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Abstract: In this paper, we investigated the nonlinear vibration characteristics and time-delay
feedback controllability of a fractional horizontal roll system, which is described by a fractional
Duffing-van der Pol oscillator under an external harmonic excitation. We focused on the resonance
of fractional roller systems and conducted corresponding vibration control. The amplitude-frequency
equations of primary resonance and superharmonic resonance were obtained using the multiple scale
method. The amplitude-frequency characteristic curves of the system with different parameters were
presented, and the influence of system parameters on the curves was analyzed. In addition, the time-
delay feedback controller was designed to control the parameter excitation vibration. The numerical
simulation results have verified the effectiveness of the time-delay controller in eliminating the jumping
and hysteresis phenomena of the rolling system. The comparisons of approximate analytical solution
and numerical solution was fulfilled, and the result certifies the correctness and satisfactory precision
of the approximately analytical solution. The analysis results provide certain theoretical guidance for
the vibration reduction of the horizontal nonlinear roller system.
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1. Introduction

Rolling mill is a key equipment in the steel industry and an important equipment in the modern
heavy machinery field. It is a complex working system, and its safe and stable operation is crucial to
ensure efficient production of rolled products. With the development of society, higher requirements
have been put forward for the surface quality of strip mills, so the requirements of high precision
and high dynamic performance have been promoted for rolling mills [1]. However, the high rolling
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speed and strength of modern rolling mills often result in unstable rolls during the rolling process.
For example, due to the presence of many nonlinear factors within the system, the rolling mill roll
system exhibits complex nonlinear vibration characteristics. When rolling high strength and thin
strip steel, the mill frequently appears “ghost” vibration, which mostly includes vertical vibration,
horizontal vibration, axial oscillation, transverse and longitudinal vibration of the strip steel, torsional
vibration, and axial vibration of the main drive system [2]. These vibrations seriously affect the
working performance and reliability of the rolling mill system and restrict the stability of the rolling
production process [3,4]. Therefore, it is necessary to strengthen the analysis and study of the vibration
causes of rolling mill and deal with the problems in time to ensure the stable operation of the equipment.

The study of nonlinear dynamics of vibration in rolling systems has attracted widespread attention
and has been ongoing for decades. Many experts and scholars have conducted many beneficial
exploratory studies from various angles. These researchers mainly focus on why rolling mills vibrate,
how they vibrate, and how to suppress vibration (see [5–13] and the reference therein). The authors
in [5] assumed that the workpiece is an elastic part with linear stiffness and established a linear vertical
vibration model for the rolling mill frame based on linear vibration theory. In order to study the
vibration characteristics of the rolling mill, the authors in [6] studied the effect of tension on nonlinear
vibration of rolling mills. By changing the external excitation frequency to analyze the stability
of the rolling mill vibration system, it was concluded that rolling speed and strip thickness have a
significant impact on system stability. A horizontal friction vibration model of the rolling mill rolls
was established in [7], and simulation analysis was conducted under the conditions of eliminating
the bearing clearance of the rolling mill frame and adding a floating support for the coupling. By
analyzing the effects of changes in workpiece thickness and motor speed on the connection angle
and roll gap friction, a nonlinear torsional vibration model of the rolling mill was established in [9],
indicating that reducing damping coefficient and nonlinear stiffness helps to reduce vibration intensity.
In terms of research on vibration control, the authors in [11] designed a global sliding mode controller
for the rolling mill drive system to suppress the uncertainty of rolling parameters and achieved good
tracking performance. In [12], a displacement time-delay feedback link was introduced to control the
vibration of the roller system, and different time-delay parameters were selected to test the control
effect. The research results indicated that appropriate time-delay feedback parameters can suppress
the unstable vibration of the roller system. The authors in [13] studied the vibration characteristics of
the corrugated roller system and designed a time-delay feedback controller to control the parameter
excitation vibration of the system.

In recent years, fractional calculus and its application in different fields have attracted widespread
attention, providing a very useful mathematical tool for describing the memory and genetics of
various materials and processes, such as fractional modeling of robotic manipulator [14], bibliographic
analysis on artificial neural networks based on fractional calculus [15], fractional model of cerebral
aneurysm [16], fractional model of ENSO phenomenon [17], fractional mechanics [18], fractional
memristor circuit [19], fractional infectious disease model [20], and so on. Even if all individuals
in the system have integer order dynamic characteristics, the overall dynamic characteristics of the
system may still be fractional order. It can better describe the viscoelasticity of materials, such as
suspension [21], air spring [22], magneto rheological damper [23] and hydraulic bushing [24]. In the
research of rolling systems, fractional calculus has also begun to be involved [25–28]. Among them,
the authors in [26, 27] introduced a fractional derivative term when establishing a horizontal nonlinear
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vibration model for rolling mills. In [28], the resonance characteristics of the fractional roller system
under high-frequency and low-frequency excitation signals were studied.

