Research article Special Issues

Resonance analysis and time-delay feedback controllability for a fractional horizontal nonlinear roller system

  • Received: 28 June 2024 Revised: 19 August 2024 Accepted: 20 August 2024 Published: 23 August 2024
  • MSC : 34A08, 37N35

  • In this paper, we investigated the nonlinear vibration characteristics and time-delay feedback controllability of a fractional horizontal roll system, which is described by a fractional Duffing-van der Pol oscillator under an external harmonic excitation. We focused on the resonance of fractional roller systems and conducted corresponding vibration control. The amplitude-frequency equations of primary resonance and superharmonic resonance were obtained using the multiple scale method. The amplitude-frequency characteristic curves of the system with different parameters were presented, and the influence of system parameters on the curves was analyzed. In addition, the time-delay feedback controller was designed to control the parameter excitation vibration. The numerical simulation results have verified the effectiveness of the time-delay controller in eliminating the jumping and hysteresis phenomena of the rolling system. The comparisons of approximate analytical solution and numerical solution was fulfilled, and the result certifies the correctness and satisfactory precision of the approximately analytical solution. The analysis results provide certain theoretical guidance for the vibration reduction of the horizontal nonlinear roller system.

    Citation: Zhoujin Cui, Xiaorong Zhang, Tao Lu. Resonance analysis and time-delay feedback controllability for a fractional horizontal nonlinear roller system[J]. AIMS Mathematics, 2024, 9(9): 24832-24853. doi: 10.3934/math.20241209

    Related Papers:

  • In this paper, we investigated the nonlinear vibration characteristics and time-delay feedback controllability of a fractional horizontal roll system, which is described by a fractional Duffing-van der Pol oscillator under an external harmonic excitation. We focused on the resonance of fractional roller systems and conducted corresponding vibration control. The amplitude-frequency equations of primary resonance and superharmonic resonance were obtained using the multiple scale method. The amplitude-frequency characteristic curves of the system with different parameters were presented, and the influence of system parameters on the curves was analyzed. In addition, the time-delay feedback controller was designed to control the parameter excitation vibration. The numerical simulation results have verified the effectiveness of the time-delay controller in eliminating the jumping and hysteresis phenomena of the rolling system. The comparisons of approximate analytical solution and numerical solution was fulfilled, and the result certifies the correctness and satisfactory precision of the approximately analytical solution. The analysis results provide certain theoretical guidance for the vibration reduction of the horizontal nonlinear roller system.



