Research article Special Issues

Investigation of more solitary waves solutions of the stochastics Benjamin-Bona-Mahony equation under beta operator

  • Received: 27 June 2024 Revised: 28 August 2024 Accepted: 09 September 2024 Published: 23 September 2024
  • MSC : 35C05, 35C07, 35C08

  • This study explores the stochastic Benjamin-Bona-Mahony (BBM) equation with a beta derivative (BD), thereby incorporating multiplicative noise in the Itô sense. We derive various analytical soliton solutions for these equations utilizing two distinct expansion methods: the $ \frac{\mathcal{G}^{\prime}}{\mathcal{G}^{\prime}+\mathcal{G}+\mathcal{A}} $-expansion and the modified $ \frac{\mathcal{G}^{\prime}}{\mathcal{G}^{2}} $-expansion techniques, both within the framework of beta derivatives. A fractional multistep transformation is employed to convert the equations into nonlinear forms with respect to an independent variable. After performing an algebraic manipulation, the solutions are trigonometric and hyperbolic trigonometric functions. Our analysis demonstrates that the wave behavior is influenced by the fractional-order derivative in the proposed equations, thus providing deeper insights into the wave composition as the fractional order either increases or decreases. Additionally, we explore the effect of white noise on the propagation of the waves solutions. This study underscores the computational robustness and adaptability of the proposed approach to investigate various phenomena in the physical sciences and engineering.

    Citation: Abdelkader Moumen, Khaled A. Aldwoah, Muntasir Suhail, Alwaleed Kamel, Hicham Saber, Manel Hleili, Sayed Saifullah. Investigation of more solitary waves solutions of the stochastics Benjamin-Bona-Mahony equation under beta operator[J]. AIMS Mathematics, 2024, 9(10): 27403-27417. doi: 10.3934/math.20241331

    Related Papers:

  • This study explores the stochastic Benjamin-Bona-Mahony (BBM) equation with a beta derivative (BD), thereby incorporating multiplicative noise in the Itô sense. We derive various analytical soliton solutions for these equations utilizing two distinct expansion methods: the $ \frac{\mathcal{G}^{\prime}}{\mathcal{G}^{\prime}+\mathcal{G}+\mathcal{A}} $-expansion and the modified $ \frac{\mathcal{G}^{\prime}}{\mathcal{G}^{2}} $-expansion techniques, both within the framework of beta derivatives. A fractional multistep transformation is employed to convert the equations into nonlinear forms with respect to an independent variable. After performing an algebraic manipulation, the solutions are trigonometric and hyperbolic trigonometric functions. Our analysis demonstrates that the wave behavior is influenced by the fractional-order derivative in the proposed equations, thus providing deeper insights into the wave composition as the fractional order either increases or decreases. Additionally, we explore the effect of white noise on the propagation of the waves solutions. This study underscores the computational robustness and adaptability of the proposed approach to investigate various phenomena in the physical sciences and engineering.