With the continuous development of active control technology, there is an increasing amount of
research on actively utilizing time-delay feedback to achieve various control objectives. Time-delayed
feedback control, as an effective control method, has been widely applied in the field of vibration
control [29–31]. Adding fractional order factors to the simulation of rolling mill systems is more
reasonable, but there are many problems that need to be solved urgently in the current research on
fractional order nonlinear systems. For example, complex dynamic characteristics such as the influence
of system parameters on periodic solutions under time-delay feedback, as well as many problems
such as bifurcation control, require further research. Therefore, based on the superiority of fractional
calculus and time-delayed feedback control, it is necessary to study the dynamic characteristics of
fractional order nonlinear rolling systems and the bifurcation control problem under time-delayed
feedback, which has important theoretical significance and application value. Motivated by [13,26–28],
we focus on the vibration characteristics of the system and time-delay feedback controllability of
the horizontal nonlinear roller system, and corrects the expression errors in existing literature. The
innovation lies in systematically studying the resonance of fractional roller systems and conducting
corresponding vibration control, further validating the effectiveness of the theoretical research through
numerical simulation, providing new ideas for the research of roller system vibration theory.

The paper is organized as follows: In the second section, the fractional derivative term is considered
in the horizontal nonlinear roller system, and the nonlinear vibration model is established. In the third
section, the amplitude-frequency response equations of the primary resonance and time-delay feedback
control are obtained using the multiple scale method, and numerical analysis is conducted. In the fourth
section, we mainly present the amplitude-frequency response equations of the secondary resonance and
time-delay feedback control and analyze the numerical simulation results to verify the effectiveness of
theoretical research. The comparison of approximate analytical solution and numerical solution is
fulfilled in the fifth section. In the last section, we conclude this paper.

2. Nonlinear vibration model

2.1. Problem formulation

Referring to the model of the horizontal roller system in [26–28], in order to study the nonlinear
vibration characteristics of the strip rolling mill in the horizontal direction, the Duffing and the Van der
Pol oscillators were introduced, and the nonlinear damping and stiffness within interface of the rolling
mill were considered to establish a fractional horizontal nonlinear parametric vibration model for the
rolling mill work roll, as shown in Figure 1.

The vibration model can be given by a second-order non-autonomous differential equation as
follows

mẍ + c(x2 − 1)ẋ + KDq
t x + (k1 + k2x2)x = F cosωt, (2.1)

where x is the horizontal displacement of the roller system and is a function of time t, m is equivalent
mass of the roll, c(x2 − 1) represents nonlinear damping coefficient term between roller system and
rolling piece, c is the nonlinear damping coefficient. k1 + k2x2 represents nonlinear stiffness coefficient
term between roller system and frame, and k1 is the linear stiffness coefficient, k2 is the nonlinear
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stiffness coefficient. Dq
t x is the q-order derivative of x with respect to time represents fractional

derivative term, K is a positive coefficient. Due to the presence of friction, clearance, and additional
bending moments, the roll system is subjected to a horizontal resultant force, which is defined as
the horizontal excitation force F cosωt, with the amplitude and frequency parameters F and ω,
respectively. There are many definitions available for the fractional-order derivative, in this study,
Dq

t x with 0 ≤ q ≤ 1 is the Caputo’s fractional derivative of x(t) described by

Dq
t x(t) =

1
Γ(1 − q)

∫ t

0
ẋ(s)(t − s)−qds,

in which Γ(z) is Gamma function satisfying Γ(z + 1) = zΓ(z).

Figure 1. Physical model of horizontal vibration with fractional order.

The roll system of the rolling mill is a highly nonlinear hysteresis system. In the rolling process of
composite plates, the elastic-plastic deformation process of the rolled piece is a nonlinear deformation
process with time delay characteristics. The time-delay feedback control method is one of the effective
methods for studying bifurcation control of nonlinear systems. We adopt time-delay feedback control
to suppress the nonlinear vibration. The block diagram is shown in Figure 2.

Figure 2. A block diagram of the time-delayed feedback control.
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2.2. Multiple scale method

The horizontal vibration of the roller system is a weak vibration, and the multiple scale method
can be used to conduct an approximate resonant solution of Eq (2.1), for which a small time scale
parameter ε is required. This method begins by introducing new time variables Tn = εnt, (n = 0, 1),
then an approximate solution of Eq (2.1) with small amplitudes can be represented by

x = x0(T0,T1) + εx1(T0,T1) + · · · . (2.2)

For such a small parameter ε, the following variable substitution is introduced for the system,

εµ =
K
m
, ω0 =

√
k1

m
, εα =

c
m
, εβ =

k2

m
, f =

F
m
, (2.3)

where ω0 is the undamped natural frequency of the system, α, β, µ are equivalent nonlinear damping
coefficient, equivalent fractional derivative coefficient and equivalent cubic stiffness coefficient,
respectively.

Then, Eq (2.1) becomes

ẍ + ω2
0x + εµDq

t x + εα(x2 − 1)ẋ + εβx3 = f cosωt. (2.4)

The derivatives with respect to t can be expressed in terms of the new scaled times Tn as a series of
partial derivatives (see [16]),

d
dt

=
∂

∂T0

dT0

dt
+

∂

∂T1

dT1

dt
+ · · · = D0 + εD1 + · · · , (2.5a)

d2

dt2 = D2
0 + 2εD0D1 + ε2D2

1 + · · · , (2.5b)

Dq
t = Dq

0 + qεDq−1
0 D1 + · · · , (2.5c)

in which Dq
0 = ∂q

∂T q
0
, Dn = ∂

∂Tn
, D2

n = ∂2

∂T 2
n
, (n = 0, 1).

3. Primary resonance and time-delay feedback control

The nonlinear vibration characteristics of the horizontal roller system may lead to various resonance
phenomena during the rolling process, such as internal resonance, primary resonance, and secondary
resonance. First, we analyze the primary resonance when the excitation frequency is close to the natural
frequency.

3.1. Primary resonance

3.1.1. Amplitude-frequency response equation

Regarding the primary resonance, soft excitation is applied implying that the amplitude of excitation
is small, thus the external force is given by

f → ε f , (3.1)
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and the resonance relation is considered to be ω = ω0 or ω ≈ ω0, a detuning parameter σ describing
the nearness of ω to ω0 is introduced by

ω = ω0 + εσ, (3.2)

then ωt = ω0T0 + σT1. Substituting (2.2), (2.5a)–(2.5c) into (2.4) leads to the following equation

(D2
0 + 2εD0D1 + ε2D2

1)(x0 + εx1) + ω2
0(x0 + εx1) + εµ · (Dq

0 + qεDq−1
0 D1)(x0 + εx1)

+ εα[(x0 + εx1)2 − 1] · (D0 + εD1)(x0 + εx1) + εβ(x0 + εx1)3

=ε f cos(ω0T0 + σT1).

Equating the coefficients of the same power of ε, a set of linear differential equations are obtained:

O(ε0) : D2
0x0 + ω2

0x0 = 0, (3.3)

O(ε1) : D2
0x1 + ω2

0x1 = −2D0D1x0 − µDq
0x0 − βx3

0 − α(x2
0 − 1)D0x0 + f cos(ω0T0 + σT1), (3.4)

from which x0 and x1 can be solved one-by-one respectively. In this way, the resonant solution x is
dominated by x0, collected by εx1.

The general solution of Eq (3.3) is of the form,

x0 = A(T1)eiω0T0 + A(T1)e−iω0T0 , (3.5)

where A(T1) and A(T1) are unknown functions, A(T1) denotes the complex conjugate of A(T1).
To solve Eq (3.4), the qth-order (0 ≤ q ≤ 1) derivative of eiωt is approximated written as following

(see [32]),
Dq

t eiωt ≈ (iω)qeiωt. (3.6)

Substituting (3.5) and (3.6) into Eq (3.4) and using

cos(ω0T0 + σT1) =
ei(ω0T0+σT1) + e−i(ω0T0+σT1)

2
,

the right-hand of Eq (3.4) becomes

[−2iω0D1A − µA(iω0)q − (3β + iω0α)A2Ā + iω0αA +
f
2

eiσT1]eiω0T0 + NS T + cc, (3.7)

where NS T stands for the terms that do not produce secular terms, cc denotes the complex conjugate
of the preceding terms.

In order that x1 is periodic, the secular terms with eiω0T0 must be zero, namely

2iω0D1A + µA(iω0)q + (3β + iω0α)A2Ā − iω0αA −
f
2

eiσT1 = 0. (3.8)

To solve Eq (3.8), we write A(T1) in the polar form as following

A(T1) =
a(T1)

2
eiθ(T1), (3.9)
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in which a(T1) and θ(T1) are real functions of T1.
With the help of the Euler formula

iq = (eiπ/2)q = eiqπ/2 = cos
qπ
2

+ i sin
qπ
2
, (3.10)

let ϕ def
= σT1 − θ, by separating the real and imaginary parts of Eq (3.8), the differential equations

governing amplitude a(T1) and ϕ(T1) of A(T1) are expressed as follows respectively

D1a = −
µa
2
ω

q−1
0 sin

qπ
2

+
αa
2
−
αa3

8
+

f
2ω0

sinϕ, (3.11a)

aD1ϕ = σa −
µa
2
ω

q−1
0 cos

qπ
2
−

3β
8ω0

a3 +
f

2ω0
cosϕ. (3.11b)

The steady state motions for the primary resonance response correspond to the fixed points
of (3.11a) and (3.11b), that is, D1a = 0 and D1ϕ = 0, namely

−
µa
2
ω

q−1
0 sin

qπ
2

+
αa
2
−
αa3

8
= −

f
2ω0

sinϕ, (3.12a)

σa −
µa
2
ω

q−1
0 cos

qπ
2
−

3β
8ω0

a3 = −
f

2ω0
cosϕ. (3.12b)

By performing square operations and eliminating ϕ from Eqs (3.12a) and (3.12b), the following
amplitude-frequency response equation is determined,

[(
µ

2
ω

q−1
0 sin

qπ
2
−
α

2
+
α

8
a2)2 + (σ −

µ

2
ω

q−1
0 cos

qπ
2
−

3β
8ω0

a2)2]a2 = (
f

2ω0
)2. (3.13)

The amplitude of the response is a function of external detuning parameter and the amplitude of
excitation. It should be pointed out that in [26], the multiple scale method was used to obtain the
amplitude-frequency response equation of Eq (2.1) for the primary resonance, but the coefficients in
the expression were incorrect. In addition, when µ = 0, Eq (2.4) is transformed into an integer-order
model, and the corresponding amplitude-frequency response equation for the primary resonance has
been studied in [13], but the expression has certain problems.

3.1.2. Stability of the steady resonant solutions

To determine the stability of steady state motion through the nature of singular points in Eqs (3.11a)
and (3.11b), the following method can be used. Assume that (a, ϕ) = (a∗, ϕ∗) is a steady solution of
Eqs (3.11a) and (3.11b), let ∆a = a − a∗ and ∆ϕ = ϕ − ϕ∗. According to Eqs (3.12a) and (3.12b), the
linearized differential equations governing ∆a and ∆ϕ are

D1∆a = −[
µ

2
ω

q−1
0 sin

qπ
2
−
α

2
+

3α(a∗)2

8
]∆a +

f
2ω0

cosϕ∗ ∆ϕ, (3.14a)

D1∆ϕ = [
σ

a∗
−

µ

2a∗
ω

q−1
0 cos

qπ
2
−

9β
8ω0

a∗]∆a −
f

2ω0a∗
sinϕ∗ ∆ϕ. (3.14b)
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Let P =
µ

2ω
q−1
0 sin qπ

2 −
α
2 +

3α(a∗)2

8 ,Q =
µ

2ω
q−1
0 sin qπ

2 −
α
2 +

α(a∗)2

8 ,M = σ− µ

2ω
q−1
0 cos qπ

2 −
3β

8ω0
(a∗)2,N =

σ − µ

2ω
q−1
0 cos qπ

2 −
9β

8ω0
(a∗)2, then the characteristic equation can be rewritten as

∣∣∣∣∣∣ −P − λ −a∗M
1
a∗N −Q − λ

∣∣∣∣∣∣ = 0. (3.15)

By expanding the determinant, one has

λ2 + (P + Q)λ + (PQ + MN) = 0. (3.16)

Consider when P + Q > 0, then the steady solution (a, ϕ) = (a∗, ϕ∗) is asymptotically stable if and
only if Λ > 0, where

Λ
def
= PQ + MN. (3.17)

3.1.3. Analysis of the resonant solutions

The influence of different parameters on the amplitude of resonance solution is investigated
numerically, as shown in the Figures 3 and 4. With fixed parameter values, all the figures exhibit
typical characteristics of hardening spring.

