

AIMS Mathematics, 9(11): 30406–30412. DOI: 10.3934/[math.20241467](https://dx.doi.org/ 10.3934/math.20241467) Received: 07 July 2024 Revised: 22 September 2024 Accepted: 08 October 2024 Published: 25 October 2024

https://[www.aimspress.com](https://www.aimspress.com/journal/Math)/journal/Math

Research article

A note on Kaliman's weak Jacobian Conjecture

Yan Tian¹ and Chaochao Sun^{2,*}

¹ School of Mathematics, Liaoning Normal University, Dalian 116029, China

² School of Mathematics and Statistics, Linyi University, Linyi 276005, China

* Correspondence: Email: sunuso@163.com.

Abstract: We improve Kaliman's weak Jacobian Conjecture by the Hurwitz formula and resolution of singular curves. Furthermore, we give a more general form of Kaliman's weak Jacobian Conjecture.

Keywords: Jacobian Conjecture; Keller map; Hurwitz formula Mathematics Subject Classification: 13F20, 14R15

1. Introduction

Let $\mathbb{C}[X_1, \dots, X_n]$ denote the polynomial ring in the variables X_1, \dots, X_n over \mathbb{C} . A *polynomial map* is a map $F = (F_1, \dots, F_n) : \mathbb{C}^n \to \mathbb{C}^n$ of the form

$$
(z_1,\cdots,z_n)\to (F_1(z_1,\cdots,z_n),\cdots,F_n(z_1,\cdots,z_n)),
$$

where each F_i belongs to $\mathbb{C}[X_1, \cdots, X_n]$. Such a polynomial map is called *invertible* if there exists a polynomial map $G = (G_1, \dots, G_n) : \mathbb{C}^n \to \mathbb{C}^n$ such that $X_i = G_i(F_1, \dots, F_n)$ for all $1 \le i \le n$, i.e., *G* is the left inverse of *F*. It is easy to show that *G* is also a right inverse of *F*. So *F* is invertible, i.e. the left inverse of *^F*. It is easy to show that *^G* is also a right inverse of *^F*. So *^F* is invertible, i.e., *^F* is an isomorphism, in the sense of morphisms of algebraic varieties.

Consider a polynomial map $F : \mathbb{C}^n \to \mathbb{C}^n$. How can we recognize if a polynomial map F is invertible?

Let $J(F) = (\partial F_i/\partial X_i)$ be the Jacobian matrix of *F*. Clearly, the invertibility of the matrix $J(F)$ is equivalent to det*J*(*F*) $\in \mathbb{C}^{\times}$. It is easy to show that if *F* : $\mathbb{C}^{n} \to \mathbb{C}^{n}$ is invertible, then det*J*(*F*) $\in \mathbb{C}^{\times}$
Conversely there is the following famous conjecture Conversely, there is the following famous conjecture.

Conjecture 1.1. *If* $\det J(F) \in \mathbb{C}^{\times}$, *then F is invertible.*

The Jacobian Conjecture was first formulated by O. H. Keller in 1939. Aside from the trivial case $n = 1$, this conjecture remains an open problem for all $n \geq 2$ up to now. The Jacobian Conjecture appeared as Problem 16 on a list of 18 famous open problems in the paper by Steve Smale [\[11\]](#page-6-0).

The Jacobian Conjecture has been reduced to the case of degree 3 using the method of algebraic *K*theory by Bass, Connell, and Wright [\[1\]](#page-5-0). The second author has achieved some results in algebraic *K*-theory [\[12,](#page-6-1) [13\]](#page-6-2).

When $n = 2$, Kaliman proposed the weak Jacobian conjecture in [\[6\]](#page-5-1).

Conjecture 1.2. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ with $\det J(F) \in \mathbb{C}^\times$. Suppose that for every $c \in \mathbb{C}$ the fibre $V(F_1) := V(x, y) \mid F_1(x, y) = c$ is irreducible. Then the map *F* is invertible. *fibre* $V(F_1) := \{(x, y) | F_1(x, y) = c\}$ *is irreducible. Then the map F is invertible.*

The fiber $V(F_1)$ is irreducible if and only if the polynomial $F_1(x, y) - c$ is irreducible. For a polynomial $f(x, y) \in \mathbb{C}[x, y]$ with the degree deg $f(x, y) > 1$, in general the polynomial $f(x, y) - c$ is not always irreducible for each $c \in \mathbb{C}$. Hence, our main improvement is the following theorem (see Section 2, Thm[.2.8\)](#page-3-0)

Theorem 1.3. *Let* $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ *with* $\text{det} J(F) \in \mathbb{C}^\times$. *Suppose that there exist infinitely many* $\mathcal{C} \subseteq \mathbb{C}$ *such that the polynomial* $F(x, y) = c$ is irreducible. Then the man F is in *c* ∈ $\mathbb C$ *such that the polynomial* $F_1(x, y) - c$ *is irreducible. Then the map* F *is invertible.*

Furthermore, we give a general form of the above theorem

Theorem 1.4. Let $F = (F_1, F_2) : \mathbb{C}^2 \to \mathbb{C}^2$ with $\det J(F) \in \mathbb{C}^\times$. If there exist infinitely many points $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_r(x, y) + bF_r(x, y) + c$ is irreducible, then the man *points* $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_1(x, y) + bF_2(x, y) + c$ is irreducible, then the map F is invertible. *F is invertible.*

In the above theorem, the condition that $aF_1(x, y) + bF_2(x, y) + c$ is irreducible can be independent of the Jacobian conjecture. This leads us to propose the following conjecture.

Conjecture 1.5. Let $F_1(x, y), F_2(x, y) \in \mathbb{C}[x, y]$ be algebraically independent polynomials. Then there *exist infinitely many points* $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_1(x, y) + bF_2(x, y) + c$ is irreducible.

There are many works on the case $n = 2$. A good introduction about the classical results can be found in chapter 10 in [\[4\]](#page-5-2). Miyanishi [\[8\]](#page-5-3) proved that the Jacobian conjecture holds true if a generalized Sard property holds true for the affine plane and an \mathbb{A}^1 -fibration on \mathbb{A}^2 . Jedrzejewicz and Zieliński in [[5\]](#page-5-4) give a survey of a new purely algebraic approach to the Jacobian Conjecture in terms of irreducible elements and square-free elements. A similar result has been achieved in [\[2,](#page-5-5)[3\]](#page-5-6). However, our methods are based on the Hurwitz formula and resolution of the singular curve.

2. Proof of theorem

Let $F = (F_1, F_2) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map such that $\det J(F) \in \mathbb{C}^\times$. Denote $m =$
Leagle degrad the maximal degree of F_1 and F_2 . Then we have a rational map of projective spaces max $\{\text{deg}F_1, \text{deg}F_2\}$ the maximal degree of F_1 and F_2 . Then we have a rational map of projective spaces

$$
\bar{F} = (\bar{F}_1, \bar{F}_2, Z^m) : \mathbb{P}_{\mathbb{C}}^2 \to \mathbb{P}_{\mathbb{C}}^2, \quad (x : y : z) \mapsto (\bar{F}_1 : \bar{F}_2 : z^m),
$$

where $\bar{F}_i(x, y, z) = z^m F_i(\frac{x}{z})$ *z* , *y* $\frac{y}{z}$) are the homogeneous polynomials. Let

$$
L_{\infty} := \mathbb{P}_{\mathbb{C}}^1 = \{ (x : y : z) \mid z = 0 \}.
$$

Then $\mathbb{P}_{\mathbb{C}}^2 = \mathbb{C}^2 \cup \mathbb{P}_{\mathbb{C}}^1$. Moreover, the restriction of \bar{F} on \mathbb{C}^2 is F and

$$
\bar{F}|_{\mathbb{P}^1_{\mathbb{C}}} : \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}, \quad (x:y:0) \mapsto (\bar{F}_1 : \bar{F}_2 : 0).
$$

AIMS Mathematics Volume 9, Issue 11, 30406–30412.

