmetic of elliptic curves, Berlin: Springer-Verlag, 2009. Available from: https://link.springer.com/book/10.1007/978-0-387-09494-6 |
[11] | S. Smale, Mathematical problems for the next century, Math. Intell., 20 (1998), 7–15. http://dx.doi.org/10.1007/BF03025291 doi: 10.1007/BF03025291 |
[12] | C. Sun, K. Xu, On tame kernels and second regulators of number fields and their subfields, J. Number Theory, 171 (2017), 252–274. http://dx.doi.org/10.1016/j.jnt.2016.07.009 doi: 10.1016/j.jnt.2016.07.009 |
[13] | D. Zhang, C. Sun, Remarks on the $K_2$ group of $\mathbb{Z}[\zeta_p]$, AIMS Math., 7 (2022), 5920–5924. http://dx.doi.org/10.3934/math.2022329 doi: 10.3934/math.2022329 |