    加载中


    [1] C. W. Knight, S. J. Hardy, A. W. Lees, K. J. Brown, Investigations into the influence of asymmetric factors and rolling parameters on strip curvature during hot rolling, J. Mater. Process. Tech., 134 (2003), 180–189. https://doi.org/10.1016/S0924-0136(02)00469-7 doi: 10.1016/S0924-0136(02)00469-7
    [2] D. He, T. Wang, Z. Ren, G. Feng, Y. Liu, Principal resonance time-delay feedback control of roller system in corrugated rolling mills, (In chinese), Control Theory Technol., 37 (2020), 1552–1561. https://doi.org/10.7641/CTA.2020.90367 doi: 10.7641/CTA.2020.90367
    [3] S. Kapil, P. Eberhard, S. K. Dwivedy, Nonlinear dynamic analysis of a parametrically excited cold rolling mill, J. Manuf. Sci. Eng., 136 (2014), 041012. https://doi.org/10.1115/1.4026961 doi: 10.1115/1.4026961
    [4] R. Peng, X. Zhang, P. Shi, Vertical-horizontal coupling vibration of hot rolling mill rolls under multi-piecewise nonlinear constraints, Metals, 11 (2021), 170. https://doi.org/10.3390/met11010170 doi: 10.3390/met11010170
    [5] M. A. Younes, M. Shahtout, M. N. Damir, A parameters design approach to improve product quality and equipment performance in hot rolling, J. Mater. Process. Tech., 171 (2006), 83–92. https://doi.org/10.1016/j.jmatprotec.2005.06.052 doi: 10.1016/j.jmatprotec.2005.06.052
    [6] J. Sun, Y. Peng, H. Liu, Non-Linear vibration and stability of moving strip with time-dependent tension in rolling process, J. Iron Steel Res. Int., 17 (2010), 11–20. https://doi.org/10.1016/S1006-706X(10)60106-9 doi: 10.1016/S1006-706X(10)60106-9
    [7] X. Fan, Y. Zang, H. Wang, Research on vertical vibration of hot rolling mill, (In chinese), China Mech. Eng., 21 (2010), 1801–1804.
    [8] X. Fan, Y. Zang, Y. Sun, P. Wang, Impact analysis of roller system stability for four-high mill horizontal vibration, Shock Vib., 2016 (2016), 5693584. https://doi.org/10.1155/2016/5693584 doi: 10.1155/2016/5693584
    [9] P. Shi, J. Li, J. Jiang, B. Liu, D. Han, Nonlinear dynamics of torsional vibration for rolling mill's main drive system under parametric excitation, J. Iron Steel Res. Int., 20 (2013), 7–12. https://doi.org/10.1016/S1006-706X(13)60037-0 doi: 10.1016/S1006-706X(13)60037-0
    [10] Y. Kimura, N. Fujita, Y. Matsubara, K. Kobayashi, Y. Amanuma, O. Yoshiokai, et al., High-speed rolling by hybrid-lubrication system in tandem cold rolling mills, J. Mater. Process. Technol., 216 (2015), 357–368. https://doi.org/10.1016/j.jmatprotec.2014.10.002 doi: 10.1016/j.jmatprotec.2014.10.002
    [11] X. Yang, C. Tong, Nonlinear modeling and global sliding mode control of main drive system torsional vibration in cold rollling mill, In: 2012 Fifth international conference on intelligent computation technology and automation, 2012,233–236. https://doi.org/10.1109/ICICTA.2012.65
    [12] B. Liu, J. Jiang, K. Wang, P. Li, G. Pan, Roll system vibration control of rolling mill based on time delay feedback, Mechatron. Manuf. Technol., 2017,260–265. https://doi.org/10.1142/9789813222359_0035 doi: 10.1142/9789813222359_0035
    [13] D. He, H. Xu, T. Wang, Z. Ren, Nonlinear time-delay feedback controllability for vertical parametrically excited vibration of roll system in corrugated rolling mill, Metall. Res. Technol., 117 (2020), 210. https://doi.org/10.1051/metal/2020020 doi: 10.1051/metal/2020020
    [14] A. P. Singh, D. Deb, H. Agrawal, K. Bingi, S. Ozana, Modeling and control of robotic manipulators: A fractional calculus point of view, Arab. J. Sci. Eng., 46 (2021), 9541–9552. https://doi.org/10.1007/s13369-020-05138-6 doi: 10.1007/s13369-020-05138-6
    [15] E. Viera-Martin, J. F. Gómez-Aguilar, J. E. Solís-Pérez, J. A. Hernández-Pérez, R. F. Escobar-Jiménez, Artificial neural networks: A practical review of applications involving fractional calculus, Eur. Phys. J. Spec. Top., 231 (2022), 2059–2095. https://doi.org/10.1140/epjs/s11734-022-00455-3 doi: 10.1140/epjs/s11734-022-00455-3
    [16] Z. Cui, Z. Wang, Primary resonance of a nonlinear fractional model for cerebral aneurysm at the circle of Willis, Nonlinear Dyn., 108 (2022), 4301–4314. http://dx.doi.org/10.1007/s11071-022-07445-z doi: 10.1007/s11071-022-07445-z
    [17] Z. Cui, Solutions of some typical nonlinear differential equations with Caputo-Fabrizio fractional derivative, AIMS Mathematics, 7 (2022), 14139–14153. https://doi.org/10.3934/math.2022779 doi: 10.3934/math.2022779
    [18] K. A. Lazopoulos, Stability criteria and $\Lambda$-fractional mechanics, Fractal Fract., 7 (2023), 248. https://doi.org/10.3390/fractalfract7030248 doi: 10.3390/fractalfract7030248
    [19] J. Liu, H. Tian, Z. Wang, Y. Guan, Z. Cao, Dynamical analysis and misalignment projection synchronization of a novel RLCM fractional-order memristor circuit system, Axioms, 12 (2023), 1125. https://doi.org/10.3390/axioms12121125 doi: 10.3390/axioms12121125
    [20] Z. Li, Z. Zhang, Stabilization control for a class of fractional-order HIV-1 infection model with time delays, Axioms, 12 (2023), 695. https://doi.org/10.3390/axioms12070695 doi: 10.3390/axioms12070695
    [21] H. You, Y. Shen, H. Xing, S. Yang, Optimal control and parameters design for the fractional-order vehicle suspension system, J. Low Freq. Noise Vibration Active Control, 37 (2018), 456–467. https://doi.org/10.1177/0263092317717166 doi: 10.1177/0263092317717166
    [22] H. Zhu, J. Yang, Y. Zhang, X. Feng, A novel air spring dynamic model with pneumatic thermodynamics, effective friction and viscoelastic damping, J. Sound Vibration, 408 (2017), 87–104. https://doi.org/10.1016/j.jsv.2017.07.015 doi: 10.1016/j.jsv.2017.07.015
    [23] J. Niu, J. Hou, Y. Shen, S. Yang, Dynamic analysis and vibration control of nonlinear boring bar with fractional-order model of magnetorheological fluid, Internat. J. Non-Linear Mech., 121 (2020), 103459. https://doi.org/10.1016/j.ijnonlinmec.2020.103459 doi: 10.1016/j.ijnonlinmec.2020.103459
    [24] L. Fredette, R. Singh, Effect of fractionally damped compliance elements on amplitude sensitive dynamic stiffness predictions of a hydraulic bushing, Mech. Syst. Signal Process., 112 (2018), 129–146. https://doi.org/10.1016/j.ymssp.2018.04.031 doi: 10.1016/j.ymssp.2018.04.031
    [25] G. Wang, L. Ma, A Dynamic behavior analysis of a rolling Mill's main drive system with fractional derivative and stochastic disturbance, Symmetry, 15 (2023), 1509. https://doi.org/10.3390/sym15081509 doi: 10.3390/sym15081509
    [26] L. Jiang, T. Wang, Q. Huang, W. Shi, Study on chaotic characteristics of horizontal nonlinear roller system with fractional order, Arch. Appl. Mech., 93 (2023), 2435–2447. https://doi.org/10.1007/s00419-023-02389-1 doi: 10.1007/s00419-023-02389-1
    [27] L. Jiang, T. Wang, Q. Huang, Analysis of dynamic characteristics of forced and free vibrations of mill roll system based on fractional order theory, J. Beijing Inst. Tech., 32 (2023), 640–652. https://doi.org/10.15918/j.jbit1004-0579.2023.051 doi: 10.15918/j.jbit1004-0579.2023.051
    [28] L. Jiang, T. Wang, Q. Huang, Resonance analysis of horizontal nonlinear vibrations of roll systems for cold rolling mills under double-frequency excitations, Mathematics, 11 (2023), 1626. https://doi.org/10.3390/math11071626 doi: 10.3390/math11071626
    [29] Z. Wang, H. Hu, Stability and bifurcation of delayed dynamic systems: From theory to application, (In Chinese), Adv. Mech., 43 (2013), 3–20. https://doi.org/10.6052/1000-0992-12-018 doi: 10.6052/1000-0992-12-018
    [30] Y. Yan, J. Li, W. Wang, Time-delay feedback control of an axially moving nanoscale beam with time-dependent velocity, Chaos Solitons Fract., 166 (2023), 112949. https://doi.org/10.1016/j.chaos.2022.112949 doi: 10.1016/j.chaos.2022.112949
    [31] P. Zhu, M. Xiao, X. Huang, F. Zhang, Z. Wang, J. Cao, Spatiotemporal dynamics optimization of a delayed reaction-diffusion mussel-algae model based on PD control strategy, Chaos Solitons Fract., 173 (2023), 113751. https://doi.org/10.1016/j.chaos.2023.113751 doi: 10.1016/j.chaos.2023.113751
    [32] Y. Shen, H. Li, S. Yang, M. Peng, Y. Han, Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator, Nonlinear Dyn., 102 (2020), 1485–1497. https://doi.org/10.1007/s11071-020-06048-w doi: 10.1007/s11071-020-06048-w
    [33] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: Modeling and control applications, World Scientific, 2010. https://doi.org/10.1142/7709
    [34] I. Petras, Fractional-order nonlinear systems: Modeling, analysis and simulation, Heidelberg: Springer Berlin, 2011. http://dx.doi.org/10.1007/978-3-642-18101-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(384) PDF downloads(52) Cited by(1)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog