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1. Introduction

Let C[X1, · · · , Xn] denote the polynomial ring in the variables X1, · · · , Xn over C. A polynomial
map is a map F = (F1, · · · , Fn) : Cn → Cn of the form

(z1, · · · , zn)→ (F1(z1, · · · , zn), · · · , Fn(z1, · · · , zn)),

where each Fi belongs to C[X1, · · · , Xn]. Such a polynomial map is called invertible if there exists a
polynomial map G = (G1, · · · ,Gn) : Cn → Cn such that Xi = Gi(F1, · · · , Fn) for all 1 ≤ i ≤ n, i.e., G is
the left inverse of F. It is easy to show that G is also a right inverse of F. So F is invertible, i.e., F is an
isomorphism, in the sense of morphisms of algebraic varieties.

Consider a polynomial map F : Cn → Cn. How can we recognize if a polynomial map F
is invertible?

Let J(F) = (∂Fi/∂X j) be the Jacobian matrix of F. Clearly, the invertibility of the matrix J(F) is
equivalent to detJ(F) ∈ C×. It is easy to show that if F : Cn → Cn is invertible, then detJ(F) ∈ C×.
Conversely, there is the following famous conjecture.

Conjecture 1.1. If detJ(F) ∈ C×, then F is invertible.

The Jacobian Conjecture was first formulated by O. H. Keller in 1939. Aside from the trivial case
n = 1, this conjecture remains an open problem for all n ≥ 2 up to now. The Jacobian Conjecture
appeared as Problem 16 on a list of 18 famous open problems in the paper by Steve Smale [11].
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The Jacobian Conjecture has been reduced to the case of degree 3 using the method of algebraic K-
theory by Bass, Connell, and Wright [1]. The second author has achieved some results in algebraic
K-theory [12, 13].

When n = 2, Kaliman proposed the weak Jacobian conjecture in [6].

Conjecture 1.2. Let F = (F1, F2) : C2 → C2 with detJ(F) ∈ C×. Suppose that for every c ∈ C the
fibre V(F1) := {(x, y) | F1(x, y) = c} is irreducible. Then the map F is invertible.

The fiber V(F1) is irreducible if and only if the polynomial F1(x, y) − c is irreducible. For a
polynomial f (x, y) ∈ C[x, y] with the degree deg f (x, y) > 1, in general the polynomial f (x, y) − c is
not always irreducible for each c ∈ C. Hence, our main improvement is the following theorem (see
Section 2, Thm.2.8)

Theorem 1.3. Let F = (F1, F2) : C2 → C2 with detJ(F) ∈ C×. Suppose that there exist infinitely many
c ∈ C such that the polynomial F1(x, y) − c is irreducible. Then the map F is invertible.

Furthermore, we give a general form of the above theorem

Theorem 1.4. Let F = (F1, F2) : C2 → C2 with detJ(F) ∈ C×. If there exist infinitely many
points (a, b, c) ∈ C3 such that the polynomial aF1(x, y) + bF2(x, y) + c is irreducible, then the map
F is invertible.

In the above theorem, the condition that aF1(x, y) + bF2(x, y) + c is irreducible can be independent
of the Jacobian conjecture. This leads us to propose the following conjecture.

Conjecture 1.5. Let F1(x, y), F2(x, y) ∈ C[x, y] be algebraically independent polynomials. Then there
exist infinitely many points (a, b, c) ∈ C3 such that the polynomial aF1(x, y)+bF2(x, y)+c is irreducible.

There are many works on the case n = 2. A good introduction about the classical results can be
found in chapter 10 in [4]. Miyanishi [8] proved that the Jacobian conjecture holds true if a generalized
Sard property holds true for the affine plane and anA1-fibration onA2. Jedrzejewicz and Zieliński in [5]
give a survey of a new purely algebraic approach to the Jacobian Conjecture in terms of irreducible
elements and square-free elements. A similar result has been achieved in [2,3]. However, our methods
are based on the Hurwitz formula and resolution of the singular curve.

2. Proof of theorem

Let F = (F1, F2) : C2 → C2 be a polynomial map such that detJ(F) ∈ C×. Denote m =

max{degF1, degF2} the maximal degree of F1 and F2. Then we have a rational map of projective spaces

F̄ = (F̄1, F̄2,Zm) : P2
C → P

2
C, (x : y : z) 7→ (F̄1 : F̄2 : zm),

where F̄i(x, y, z) = zmFi( x
z ,

y
z ) are the homogeneous polynomials. Let

L∞ := P1
C = {(x : y : z) | z = 0}.

Then P2
C = C2⋃P1

C. Moreover, the restriction of F̄ on C2 is F and

F̄|P1
C

: P1
C → P

1
C, (x : y : 0) 7→ (F̄1 : F̄2 : 0).
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Lemma 2.1. Let F = (F1, F2) : C2 → C2 be a polynomial map such that detJ(F) , 0 in C[x, y]. Then
F1, F2 are algebraically independent over C and C(F1, F2) ⊂ C(x, y) is a finite field extension.

Proof. A proof can be found in [4, Prop.1.1.31]. �

Lemma 2.2. For the polynomial map F = (F1, F2) : C2 → C2, if detJ(F) , 0 in C[x, y], then the
cardinality of the fibers of F is bounded by the degree

degF := [C(x, y) : C(F1, F2)].

Proof. See [4, Thm.1.1.32]. �

Lemma 2.3. Let F = (F1, F2) : C2 → C2 be the polynomial map such that detJ(F) , 0 in C[x, y].
Then there exists a Zariski open set U ⊂ C2 such that

#F−1(p) = [C(x, y) : C(F1, F2)], ∀p ∈ U.

Proof. See [9, Prop.3.17]. The condition detJ(F) , 0 ensures that the map F is dominating map. �

Lemma 2.4. Let F = (F1, F2) : C2 → C2 be the polynomial map such that detJ(F) ∈ C×. Denote
V(F1) = {(x, y) ∈ C2 | F1(x, y) = c, c ∈ C} and Lc = {(x, y) ∈ C2 | x = c}. Then the morphism

F|V(F1) : V(F1)→ Lc, (x, y) 7→ (c, F2(x, y))

is étale morphism.

Proof. First, the morphism F is étale. Let Lc = {(x, y) ∈ C2 | x = c}. Then V(F1) = F−1(Lc). Hence we
have the fiber product

V(F1) Lc

C2 C2.

F|V(F1)

F

Because the étale map is stable under fibered products (see [7, Chap.4, Prop.3.22]), the map F2 :
V(F1)→ Lc is étale. �

Lemma 2.5. Let F = (F1, F2) : C2 → C2 be the polynomial map such that detJ(F) , 0. Denote V(F1)
and Lc as in Lemma 2.4. Consider

F|V(F1) : V(F1)→ Lc, (x, y) 7→ (c, F2(x, y)).

Then there exists a Zariski open set U ⊂ C2 such that for almost all c ∈ C,

#F|−1
V(F1)(P) = #F−1(P) = [C(x, y) : C(F1, F2)], ∀P ∈ U

⋂
Lc.

Proof. By Lemma 2.3, C2 \ U contains at most finitely many lines Lc. Hence the lemma follows: �

Lemma 2.6. Let F = (F1, F2) : C2 → C2 be the polynomial map such that detJ(F) ∈ C×. Denote
m = degF1 and F̄1(x, y, z) = zmF1( x

z ,
y
z ). Let V(F̄1) := {(x : y : z) ∈ P2

C | F̄1(x, y, z) = 0} and
L∞ = {(x : y : z) ∈ P2

C | z = 0}. Then the curve V(F̄1) is smooth at V(F̄1) \ F−1(L∞). The set
V(F̄1)

⋂
F−1(L∞) may be singular points of V(F̄1).
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Proof. This lemma is easy, because V(F̄1) \ F−1(L∞) = V(F1) and V(F1) is smooth. �

Lemma 2.7. (Hurwitz) Let φ : C1 → C2 be a morphism of Riemann surfaces of genera g1 and g2. Then

2g1 − 2 = degφ(2g2 − 2) +
∑
P∈C1

(eφ(P) − 1),

where degφ is the degree of the map φ, eφ(P) is the ramification index of φ at P.

Proof. A proof can be found in [10, Thm.5.9]. �

Let m = degF1(x, y). Then F̄1(x, y, z) = zmF1( x
z ,

y
z ) is an irreducible polynomial if and only if

F1(x, y) is irreducible. Now we can prove the main theorems in this section.

Theorem 2.8. Let F = (F1, F2) : C2 → C2 be the polynomial map such that detJ(F) ∈ C×. Suppose
that there exist infinitely many c ∈ C such that the polynomial F1(x, y) − c is irreducible. Then the
two-dimensional Jacobian Conjecture holds.

Proof. Let F̄1(x, y, z) = zmF1( x
z ,

y
z ) − czm. The projective set V(F̄1) ⊂ P2

C is defined by F̄1(x, y, z) = 0
and Lc ⊂ P

2
C defined by x = c. Consider the map

φc = F̄|V(F̄1) : V(F̄1)→ Lc.

Since there exist infinitely many c ∈ C such that the polynomial F1(x, y) − c is irreducible, we can find
some c ∈ C such that V(F̄1) is irreducible and satisfying Lemma 2.5, that is, degφc = degF. Further,
φc is étale restricting on the affine curve V(F1) by Lemma 2.4, where V(F1) is the affine part of V(F̄1).

If V(F̄1) is singular at V(F̄1) \ V(F1) = φ−1
c (∞), where ∞ = (c : 1 : 0) ∈ Lc, then from resolution

of singularity, we can find a smooth curve C such that the morphism

r : C → V(F̄1)

satisfying that r is isomorphic on W := r−1(V(F1)) (see [9, Chp.7, P.128]). Then we have

φ = φc ◦ r : C → Lc

is étale on W.
Since the genus of Lc is 0, by Lemma 2.7,

2g − 2 = −2degφ +
∑
P∈C

(eφ(P) − 1),

where g is the genus of C. Since φ is étale on W, we have eφ(P) = 1 for P ∈ W. But C \W = φ−1(∞),
by Proposition 2.6 in [10], we have ∑

P∈φ−1(∞)

eφ(P) = degφ.

Hence,

2g − 2 = −2degφ +
∑

P∈φ−1(∞)

eφ(P) − #φ−1(∞)
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= −degφ − #φ−1(∞).

Since degφ ≥ 1, #φ−1(∞) ≥ 1, the right side in the above is negative. Then 2g − 2 < 0, therefore we
have g = 0. Furthermore,

degφ = degφc = degF = 1.

This implies that F is injective. By Theorem 4.1.1 in [4], F is isomorphic. �

Theorem 2.9. Let F = (F1, F2) : C2 → C2 with detJ(F) ∈ C×. If there exist infinitely many
points (a, b, c) ∈ C3 such that the polynomial aF1(x, y) + bF2(x, y) + c is irreducible, then the map
F is invertible.

Proof. The proof of this theorem is similar to Theorem 2.8, because ax + by + c = 0 defines a line in
C2, which is isomorphic to C1. �

3. Irreducibility of polynomials

Let F(x, y) ∈ C[x, y] such that F(x, y) < C[x] nor F(x, y) < C[y]. We check Conjecture 1.5
when degF = 2.

Proposition 3.1. Conjecture 1.5 holds true when degF = 2.

Proof. Let F(x, y) = ax2 + bxy + cy2 + dx + ey + f ∈ C[x, y]. Since degF = 2, at least one of
a, b, c is not 0, we can assume a , 0. Consider F(x, y)/a. Then we can assume a = 1. Since
F(x, y) < C[x], F(x, y) < C[y], we discuss it in several cases.
Case 1. b = c = 0, e , 0. Then for each z ∈ C, F(x, y) + z is irreducible.
Case 2. At least one of b, c is not 0. Supposing for some z ∈ C there is

F(x, y) + z = (x + a1y + a2)(x + b1y + b2).

Comparing the homogeneous part of degree 2, we have

a1 =
b +
√

b2 − 4c
2

, b1 =
b −
√

b2 − 4c
2

.

Comparing the homogeneous part of degree 1, we havea2 + b2 = d,

b1a2 + a1b2 = e.

If a1 − b1 =
√

b2 − 4c , 0, then the above equation has a unique solution for a2, b2. Hence, there exists
only one z ∈ C such that F(x, y) + z is reducible.

If a1 − b1 =
√

b2 − 4c = 0, then a1 , 0; otherwise, we have b = c = 0, a contradiction. Then the
above equation becomes a2 + b2 = d,

a2 + b2 = e/a1.

If d , e/a1, then there exists no solution for the above equation. Hence, for each z ∈ C, F(x, y) + z
is irreducible. �
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4. Conclusions

In this paper, we generalize Kaliman’s weak Jacobian Conjecture utilizing the Hurwitz formula
and resolution of singular curves. At the same time, we give a conjecture about the property
of irreducibility of linear combination polynomials in two variables. Furthermore, we check this
conjecture in the case of polynomials with degree 2.
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