    加载中


    [1] M. Bilal, U. Younas, J. Ren, Dynamics of exact soliton solutions in the double‐chain model of deoxyribonucleic acid, Math. Method. Appl. Sci., 44 (2021), 13357–13375. https://doi.org/10.1002/mma.7631 doi: 10.1002/mma.7631
    [2] S. Javeed, K. S. Alimgeer, S. Nawaz, A. Waheed, M. Suleman, D. Baleanu, et al., Soliton solutions of mathematical physics models using the exponential function technique, Symmetry, 12 (2020), 176. https://doi.org/10.3390/sym12010176 doi: 10.3390/sym12010176
    [3] İ. Yalçınkaya, H. Ahmad, O. Tasbozan, A. Kurt, Soliton solutions for time fractional ocean engineering models with Beta derivative, J. Ocean Eng. Sci., 7 (2022), 444–448. https://doi.org/10.1016/j.joes.2021.09.015 { doi: 10.1016/j.joes.2021.09.015
    [4] X. Yang, Z. Wang, Z. Zhang, Solitons and lump waves to the elliptic cylindrical Kadomtsev–Petviashvili equation, Commun. Nonlinear Sci., 131 (2024), 107837. https://doi.org/10.1016/j.cnsns.2024.107837 doi: 10.1016/j.cnsns.2024.107837
    [5] X. Yang, Z. Wang, Z. Zhang, Generation of anomalously scattered lumps via lump chains degeneration within the Mel'nikov equation, Nonlinear Dyn., 111 (2023), 15293–15307. https://doi.org/10.1007/s11071-023-08615-3 doi: 10.1007/s11071-023-08615-3
    [6] X. Yang, Z. Wang, Z. Zhang, Decay mode ripple waves within the (3+1)‑dimensional Kadomtsev–Petviashvili equation, Math. Method. Appl. Sci., 47 (2024), 10444–10461. https://doi.org/10.1002/mma.10132 doi: 10.1002/mma.10132
    [7] X. Yang, Z. Zhang, A. Wazwaz, Z. Wang, A direct method for generating rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation, Phys. Lett. A, 449 (2022), 128355. https://doi.org/10.1016/j.physleta.2022.128355 doi: 10.1016/j.physleta.2022.128355
    [8] X. Yin, L. Xu, L. Yang, Evolution and interaction of soliton solutions of Rossby waves in geophysical fluid mechanics, Nonlinear Dyn., 111 (2023), 12433–12445. https://doi.org/10.1007/s11071-023-08424-8 doi: 10.1007/s11071-023-08424-8
    [9] N. Cao, X. Yin, S. Bai, L. Xu, Breather wave, lump type and interaction solutions for a high dimensional evolution model, Chaos Soliton. Fract., 172 (2023), 113505. https://doi.org/10.1016/j.chaos.2023.113505 doi: 10.1016/j.chaos.2023.113505
    [10] L. Xu, X. Yin, N. Cao, S. Bai, Multi-soliton solutions of a variable coefficient Schrödinger equation derived from vorticity equation, Nonlinear Dyn., 112 (2024), 2197–2208. https://doi.org/10.1007/s11071-023-09158-3 doi: 10.1007/s11071-023-09158-3
    [11] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [12] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [13] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, On the exact soliton solutions and different wave structures to the modified Schrödinger's equation, Results Phys., 54 (2023), 107037. https://doi.org/10.1016/j.rinp.2023.107037 doi: 10.1016/j.rinp.2023.107037
    [14] C. Zhu, M. Al-Dossari, S. Rezapour, S. A. M. Alsallami, B. Gunay, Bifurcations, chaotic behavior, and optical solutions for the complex Ginzburg–Landau equation, Results Phys., 59 (2024), 107601. https://doi.org/10.1016/j.rinp.2024.107601 doi: 10.1016/j.rinp.2024.107601
    [15] C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee–Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
    [16] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation, Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298 doi: 10.1016/j.rinp.2023.107298
    [17] S. Ahmad, A. Ullah, S. Ahmad, S. Saifullah, A. Shokri, Periodic solitons of Davey Stewartson Kadomtsev Petviashvili equation in (4+1)-dimension, Results Phys., 50 (2023), 106547. https://doi.org/10.1016/j.rinp.2023.106547 doi: 10.1016/j.rinp.2023.106547
    [18] S. Khaliq, S. Ahmad, A. Ullah, H. Ahmad, S. Saifullah, T. A. Nofal, New waves solutions of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation using a novel expansion method, Results Phys., 50 (2023), 106450}. https://doi.org/10.1016/j.rinp.2023.106450 doi: 10.1016/j.rinp.2023.106450
    [19] M. Z. Baber, N. Ahmed, C. Xu, M. S. Iqbal, T. A. Sulaiman, A computational scheme and its comparison with optical soliton solutions for the stochastic Chen–Lee–Liu equation with sensitivity analysis, Mod. Phys. Lett. B, 2024, 2450376. https://doi.org/10.1142/S0217984924503767
    [20] C. Xu, Y. Pang, Z. Liu, J. Shen, M. Liao, P. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: Simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024), 025218. https://doi.org/10.1088/1402-4896/ad186c doi: 10.1088/1402-4896/ad186c
    [21] R. P. King, Applications of stochastic differential equations to chemical-engineering problems-an introductory review, Chem. Eng. Commun., 1 (1974), 221–237. https://doi.org/10.1080/00986447408960433 doi: 10.1080/00986447408960433
    [22] I. Samir, H. M. Ahmed, Retrieval of solitons and other wave solutions for stochastic nonlinear Schrödinger equation with non-local nonlinearity using the improved modified extended tanh-function method, J. Opt., 2024. https://doi.org/10.1007/s12596-024-01776-3
    [23] S. Ahmad, S. F. Aldosary, M. A. Khan, Stochastic solitons of a short-wave intermediate dispersive variable (SIdV) equation, AIMS Mathematics, 9 (2024), 10717–10733. https://doi.org/10.3934/math.2024523 doi: 10.3934/math.2024523
    [24] H. Ur Rehman, A. U. Awan, S. M. Eldin, I. Iqbal, Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise, AIMS Mathematics, 8 (2023), 21606–21621. https://doi.org/10.3934/math.20231101 doi: 10.3934/math.20231101
    [25] A. Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, 268 (2022), 169831. https://doi.org/10.1016/j.ijleo.2022.169831 doi: 10.1016/j.ijleo.2022.169831
    [26] H. Ur Rehman, I. Iqbal, H. Zulfiqar, D. Gholami, H. Rezazadeh, Stochastic soliton solutions of conformable nonlinear stochastic systems processed with multiplicative noise, Phys. Lett. A, 486 (2023), 129100. https://doi.org/10.1016/j.physleta.2023.129100 doi: 10.1016/j.physleta.2023.129100
    [27] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, et al., Bifurcation investigation and control scheme of fractional neural networks owning multiple delays, Comp. Appl. Math., 43 (2024), 186. https://doi.org/10.1007/s40314-024-02718-2 doi: 10.1007/s40314-024-02718-2
    [28] C. Xu, M. Farman, A. Shehzad, Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel, Int. J. Biomath., 2023, 2350105. https://doi.org/10.1142/S179352452350105X
    [29] C. Xu, M. Farman, Z. Liu, Y. Pang, Numerical approximation and analysis of epidemic model with constant proportional Caputo operator, Fractals, 32 (2024), 2440014. https://doi.org/10.1142/S0218348X24400140 doi: 10.1142/S0218348X24400140
    [30] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific, 2012. https://doi.org/10.1142/8180
    [31] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [32] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2016, arXiv: 1602.03408. https://doi.org/10.48550/arXiv.1602.03408
    [33] A. Atangana, D. Baleanu, A. Alsaedi, Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal, Open Phys., 14 (2016), 145–149. https://doi.org/10.1515/phys-2016-0010 doi: 10.1515/phys-2016-0010
    [34] A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers, Front. Phys., 7 (2019), 34. https://doi.org/10.3389/fphy.2019.00034 doi: 10.3389/fphy.2019.00034
    [35] Y. Gurefe, The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative, Rev. Mex. Fís., 66 (2020), 771–781. https://doi.org/10.31349/RevMexFis.66.771 doi: 10.31349/RevMexFis.66.771
    [36] H. Ahmad, M. N. Alam, M. A. Rahim, M. F. Alotaibi, M. Omri, The unified technique for the nonlinear time-fractional model with the beta-derivative, Results Phys., 29 (2021), 104785. https://doi.org/10.1016/j.rinp.2021.104785 doi: 10.1016/j.rinp.2021.104785
    [37] K. J. Wang, Variational principle and diverse wave structures of the modified Benjamin-Bona-Mahony equation arising in the optical illusions field, Axioms, 11 (2022), 445. https://doi.org/10.3390/axioms11090445 doi: 10.3390/axioms11090445
    [38] Q. Liu, Y. Zhou, K. Li, S. Zhang, Application of the dynamical system method and the deep learning method to solve the new (3+1)-dimensional fractional modified Benjamin–Bona–Mahony equation, Nonlinear Dyn., 110 (2022), 3737–3750. https://doi.org/10.1007/s11071-022-07803-x doi: 10.1007/s11071-022-07803-x
    [39] M. Shakeel, Attaullah, E. R. El-Zahar, N. A. Shah, J. D. Chung, Generalized exp-function method to find closed form solutions of nonlinear dispersive modified Benjamin–Bona–Mahony equation defined by seismic sea waves, Mathematics, 10 (2022), 1026. https://doi.org/10.3390/math10071026 doi: 10.3390/math10071026
    [40] A. Elmandouh, E. Fadhal, Bifurcation of Exact Solutions for the Space-Fractional Stochastic Modified Benjamin–Bona–Mahony Equation, Fractal Fract., 6 (2022), 718. https://doi.org/10.3390/fractalfract6120718 doi: 10.3390/fractalfract6120718
    [41] Sirendaoreji, Novel solitary and periodic wave solutions of the Benjamin–Bona–Mahony equation via the Weierstrass elliptic function method, Int. J. Appl. Comput. Math., 8 (2022), 223. https://doi.org/10.1007/s40819-022-01441-y doi: 10.1007/s40819-022-01441-y
    [42] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, The influence of white noise and the beta derivative on the solutions of the BBM equation, Axioms, 12 (2023), 447. https://doi.org/10.3390/axioms12050447 doi: 10.3390/axioms12050447
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(484) PDF downloads(41) Cited by(1)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog