Citation: Wei Liu. Global injectivity of differentiable maps via W-condition in $\mathbb{R}^2$[J]. AIMS Mathematics, 2021, 6(2): 1624-1633. doi: 10.3934/math.2021097
[1] | A. Belov, L. Bokut, L. Rowen, J. T. Yu, Automorphisms in Birational and Affine Geometry, Vol. 79, Springer International Publishing Switaerland, 2014. |
[2] | H. Bass, E. Connell, D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 2 (1982), 287-330. |
[3] | M. de Bondt, A. van den Essen, A reduction of the Jacobian conjecture to the symmetric case, Proc. Amer. Math. Soc., 8 (2005), 2201-2205. |
[4] | F. Braun, J. Venato-Santos, Half-Reeb components, Palais-Smale condition and global injectivity of local diffeomorphisms in $\mathbb{R}^3$, Publ. Mat., 58 (2014), 63-79. |
[5] | M. Chamberland, G. Meisters, A mountain pass to the Jacobian conjecture, Canad. Math. Bull., 41 (1998), 442-451. doi: 10.4153/CMB-1998-058-4 |
[6] | A. Cima, A. Gasull, F. Manosas, The discrete Markus-Yamabe problem, Nonlinear Anal. Theory Methods Appl., 35 (1999), 343-354. doi: 10.1016/S0362-546X(97)00715-3 |
[7] | A. Cima, A. van den Essen, A. Gasull, E. Hubbers, F. Manosas, A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math., 131 (1997), 453-457. doi: 10.1006/aima.1997.1673 |
[8] | S. L. Cynk, K. Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polo. Math., 1 (1991), 31-35. |
[9] | A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Berlin: Birkhäuser, 2000. |
[10] | A. van den Essen, The amazing image conjecture, Image, 1 (2010), 1-24. |
[11] | A. Fernandes, C. Gutiérrez, R. Rabanal, Global asymptotic stability for differentiable vector fields of $\mathbb{R}^2$, J. Diff. Equat., 206 (2004), 470-482. doi: 10.1016/j.jde.2004.04.015 |
[12] | R. Fessler, A proof of the two dimensional Markus-Yamabe stability conjecture and a generalization, Ann. Polon. Math., 62 (1995), 45-74. doi: 10.4064/ap-62-1-45-74 |
[13] | C. Gutiérrez, A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. Henri Poincaré, 12 (1995), 627-671. doi: 10.1016/S0294-1449(16)30147-0 |
[14] | C. Gutiérrez, C. Maquera, Foliations and polynomial diffeomorphisms of $\mathbb{R}^3$, Math. Z., 162 (2009), 613-626. |
[15] | C. Gutiérrez, B. Pires, R. Rabanal, Asymototic stability at infinity for differentiable vector fields of the plane, J. Diff. Equat., 231 (2006), 165-181. doi: 10.1016/j.jde.2006.07.025 |
[16] | C. Gutiérrez, N. Van. Chau, A remark on an eigenvalue condition for the global injectivity of differentiable maps of $\mathbb{R}^2$, Disc. Contin. Dyna. Syst., 17 (2007), 397-402. doi: 10.3934/dcds.2007.17.397 |
[17] | C. Gutiérrez, R. Rabanal, Injectivity of differentiable maps $\mathbb{R}^2$ → $\mathbb{R}^2$ at infinity, Bull. Braz. Math. Soc. New Series, 37 (2006), 217-239. doi: 10.1007/s00574-006-0011-4 |
[18] | C. Gutiérrez, A. Sarmiento, Injectivity of C1 maps $\mathbb{R}^2$ → $\mathbb{R}^2$ at infinity, Asterisque, 287 (2003), 89-102. |
[19] | O. H. Keller, Ganze gremona-transformation, Monatsh. Math., 47 (1929), 299-306. |
[20] | A. Belov-Kanel, M. Kontsevich, The Jacobian conjecture is stably equivalent to the Dixmier conjecture, Mosc. Math. J., 7 (2007), 209-218. doi: 10.17323/1609-4514-2007-7-2-209-218 |
[21] | W. Liu, Q. Xu, A minimax principle to the injectivity of the Jacobian conjecture, arXiv.1902.03615, 2019. |
[22] | W. Liu, A minimax method to the Jacobian conjecture, arXiv.2009.05464, 2020. |
[23] | C. Maquera, J. Venato-Santos, Foliations and global injectivity in $\mathbb{R}^n$, Bull. Braz. Math. Soc. New Series, 44 (2013), 273-284. doi: 10.1007/s00574-013-0013-y |
[24] | L. Markus, H. Yamabe, Global stability criteria for differential system, Osaka Math. J., 12 (1960), 305-317. |
[25] | S. Pinchuk, A counterexamle to the strong real Jacobian conjecture, Math. Z., 217 (1994), 1-4. doi: 10.1007/BF02571929 |
[26] | R. Rabanal, An eigenvalue condition for the injectivity and asymptotic stability at infinity, Qual. Theory Dyn. Syst., 6 (2005), 233-250. doi: 10.1007/BF02972675 |
[27] | R. Rabanal, On differentiable area-preserving maps of the plane, Bull. Braz. Math. Soc. New Series, 41 (2010), 73-82. doi: 10.1007/s00574-010-0004-1 |
[28] | P. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. Math., 146 (1997), 647-691. doi: 10.2307/2952457 |
[29] | P. Rabier, On the Malgrange condition for complex polynomials of two variables, Manuscr. Math., 109 (2002), 493-509. doi: 10.1007/s00229-002-0322-8 |
[30] | B. Smyth, F. Xavier, Injectivity of local diffeomorphisms from nearly spectral conditions, J. Diff. Equat., 130 (1996), 406-414. doi: 10.1006/jdeq.1996.0151 |
[31] | W. Zhao, New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture, Proc. Amer. Math. Soc., 139 (2011), 3141-3154. doi: 10.1090/S0002-9939-2011-10744-5 |