

AIMS Mathematics, 9(11): 30406–30412. DOI: 10.3934/math.20241467 Received: 07 July 2024 Revised: 22 September 2024 Accepted: 08 October 2024 Published: 25 October 2024

https://www.aimspress.com/journal/Math

Research article

A note on Kaliman's weak Jacobian Conjecture

Yan Tian¹ and Chaochao Sun^{2,*}

¹ School of Mathematics, Liaoning Normal University, Dalian 116029, China

² School of Mathematics and Statistics, Linyi University, Linyi 276005, China

* Correspondence: Email: sunuso@163.com.

Abstract: We improve Kaliman's weak Jacobian Conjecture by the Hurwitz formula and resolution of singular curves. Furthermore, we give a more general form of Kaliman's weak Jacobian Conjecture.

Keywords: Jacobian Conjecture; Keller map; Hurwitz formula **Mathematics Subject Classification:** 13F20, 14R15

1. Introduction

Let $\mathbb{C}[X_1, \dots, X_n]$ denote the polynomial ring in the variables X_1, \dots, X_n over \mathbb{C} . A *polynomial map* is a map $F = (F_1, \dots, F_n) : \mathbb{C}^n \to \mathbb{C}^n$ of the form

$$(z_1, \cdots, z_n) \rightarrow (F_1(z_1, \cdots, z_n), \cdots, F_n(z_1, \cdots, z_n)),$$

where each F_i belongs to $\mathbb{C}[X_1, \dots, X_n]$. Such a polynomial map is called *invertible* if there exists a polynomial map $G = (G_1, \dots, G_n) : \mathbb{C}^n \to \mathbb{C}^n$ such that $X_i = G_i(F_1, \dots, F_n)$ for all $1 \le i \le n$, i.e., *G* is the left inverse of *F*. It is easy to show that *G* is also a right inverse of *F*. So *F* is invertible, i.e., *F* is an isomorphism, in the sense of morphisms of algebraic varieties.

Consider a polynomial map $F : \mathbb{C}^n \to \mathbb{C}^n$. How can we recognize if a polynomial map F is invertible?

Let $J(F) = (\partial F_i / \partial X_j)$ be the Jacobian matrix of *F*. Clearly, the invertibility of the matrix J(F) is equivalent to det $J(F) \in \mathbb{C}^{\times}$. It is easy to show that if $F : \mathbb{C}^n \to \mathbb{C}^n$ is invertible, then det $J(F) \in \mathbb{C}^{\times}$. Conversely, there is the following famous conjecture.

Conjecture 1.1. If det $J(F) \in \mathbb{C}^{\times}$, then F is invertible.

The Jacobian Conjecture was first formulated by O. H. Keller in 1939. Aside from the trivial case n = 1, this conjecture remains an open problem for all $n \ge 2$ up to now. The Jacobian Conjecture appeared as Problem 16 on a list of 18 famous open problems in the paper by Steve Smale [11].

The Jacobian Conjecture has been reduced to the case of degree 3 using the method of algebraic K-theory by Bass, Connell, and Wright [1]. The second author has achieved some results in algebraic K-theory [12, 13].

When n = 2, Kaliman proposed the weak Jacobian conjecture in [6].

Conjecture 1.2. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ with det $J(F) \in \mathbb{C}^{\times}$. Suppose that for every $c \in \mathbb{C}$ the fibre $V(F_1) := \{(x, y) \mid F_1(x, y) = c\}$ is irreducible. Then the map F is invertible.

The fiber $V(F_1)$ is irreducible if and only if the polynomial $F_1(x, y) - c$ is irreducible. For a polynomial $f(x, y) \in \mathbb{C}[x, y]$ with the degree degf(x, y) > 1, in general the polynomial f(x, y) - c is not always irreducible for each $c \in \mathbb{C}$. Hence, our main improvement is the following theorem (see Section 2, Thm.2.8)

Theorem 1.3. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ with $\det J(F) \in \mathbb{C}^{\times}$. Suppose that there exist infinitely many $c \in \mathbb{C}$ such that the polynomial $F_1(x, y) - c$ is irreducible. Then the map F is invertible.

Furthermore, we give a general form of the above theorem

Theorem 1.4. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ with det $J(F) \in \mathbb{C}^{\times}$. If there exist infinitely many points $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_1(x, y) + bF_2(x, y) + c$ is irreducible, then the map F is invertible.

In the above theorem, the condition that $aF_1(x, y) + bF_2(x, y) + c$ is irreducible can be independent of the Jacobian conjecture. This leads us to propose the following conjecture.

Conjecture 1.5. Let $F_1(x, y), F_2(x, y) \in \mathbb{C}[x, y]$ be algebraically independent polynomials. Then there exist infinitely many points $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_1(x, y)+bF_2(x, y)+c$ is irreducible.

There are many works on the case n = 2. A good introduction about the classical results can be found in chapter 10 in [4]. Miyanishi [8] proved that the Jacobian conjecture holds true if a generalized Sard property holds true for the affine plane and an \mathbb{A}^1 -fibration on \mathbb{A}^2 . Jedrzejewicz and Zieliński in [5] give a survey of a new purely algebraic approach to the Jacobian Conjecture in terms of irreducible elements and square-free elements. A similar result has been achieved in [2,3]. However, our methods are based on the Hurwitz formula and resolution of the singular curve.

2. Proof of theorem

Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map such that $\det J(F) \in \mathbb{C}^{\times}$. Denote $m = \max\{\deg F_1, \deg F_2\}$ the maximal degree of F_1 and F_2 . Then we have a rational map of projective spaces

$$\bar{F} = (\bar{F}_1, \bar{F}_2, Z^m) : \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}, \quad (x : y : z) \mapsto (\bar{F}_1 : \bar{F}_2 : z^m),$$

where $\bar{F}_i(x, y, z) = z^m F_i(\frac{x}{z}, \frac{y}{z})$ are the homogeneous polynomials. Let

$$L_{\infty} := \mathbb{P}^{1}_{\mathbb{C}} = \{ (x : y : z) \mid z = 0 \}.$$

Then $\mathbb{P}^2_{\mathbb{C}} = \mathbb{C}^2 \bigcup \mathbb{P}^1_{\mathbb{C}}$. Moreover, the restriction of \overline{F} on \mathbb{C}^2 is F and

$$\bar{F}|_{\mathbb{P}^1_{\mathbb{C}}}: \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}, \quad (x:y:0) \mapsto (\bar{F}_1:\bar{F}_2:0).$$

AIMS Mathematics

Volume 9, Issue 11, 30406-30412.

Lemma 2.1. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map such that $\det J(F) \neq 0$ in $\mathbb{C}[x, y]$. Then F_1, F_2 are algebraically independent over \mathbb{C} and $\mathbb{C}(F_1, F_2) \subset \mathbb{C}(x, y)$ is a finite field extension.

Proof. A proof can be found in [4, Prop.1.1.31].

Lemma 2.2. For the polynomial map $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$, if det $J(F) \neq 0$ in $\mathbb{C}[x, y]$, then the cardinality of the fibers of F is bounded by the degree

$$\deg F := [\mathbb{C}(x, y) : \mathbb{C}(F_1, F_2)].$$

Proof. See [4, Thm.1.1.32].

Lemma 2.3. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be the polynomial map such that $\det J(F) \neq 0$ in $\mathbb{C}[x, y]$. Then there exists a Zariski open set $U \subset \mathbb{C}^2$ such that

$$#F^{-1}(p) = [\mathbb{C}(x, y) : \mathbb{C}(F_1, F_2)], \quad \forall p \in U.$$

Proof. See [9, Prop.3.17]. The condition det $J(F) \neq 0$ ensures that the map F is dominating map. \Box

Lemma 2.4. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be the polynomial map such that $\det J(F) \in \mathbb{C}^{\times}$. Denote $V(F_1) = \{(x, y) \in \mathbb{C}^2 \mid F_1(x, y) = c, c \in \mathbb{C}\}$ and $L_c = \{(x, y) \in \mathbb{C}^2 \mid x = c\}$. Then the morphism

$$F|_{V(F_1)}: V(F_1) \to L_c, \quad (x, y) \mapsto (c, F_2(x, y))$$

is étale morphism.

Proof. First, the morphism *F* is étale. Let $L_c = \{(x, y) \in \mathbb{C}^2 \mid x = c\}$. Then $V(F_1) = F^{-1}(L_c)$. Hence we have the fiber product

$$V(F_1) \xrightarrow{F_{|V(F_1)}} L_c$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{C}^2 \xrightarrow{F} \mathbb{C}^2.$$

Because the étale map is stable under fibered products (see [7, Chap.4, Prop.3.22]), the map F_2 : $V(F_1) \rightarrow L_c$ is étale.

Lemma 2.5. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be the polynomial map such that $\det J(F) \neq 0$. Denote $V(F_1)$ and L_c as in Lemma 2.4. Consider

$$F|_{V(F_1)}: V(F_1) \rightarrow L_c, \quad (x, y) \mapsto (c, F_2(x, y)).$$

Then there exists a Zariski open set $U \subset \mathbb{C}^2$ such that for almost all $c \in \mathbb{C}$,

$$\#F|_{V(F_1)}^{-1}(P) = \#F^{-1}(P) = [\mathbb{C}(x, y) : \mathbb{C}(F_1, F_2)], \quad \forall P \in U \bigcap L_c.$$

Proof. By Lemma 2.3, $\mathbb{C}^2 \setminus U$ contains at most finitely many lines L_c . Hence the lemma follows:

Lemma 2.6. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be the polynomial map such that $\det J(F) \in \mathbb{C}^{\times}$. Denote $m = \deg F_1$ and $\overline{F}_1(x, y, z) = z^m F_1(\frac{x}{z}, \frac{y}{z})$. Let $V(\overline{F}_1) := \{(x : y : z) \in \mathbb{P}^2_{\mathbb{C}} \mid \overline{F}_1(x, y, z) = 0\}$ and $L_{\infty} = \{(x : y : z) \in \mathbb{P}^2_{\mathbb{C}} \mid z = 0\}$. Then the curve $V(\overline{F}_1)$ is smooth at $V(\overline{F}_1) \setminus F^{-1}(L_{\infty})$. The set $V(\overline{F}_1) \cap F^{-1}(L_{\infty})$ may be singular points of $V(\overline{F}_1)$.

AIMS Mathematics

30409

Proof. This lemma is easy, because $V(\overline{F}_1) \setminus F^{-1}(L_{\infty}) = V(F_1)$ and $V(F_1)$ is smooth.

Lemma 2.7. (Hurwitz) Let $\phi : C_1 \to C_2$ be a morphism of Riemann surfaces of genera g_1 and g_2 . Then

$$2g_1 - 2 = \deg\phi(2g_2 - 2) + \sum_{P \in C_1} (e_{\phi}(P) - 1),$$

where deg ϕ is the degree of the map ϕ , $e_{\phi}(P)$ is the ramification index of ϕ at P.

Proof. A proof can be found in [10, Thm.5.9].

Let $m = \deg F_1(x, y)$. Then $\overline{F}_1(x, y, z) = z^m F_1(\frac{x}{z}, \frac{y}{z})$ is an irreducible polynomial if and only if $F_1(x, y)$ is irreducible. Now we can prove the main theorems in this section.

Theorem 2.8. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be the polynomial map such that $\det J(F) \in \mathbb{C}^{\times}$. Suppose that there exist infinitely many $c \in \mathbb{C}$ such that the polynomial $F_1(x, y) - c$ is irreducible. Then the two-dimensional Jacobian Conjecture holds.

Proof. Let $\bar{F}_1(x, y, z) = z^m F_1(\frac{x}{z}, \frac{y}{z}) - cz^m$. The projective set $V(\bar{F}_1) \subset \mathbb{P}^2_{\mathbb{C}}$ is defined by $\bar{F}_1(x, y, z) = 0$ and $L_c \subset \mathbb{P}^2_{\mathbb{C}}$ defined by x = c. Consider the map

$$\phi_c = \bar{F}|_{V(\bar{F}_1)} : V(\bar{F}_1) \to L_c.$$

Since there exist infinitely many $c \in \mathbb{C}$ such that the polynomial $F_1(x, y) - c$ is irreducible, we can find some $c \in \mathbb{C}$ such that $V(\bar{F}_1)$ is irreducible and satisfying Lemma 2.5, that is, $\deg \phi_c = \deg F$. Further, ϕ_c is étale restricting on the affine curve $V(F_1)$ by Lemma 2.4, where $V(F_1)$ is the affine part of $V(\bar{F}_1)$.

If $V(\bar{F}_1)$ is singular at $V(\bar{F}_1) \setminus V(F_1) = \phi_c^{-1}(\infty)$, where $\infty = (c : 1 : 0) \in L_c$, then from resolution of singularity, we can find a smooth curve *C* such that the morphism

$$r: \mathcal{C} \to V(\bar{F}_1)$$

satisfying that r is isomorphic on $W := r^{-1}(V(F_1))$ (see [9, Chp.7, P.128]). Then we have

$$\phi = \phi_c \circ r : C \to L_c$$

is étale on W.

Since the genus of L_c is 0, by Lemma 2.7,

$$2g - 2 = -2\deg\phi + \sum_{P \in C} (e_{\phi}(P) - 1),$$

where g is the genus of C. Since ϕ is étale on W, we have $e_{\phi}(P) = 1$ for $P \in W$. But $C \setminus W = \phi^{-1}(\infty)$, by Proposition 2.6 in [10], we have

$$\sum_{P\in\phi^{-1}(\infty)}e_{\phi}(P)=\mathrm{deg}\phi.$$

Hence,

$$2g - 2 = -2 \text{deg}\phi + \sum_{P \in \phi^{-1}(\infty)} e_{\phi}(P) - \#\phi^{-1}(\infty)$$

AIMS Mathematics

Volume 9, Issue 11, 30406-30412.

$$= -\deg\phi - \#\phi^{-1}(\infty).$$

Since deg $\phi \ge 1$, $\#\phi^{-1}(\infty) \ge 1$, the right side in the above is negative. Then 2g - 2 < 0, therefore we have g = 0. Furthermore,

$$\deg\phi = \deg\phi_c = \deg F = 1.$$

This implies that F is injective. By Theorem 4.1.1 in [4], F is isomorphic.

Theorem 2.9. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ with $\det J(F) \in \mathbb{C}^{\times}$. If there exist infinitely many points $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_1(x, y) + bF_2(x, y) + c$ is irreducible, then the map F is invertible.

Proof. The proof of this theorem is similar to Theorem 2.8, because ax + by + c = 0 defines a line in \mathbb{C}^2 , which is isomorphic to \mathbb{C}^1 .

3. Irreducibility of polynomials

Let $F(x, y) \in \mathbb{C}[x, y]$ such that $F(x, y) \notin \mathbb{C}[x]$ nor $F(x, y) \notin \mathbb{C}[y]$. We check Conjecture 1.5 when deg F = 2.

Proposition 3.1. Conjecture 1.5 holds true when degF = 2.

Proof. Let $F(x, y) = ax^2 + bxy + cy^2 + dx + ey + f \in \mathbb{C}[x, y]$. Since degF = 2, at least one of a, b, c is not 0, we can assume $a \neq 0$. Consider F(x, y)/a. Then we can assume a = 1. Since $F(x, y) \notin \mathbb{C}[x], F(x, y) \notin \mathbb{C}[y]$, we discuss it in several cases.

Case 1. $b = c = 0, e \neq 0$. Then for each $z \in \mathbb{C}$, F(x, y) + z is irreducible.

Case 2. At least one of b, c is not 0. Supposing for some $z \in \mathbb{C}$ there is

$$F(x, y) + z = (x + a_1y + a_2)(x + b_1y + b_2).$$

Comparing the homogeneous part of degree 2, we have

$$a_1 = \frac{b + \sqrt{b^2 - 4c}}{2}, \ b_1 = \frac{b - \sqrt{b^2 - 4c}}{2}.$$

Comparing the homogeneous part of degree 1, we have

$$\begin{cases} a_2 + b_2 = d, \\ b_1 a_2 + a_1 b_2 = e. \end{cases}$$

If $a_1 - b_1 = \sqrt{b^2 - 4c} \neq 0$, then the above equation has a unique solution for a_2, b_2 . Hence, there exists only one $z \in \mathbb{C}$ such that F(x, y) + z is reducible.

If $a_1 - b_1 = \sqrt{b^2 - 4c} = 0$, then $a_1 \neq 0$; otherwise, we have b = c = 0, a contradiction. Then the above equation becomes

$$\begin{cases} a_2 + b_2 = d, \\ a_2 + b_2 = e/a_1 \end{cases}$$

If $d \neq e/a_1$, then there exists no solution for the above equation. Hence, for each $z \in \mathbb{C}$, F(x, y) + z is irreducible.

AIMS Mathematics

In this paper, we generalize Kaliman's weak Jacobian Conjecture utilizing the Hurwitz formula and resolution of singular curves. At the same time, we give a conjecture about the property of irreducibility of linear combination polynomials in two variables. Furthermore, we check this conjecture in the case of polynomials with degree 2.

Author contributions

Yan Tian: conceptualization, formal analysis, investigation, methodology, writing-original draft, writing-review and editing, funding acquisition; Chaochao Sun: supervision, methodology, formal analysis, writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

Acknowledgments

Department of Education University-Industry Collaborative Education Program. Project number: 230804092233033.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. H. Bass, E. H. Connell, D. Wright, The Jacobian Conjection: Reduction of degree and formal of expansion of the inverse, *Bull. Aust. Math. Soc.*, **7** (1982), 287–330.
- 2. M. De Bondt, D. Yan, Irreducibility properties of Keller maps, *Algebra Colloq.*, **23** (2016), 663–680. https://doi.org/10.48550/arXiv.1304.0634
- 3. N. Chau, Pencils of irreducible rational curves and plane Jacobian Conjecture, *Ann. Polon. Math.*, **101** (2011), 47–53. https://doi.org/10.48550/arXiv.0905.3939
- 4. A. Essen, *Polynomial Automorphisms and the Jacobian Conjecture*, Berlin: Birkhäuser Verlag, **190** (2000). http://doi.org/10.1007/978-3-0348-8440-2
- 5. P. Jedrzejewicz, J. Zieliński, An approach to the Jacobian Conjecture in terms of irreducibility and square-freeness, *Eur. J. Math.*, **3** (2017), 199–207. http://dx.doi.org/10.1007/s40879-017-0145-5
- 6. S. Kaliman, On the Jacobian Conjecture, Proc. Amer. Math. Soc., 117 (1993), 45–51. http://dx.doi.org/10.2307/2159696
- 7. Q. Liu, Algebraic geometry and arithmetic curves, New York: Oxford University Press, 2002.
- 8. M. Miyanishi, A geometric approach to the Jacobian Conjecture in dimension two, *J. Algebra.*, **304** (2006),1014–1025. http://dx.doi.org/10.1016/j.jalgebra.2006.02.020
- 9. D. Mumford, Algebraic geometry I: Complex projective varieties, New York: Springer-Verlag, 1976.

- 10. J. H. Silverman, *The arithmetic of elliptic curves*, Berlin: Springer-Verlag, 2009. Available from: https://link.springer.com/book/10.1007/978-0-387-09494-6
- 11. S. Smale, Mathematical problems for the next century, *Math. Intell.*, **20** (1998), 7–15. http://dx.doi.org/10.1007/BF03025291
- 12. C. Sun, K. Xu, On tame kernels and second regulators of number fields and their subfields, *J. Number Theory*, **171** (2017), 252–274. http://dx.doi.org/10.1016/j.jnt.2016.07.009
- 13. D. Zhang, C. Sun, Remarks on the K_2 group of $\mathbb{Z}[\zeta_p]$, *AIMS Math.*, **7** (2022), 5920–5924. http://dx.doi.org/10.3934/math.2022329

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)