Lemma 2.1. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map such that $\det J(F) \neq 0$ in $\mathbb{C}[x, y]$. Then F_1, F_2, G_2 and $\mathbb{C}(F_1, F_2) \subset \mathbb{C}(x, y)$ is a finite field extension *F*₁, *F*₂ *are algebraically independent over* $\mathbb C$ *and* $\mathbb C(F_1, F_2) \subset \mathbb C(x, y)$ *is a finite field extension.*

Proof. A proof can be found in [\[4,](#page-5-2) Prop.1.1.31]. □

Lemma 2.2. For the polynomial map $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$, if $\det J(F) \neq 0$ in $\mathbb{C}[x, y]$, then the cardinality of the fibers of *F* is bounded by the degree. *cardinality of the fibers of F is bounded by the degree*

$$
\text{deg} F := [\mathbb{C}(x,y) : \mathbb{C}(F_1,F_2)].
$$

Proof. See [\[4,](#page-5-2) Thm.1.1.32]. □

Lemma 2.3. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be the polynomial map such that $\det J(F) \neq 0$ in $\mathbb{C}[x, y]$.
Then there exists a Zariski open set $U \subset \mathbb{C}^2$ such that *Then there exists a Zariski open set* $U \subset \mathbb{C}^2$ such that

$$
\#F^{-1}(p) = [\mathbb{C}(x, y) : \mathbb{C}(F_1, F_2)], \quad \forall p \in U.
$$

Proof. See [\[9,](#page-5-7) Prop.3.17]. The condition $\det J(F) \neq 0$ ensures that the map *F* is dominating map. \Box

Lemma 2.4. *Let* $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ *be the polynomial map such that* $det J(F) \in \mathbb{C}^\times$ *. Denote* $V(F_1) = V(x, y) \in \mathbb{C}^2 + F_1(x, y) = c, c \in \mathbb{C}$ *l and* $I = J(x, y) \in \mathbb{C}^2 + x = c$ *l Then the morphism V*(*F*₁) = {(*x*, *y*) ∈ \mathbb{C}^2 | *F*₁(*x*, *y*) = *c*, *c* ∈ \mathbb{C} } *and L*_{*c*} = {(*x*, *y*) ∈ \mathbb{C}^2 | *x* = *c*}*. Then the morphism*

$$
F|_{V(F_1)}: V(F_1) \to L_c, \quad (x, y) \mapsto (c, F_2(x, y))
$$

is étale morphism.

Proof. First, the morphism *F* is étale. Let $L_c = \{(x, y) \in \mathbb{C}^2 \mid x = c\}$. Then $V(F_1) = F^{-1}(L_c)$. Hence we have the fiber product

$$
V(F_1) \xrightarrow{F|_{V(F_1)}} L_c
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathbb{C}^2 \xrightarrow{F} \mathbb{C}^2.
$$

Because the étale map is stable under fibered products (see [[7,](#page-5-8) Chap.4, Prop.3.22]), the map F_2 : $V(F_1) \rightarrow L_c$ is étale. \Box is étale.

Lemma 2.5. *Let* $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ *be the polynomial map such that* $\det J(F) \neq 0$ *. Denote* $V(F_1)$ and *L* as in Lemma 2.4. Consider *and L^c as in* Lemma [2.4](#page-2-0)*. Consider*

$$
F|_{V(F_1)}: V(F_1) \to L_c, \quad (x, y) \mapsto (c, F_2(x, y)).
$$

Then there exists a Zariski open set $U \subset \mathbb{C}^2$ such that for almost all $c \in \mathbb{C}$,

$$
\#F|_{V(F_1)}^{-1}(P) = \#F^{-1}(P) = [\mathbb{C}(x, y) : \mathbb{C}(F_1, F_2)], \quad \forall P \in U \cap L_c.
$$

Proof. By Lemma [2.3,](#page-2-1) $\mathbb{C}^2 \setminus U$ contains at most finitely many lines L_c . Hence the lemma follows: \Box

Lemma 2.6. *Let* $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ *be the polynomial map such that* $\det J(F) \in \mathbb{C}^\times$ *. Denote*
 $m = \det F$, and \bar{F} , $(x, y, z) = z^m F$, $(\mathbb{C}^2 \times \mathbb{C})$, Let $V(\bar{F})$, $:= J(x, y, z) \in \mathbb{R}^2 + \bar{F}$, $(x, y,$ $m = \text{deg} F_1$ and $\bar{F}_1(x, y, z) = z^m F_1(\frac{x}{z}, \frac{y}{z})$. Let $V(\bar{F}_1) := \{(x : y : z) \in \mathbb{P}_{\mathbb{C}}^2 \mid \bar{F}_1(x, y, z) = 0\}$ and $I = \{(x : y : z) \in \mathbb{P}^2 \mid z = 0\}$. Then the curve $V(\bar{F}_1)$ is smooth at $V(\bar{F}_1) \setminus F^{-1}(I)$. The set $L_{\infty} = \{ (x : y : z) \in \mathbb{P}_{\mathbb{C}}^2 \mid z = 0 \}$. Then the curve $V(\bar{F}_1)$ is smooth at $V(\bar{F}_1) \setminus F^{-1}(L_{\infty})$. The set $V(\bar{F}_1) \cap F^{-1}(L_{\infty})$ *may be singular points of* $V(\bar{F}_1)$ *.*

Proof. This lemma is easy, because $V(\bar{F}_1) \setminus F^{-1}(L_\infty) = V(F_1)$ and $V(F_1)$ is smooth.

Lemma 2.7. (Hurwitz) Let ϕ : $C_1 \rightarrow C_2$ be a morphism of Riemann surfaces of genera g_1 and g_2 . Then

$$
2g_1 - 2 = \deg \phi(2g_2 - 2) + \sum_{P \in C_1} (e_{\phi}(P) - 1),
$$

where deg ϕ *is the degree of the map* ϕ *, e*_{ϕ}(*P*) *is the ramification index of* ϕ *at P*.

Proof. A proof can be found in [\[10,](#page-6-3) Thm.5.9]. □

Let $m = \text{deg}F_1(x, y)$. Then $\bar{F}_1(x, y, z) = z^m F_1(\frac{x}{z})$
 y) is irreducible. Now we can prove the main the *z* $F_1(x, y)$ is irreducible. Now we can prove the main theorems in this section. *y* $\frac{y}{z}$) is an irreducible polynomial if and only if

Theorem 2.8. Let $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ be the polynomial map such that $\det J(F) \in \mathbb{C}^\times$. Suppose that there exist infinitely mapy $c \in \mathbb{C}$ such that the polynomial $F_1(x, y) = c$ is irreducible. Then the *that there exist infinitely many c* $\in \mathbb{C}$ *such that the polynomial* $F_1(x, y) - c$ *is irreducible. Then the two-dimensional Jacobian Conjecture holds.*

Proof. Let $\bar{F}_1(x, y, z) = z^m F_1(\frac{x}{z})$
and $I \subset \mathbb{P}^2$ defined by $x = c$. *z* and $L_c \subset \mathbb{P}_{\mathbb{C}}^2$ defined by $x = c$. Consider the map *y* $\frac{y}{z}$) − *cz*^{*m*}. The projective set *V*(\bar{F}_1) ⊂ $\mathbb{P}^2_{\mathbb{C}}$ is defined by $\bar{F}_1(x, y, z) = 0$

$$
\phi_c = \bar{F}|_{V(\bar{F}_1)} : V(\bar{F}_1) \to L_c.
$$

Since there exist infinitely many $c \in \mathbb{C}$ such that the polynomial $F_1(x, y) - c$ is irreducible, we can find some $c \in \mathbb{C}$ such that $V(\bar{F}_1)$ is irreducible and satisfying Lemma [2.5,](#page-2-2) that is, deg $\phi_c = \text{deg}F$. Further, ϕ_c is étale restricting on the affine curve $V(F_1)$ by Lemma 2.4, where $V(F_2)$ is the affine part of V ϕ_c is étale restricting on the affine curve $V(F_1)$ by Lemma [2.4,](#page-2-0) where $V(F_1)$ is the affine part of $V(\bar{F}_1)$.
If $V(\bar{F}_1)$ is singular at $V(\bar{F}_1) \setminus V(F_2) = \phi^{-1}(\infty)$, where $\infty = (c : 1 : 0) \in I$, then from resolutio

If $V(\bar{F}_1)$ is singular at $V(\bar{F}_1) \setminus V(F_1) = \phi_c^{-1}(\infty)$, where $\infty = (c : 1 : 0) \in L_c$, then from resolution
against we can find a smooth curve C such that the morphism of singularity, we can find a smooth curve C such that the morphism

$$
r: C \to V(\bar{F}_1)
$$

satisfying that *r* is isomorphic on $W := r^{-1}(V(F_1))$ (see [\[9,](#page-5-7) Chp.7, P.128]). Then we have

$$
\phi = \phi_c \circ r : C \to L_c
$$

is étale on W.

Since the genus of L_c is 0, by Lemma [2.7,](#page-3-1)

$$
2g - 2 = -2\text{deg}\phi + \sum_{P \in C} (e_{\phi}(P) - 1),
$$

where *g* is the genus of *C*. Since ϕ is étale on *W*, we have $e_{\phi}(P) = 1$ for $P \in W$. But $C \setminus W = \phi^{-1}(\infty)$, by Proposition 2.6 in [10], we have by Proposition 2.6 in [\[10\]](#page-6-3), we have

$$
\sum_{P \in \phi^{-1}(\infty)} e_{\phi}(P) = \deg \phi.
$$

Hence,

$$
2g - 2 = -2\deg \phi + \sum_{P \in \phi^{-1}(\infty)} e_{\phi}(P) - \#\phi^{-1}(\infty)
$$

AIMS Mathematics Volume 9, Issue 11, 30406–30412.

$$
=-\mathrm{deg}\phi-\#\phi^{-1}(\infty).
$$

Since deg $\phi \ge 1$, $\#\phi^{-1}(\infty) \ge 1$, the right side in the above is negative. Then 2*g* − 2 < 0, therefore we have $a = 0$. Furthermore have $g = 0$. Furthermore,

$$
\deg \phi = \deg \phi_c = \deg F = 1.
$$

This implies that *F* is injective. By Theorem 4.1.1 in [\[4\]](#page-5-2), *F* is isomorphic.

Theorem 2.9. *Let* $F = (F_1, F_2)$: $\mathbb{C}^2 \to \mathbb{C}^2$ *with* $\det J(F) \in \mathbb{C}^\times$. *If there exist infinitely many* points $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_r(x, y) + bF_r(x, y) + c$ is irreducible, then the man *points* $(a, b, c) \in \mathbb{C}^3$ such that the polynomial $aF_1(x, y) + bF_2(x, y) + c$ is irreducible, then the map F_i is invertible. *F is invertible.*

Proof. The proof of this theorem is similar to Theorem [2.8,](#page-3-0) because $ax + by + c = 0$ defines a line in \mathbb{C}^2 , which is isomorphic to \mathbb{C}^1 . The contract of the contract
The contract of the contract o

3. Irreducibility of polynomials

Let $F(x, y) \in \mathbb{C}[x, y]$ such that $F(x, y) \notin \mathbb{C}[x]$ nor $F(x, y) \notin \mathbb{C}[y]$. We check Conjecture [1.5](#page-1-0) when $\text{deg}F = 2$.

Proposition 3.1. *Conjecture [1.5](#page-1-0) holds true when* $\text{deg} F = 2$ *.*

Proof. Let $F(x, y) = ax^2 + bxy + cy^2 + dx + ey + f \in \mathbb{C}[x, y]$. Since deg $F = 2$, at least one of *a*, *b*, *c* is not 0, we can assume $a \neq 0$. Consider $F(x, y)/a$. Then we can assume $a = 1$. Since $F(x, y) \notin \mathbb{C}[x]$, $F(x, y) \notin \mathbb{C}[y]$, we discuss it in several cases.

Case 1. $b = c = 0, e \neq 0$. Then for each $z \in \mathbb{C}$, $F(x, y) + z$ is irreducible.

Case 2. At least one of *b*, *c* is not 0. Supposing for some $z \in \mathbb{C}$ there is

$$
F(x, y) + z = (x + a_1y + a_2)(x + b_1y + b_2).
$$

Comparing the homogeneous part of degree 2, we have

$$
a_1 = \frac{b + \sqrt{b^2 - 4c}}{2}, \quad b_1 = \frac{b - \sqrt{b^2 - 4c}}{2}.
$$

Comparing the homogeneous part of degree 1, we have

$$
\begin{cases} a_2 + b_2 = d, \\ b_1 a_2 + a_1 b_2 = e. \end{cases}
$$

If $a_1 - b_1 =$ √ $\overline{b^2 - 4c} \neq 0$, then the above equation has a unique solution for a_2, b_2 . Hence, there exists \overline{b} such that $F(x, y) + z$ is reducible. only one *z* ∈ *C* such that *F*(*x*, *y*) + *z* is reducible.

If $a_1 = b_1 = \sqrt{b^2 - 4c} = 0$ then $a_2 ≠ 0$; other

If $a_1 - b_1 = \sqrt{b^2 - 4c} = 0$, then $a_1 \neq 0$; otherwise, we have $b = c = 0$, a contradiction. Then the above equation becomes

$$
\begin{cases} a_2 + b_2 = d, \\ a_2 + b_2 = e/a_1. \end{cases}
$$

If $d \neq e/a_1$, then there exists no solution for the above equation. Hence, for each $z \in \mathbb{C}$, $F(x, y) + z$
is irreducible is irreducible. \Box

4. Conclusions

In this paper, we generalize Kaliman's weak Jacobian Conjecture utilizing the Hurwitz formula and resolution of singular curves. At the same time, we give a conjecture about the property of irreducibility of linear combination polynomials in two variables. Furthermore, we check this conjecture in the case of polynomials with degree 2.

Author contributions

Yan Tian: conceptualization, formal analysis, investigation, methodology, writing-original draft, writing-review and editing, funding acquisition; Chaochao Sun: supervision, methodology, formal analysis, writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

Acknowledgments

Department of Education University-Industry Collaborative Education Program. Project number: 230804092233033.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. H. Bass, E. H. Connell, D. Wright, The Jacobian Conjection: Reduction of degree and formal of expansion of the inverse, *Bull. Aust. Math. Soc.*, 7 (1982), 287–330.
- 2. M. De Bondt, D. Yan, Irreducibility properties of Keller maps, *Algebra Colloq.*, 23 (2016), 663– 680. https://doi.org/10.48550/[arXiv.1304.0634](https://dx.doi.org/https://doi.org/10.48550/arXiv.1304.0634)
- 3. N. Chau, Pencils of irreducible rational curves and plane Jacobian Conjecture, *Ann. Polon. Math.*, 101 (2011), 47–53. https://doi.org/10.48550/[arXiv.0905.3939](https://dx.doi.org/https://doi.org/10.48550/arXiv.0905.3939)
- 4. A. Essen, *Polynomial Automorphisms and the Jacobian Conjecture*, Berlin: Birkhäuser Verlag, 190 (2000). http://doi.org/10.1007/[978-3-0348-8440-2](https://dx.doi.org/http://doi.org/10.1007/978-3-0348-8440-2)
- 5. P. Jedrzejewicz, J. Zielinski, An approach to the Jacobian Conjecture in terms of irreducibility and ´ square-freeness, *Eur. J. Math.*, 3 (2017), 199–207. http://dx.doi.org/10.1007/[s40879-017-0145-5](https://dx.doi.org/http://dx.doi.org/10.1007/s40879-017-0145-5)
- 6. S. Kaliman, On the Jacobian Conjecture, *Proc. Amer. Math. Soc.*, 117 (1993), 45–51. http://[dx.doi.org](https://dx.doi.org/http://dx.doi.org/10.2307/2159696)/10.2307/2159696
- 7. Q. Liu, *Algebraic geometry and arithmetic curves*, New York: Oxford University Press, 2002.
- 8. M. Miyanishi, A geometric approach to the Jacobian Conjecture in dimension two, *J. Algebra.*, 304 (2006),1014–1025. http://dx.doi.org/10.1016/[j.jalgebra.2006.02.020](https://dx.doi.org/http://dx.doi.org/10.1016/j.jalgebra.2006.02.020)
- 9. D. Mumford, *Algebraic geometry I: Complex projective varieties*, New York: Springer-Verlag, 1976.
- 10. J. H. Silverman, *The arithmetic of elliptic curves*, Berlin: Springer-Verlag, 2009. Available from: <https://link.springer.com/book/10.1007/978-0-387-09494-6>
- 11. S. Smale, Mathematical problems for the next century, *Math. Intell.*, 20 (1998), 7–15. http://dx.doi.org/10.1007/[BF03025291](https://dx.doi.org/http://dx.doi.org/10.1007/BF03025291)
- 12. C. Sun, K. Xu, On tame kernels and second regulators of number fields and their subfields, *J. Number Theory*, 171 (2017), 252–274. http://dx.doi.org/10.1016/[j.jnt.2016.07.009](https://dx.doi.org/http://dx.doi.org/10.1016/j.jnt.2016.07.009)
- 13. D. Zhang, C. Sun, Remarks on the *K*₂ group of $\mathbb{Z}[\zeta_p]$, *AIMS Math.*, **7** (2022), 5920–5924. http://dx.doi.org/10.3934/[math.2022329](https://dx.doi.org/http://dx.doi.org/10.3934/math.2022329)

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)