First, the influence of fractional order q on the resonant solutions is shown in Figure 3, where the
parameters are selected to be, α = 0.04, β = 0.1, ω0 = 1, µ = 0.02 and f = 0.1. It can be seen that
the smaller the order q is, the larger the maximum amplitude is. In addition, compared with the integer
order case when q = 1, the bending degree, resonance peak, and resonance region of the amplitude-
frequency curve of the fractional system change accordingly with the decrease of the fractional order q.
The reason for this is that the fractional differential term has both stiffness and damping characteristics,
which have a significant impact on the amplitude frequency response curve of the system. When the
fractional-order q approaches 0, the fractional differential term is almost equivalent to the effect of
linear stiffness; When q tends towards 1, the fractional differential term is almost equivalent to the
effect of linear damping, and the larger the damping, the smaller the peak value.

Figure 4 presents parameter effect on resonant amplitudes with respect to µ, f , α and β. Here, the
fractional-order q = 0.9 and the natural frequency ω0 = 1. In Figure 4(a), with the increase of µ,
the nonlinear jump of the system weakens and the resonance amplitude of the system decreases. In
other words, as µ increases, the unstable portions decrease. In Figure 4(b), with the increase of pulse
pressure f , the nonlinear jump of the system is more obvious, and the resonance range and resonance
amplitude of the system increase. In Figure 4(c), when the value of α increases, the amplitude of the
system decreases. Since α is the nonlinear damping coefficient, increasing α means that the damping
term increases, and the amplitude of resonance correspondingly decreases. In Figure 4(d), when the
nonlinear stiffness coefficient β increases, the curve shifts to the right and and the degree of curvature
increases. It can also be observed that the jumping phenomenon occur in the system, leading to system
oscillations. Another phenomenon is that the amplitude does not change with the stiffness coefficient
and remains consistent. According to the above analysis results, a controller should be designed to
reduce the influence of primary resonance.
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3.2. Time-delay feedback control of primary resonance

3.2.1. Amplitude-frequency response equation

In order to eliminate the jumping and hysteresis phenomena of the primary resonance in the
horizontal roller system, the time-delay displacement feedback strategy is adopted here, and the
fractional equation with time-delay feedback control can be established as follows:

ẍ + ω2
0x + εµDq

t x + εα(x2 − 1)ẋ + εβx3 = ε f cosωt + εg1x(t − τ1) + εg2x3(t − τ2), (3.18)

where g1 is the linear control gain, g2 is the nonlinear control gain, τ1 and τ2 are time-delay parameters.
Substituting (2.2), (2.5a)–(2.5c) into (3.18) leads to the following equation

(D2
0 + 2εD0D1 + ε2D2

1)(x0 + εx1) + ω2
0(x0 + εx1) + εµ · (Dq

0 + qεDq−1
0 D1)(x0 + εx1)

+ εα[(x0 + εx1)2 − 1] · (D0 + εD1)(x0 + εx1) + εβ(x0 + εx1)3

=ε f cos(ω0T0 + σT1) + εg1x0(t − τ1) + εg2x3
0(t − τ2).

Thus, a set of linear differential equations can be obtained:

O(ε0) : D2
0x0 + ω2

0x0 = 0, (3.19)

O(ε1) : D2
0x1 + ω2

0x1 = − 2D0D1x0 − µDq
0x0 − βx3

0 − α(x2
0 − 1)D0x0

+ f cos(ω0T0 + σT1) + g1x0(T0 − τ1) + g2x3
0(T0 − τ2).

(3.20)

Assume that the general solution of Eq (3.19) is (3.5), substituting (3.5) into Eq (3.20), the right-
hand of Eq (3.20) becomes

[−2iω0D1A − µA(iω0)q − (3β + iω0α)A2Ā + iω0αA +
f
2

eiσT1

+ g1Ae−iω0τ1 + 3g2A2Āe−iω0τ2]eiω0T0 + NS T + cc,
(3.21)

where NS T stands for the terms that do not produce secular terms, cc denotes the complex conjugate
of the preceding terms.

Through setting the coefficient of eiω0T0 equal to zero to eliminate the secular terms, the following
equation can be obtained as:

2iω0D1A + µA(iω0)q + (3β + iω0α)A2Ā − iω0αA −
f
2

eiσT1 − g1Ae−iω0τ − 3g2A2Āe−iω0τ2 = 0. (3.22)

Similar to the previous discussion, the following differential equations about amplitude and phase
can be obtained,

D1a = −
µa
2
ω

q−1
0 sin

qπ
2

+
αa
2
−
αa3

8
−

g1a
2ω0

sin(ω0τ1) −
3g2a3

8ω0
sin(ω0τ2) +

f
2ω0

sinϕ, (3.23a)

aD1ϕ = σa −
µa
2
ω

q−1
0 cos

qπ
2
−

3βa3

8ω0
+

g1a
2ω0

cos(ω0τ1) +
3g2a3

8ω0
cos(ω0τ2) +

f
2ω0

cosϕ. (3.23b)

AIMS Mathematics Volume 9, Issue 9, 24832–24853.



24842

The steady state motions for the primary resonance response correspond to the fixed points
of (3.23a) and (3.23b), that is, D1a = 0 and D1ϕ = 0, namely

−
µa
2
ω

q−1
0 sin

qπ
2

+
αa
2
−
αa3

8
−

g1a
2ω0

sin(ω0τ1) −
3g2a3

8ω0
sin(ω0τ2) = −

f
2ω0

sinϕ, (3.24a)

σa −
µa
2
ω

q−1
0 cos

qπ
2
−

3βa3

8ω0
+

g1a
2ω0

cos(ω0τ1) +
3g2a3

8ω0
cos(ω0τ2) = −

f
2ω0

cosϕ. (3.24b)

The amplitude-frequency response equation of primary resonance with time-delay control can be
obtained as:

[(
1
2
µe +

αe

8
a2)2 + (σe −

3βe

8ω0
a2)2]a2 = (

f
2ω0

)2, (3.25)

in which

µe = µω
q−1
0 sin

qπ
2

+
g1

ω0
sin(ω0τ1) − α, αe = α +

3g2

ω0
sin(ω0τ2),

σe = σ −
µ

2
ω

q−1
0 cos

qπ
2

+
g1

2ω0
cos(ω0τ1), βe = β − g2 cos(ω0τ2).

From Eq (3.25), it can be seen that the amplitude of the response is a function of external detuning
parameter, feedback gain, time delay and the amplitude of excitation.

3.2.2. Numerical simulation

The impact of adding time-delay feedback control on the amplitude-frequency response curve of
the primary resonance is presented through numerical simulation, as shown in Figure 5. In Figure 5,
the primary resonance amplitude and resonance region can be controlled, the primary resonance
bifurcations can be reduced by properly adjusting the delay parameters (τ1, τ2) and feedback gains
(g1, g2). After adding time-delay feedback control, the resonance peak value decreases, the curvature
of the curve also decreases and the jumping phenomenon has also weakened. It can also be seen from
Figure 5(a) that the control effect of simultaneously adjusting delay parameters (τ1, τ2) and feedback
gains (g1, g2) is better than that of separately adjusting linear feedback gain g1 or nonlinear feedback
gain g2.

In Figure 5(b), as the linear gain g1 and nonlinear gain g2 gradually increase, the amplitude of
the primary resonance of the system gradually decreases, and the jumping phenomenon of the curve
is eliminated. Therefore, it can be seen that when using only feedback control gain as the control
parameter, if both linear and nonlinear feedback control gains increase simultaneously, the primary
resonance phenomenon of the system can be reasonably controlled. In Figure 5(c), as the delay
parameters (τ1, τ2) gradually increase, the amplitude and the resonance domain of the system gradually
decreases. However, the adjustment of delay parameters has little effect on the degree of curve
curvature. On the contrary, by adjusting the feedback control gains g1 and g2, it is relatively easy
to eliminate the jumping phenomenon of the primary resonance. This indicates that using feedback
control gain as the control object has a better control effect than using delay parameters as the control
object.
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Figure 5. Effect of time-delay feedback control on the amplitude-frequency response curve
of the primary resonance.

4. Secondary resonance and time-delay feedback control

In this section, we will discuss secondary resonance, namely superharmonic and subharmonic
resonance. Only superharmonic resonance is considered here, and the issue of subharmonic resonance
will be studied in subsequent papers.

4.1. Third-order superharmonic resonance

4.1.1. Amplitude-frequency response equation

During the inspection process of third-order superharmonic resonance, when the excitation
frequency is far away from the natural frequency, unless its amplitude is sufficiently large, the impact
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of excitation is minimal. Therefore, in superharmonic resonance, the excitation amplitude is of order
ε0. Third-order superharmonic resonance with limited amplitude occurs in the Eq (2.4) when 3ω = ω0

or 3ω ≈ ω0, the resonance relation is represented as

3ω = ω0 + εσ, (4.1)

in which σ is again the detuning parameter, then 3ωT0 = ω0T0 + σT1. The following derivations in
this section are similar to those in the previous section, only the main steps will be retained for ease of
reading.

Substituting (4.1), (2.5a)–(2.5c) into (2.4) leads to the following equation

(D2
0 + 2εD0D1 + ε2D2

1)(x0 + εx1) + ω2
0(x0 + εx1) + εµ · (Dq

0 + qεDq−1
0 D1)(x0 + εx1)

+ εα[(x0 + εx1)2 − 1] · (D0 + εD1)(x0 + εx1) + εβ(x0 + εx1)3

= f cos(ωT0).

Equating the coefficients of the same power of ε, a set of linear differential equations are obtained:

O(ε0) : D2
0x0 + ω2

0x0 = f cos(ωT0), (4.2)

O(ε1) : D2
0x1 + ω2

0x1 = −2D0D1x0 − µDq
0x0 − βx3

0 − α(x2
0 − 1)D0x0. (4.3)

The general solution of Eq (4.2) is of the following form,

x0 = A(T1)eiω0T0 + A(T1)e−iω0T0 + B(eiωT0 + e−iωT0), (4.4)

where A(T1) and A(T1) are complex functions in terms of slow time scale, A(T1) denotes the complex
conjugate of A(T1) and B =

f
2(ω2

0−ω
2) .

Substituting (4.4) into Eq (4.3), the right-hand of Eq (4.3) becomes

[−2iω0D1A − µA(iω0)q − (3A2Ā + 6AB2 + B3eiσT1)β − (A2Ā + 2AB2 − A)iω0α

− αiωB3eiσT1]eiω0T0 + NS T + cc,
(4.5)

where NS T stands for the terms that do not produce secular terms, cc denotes the complex conjugate
of the preceding terms.

Thus, the solvability condition takes the form

2iω0D1A + µA(iω0)q + (3A2Ā + 6AB2)β + (A2Ā + 2AB2 − A)iω0α = −(β + αiω)B3eiσT1 . (4.6)

Separating the real and imaginary parts, and letting ϕ
def
= σT1 − θ to transform this into an

autonomous system. Seeking the steady state, we let D1a = 0 and D1ϕ = 0. Eliminating ϕ leads
to the nonlinear the amplitude-frequency equation

[(
µ

2
ω

q−1
0 sin

qπ
2
−

4 − a2 − 8B2

8
α)2 + (σ −

µ

2
ω

q−1
0 cos

qπ
2
−

3(a2 + 8B2)
8ω0

β)2]a2 =
(β2 + α2ω2)B6

ω2
0

. (4.7)

From Eq (4.7), it can be concluded that there is an interaction between the nonlinear term and the
external force term to the third-order superharmonic resonance of the first-order perturbation analysis.
According to Eq (4.7), different superharmonic resonance amplitude-frequency characteristic curves
can be obtained by different µ, α, β, and f .
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4.1.2. Numerical simulation

First, we present an image of the amplitude-frequency response curve of third-order superharmonic
resonance, as shown in Figure 6. Here, the parameters are selected to be, q = 0.9, α = 0.08, β = 0.2,
ω0 = 1, µ = 0.08, and f = 0.24. It can be clearly seen from Figure 6 that the fractional roller system
generates superharmonic resonance under the above parameter conditions.

By changing the nonlinear damping coefficient α, nonlinear stiffness coefficient β, rolling force
amplitude f , and fractional damping coefficient µ of the roller system, the superharmonic resonance
curves with different amplitude-frequency characteristics can be obtained, as shown in Figure 7. Here,
the fractional order q = 0.9 and the natural frequency ω0 = 1. In Figure 7(a), when the nonlinear
damping coefficient α increases, the amplitude decreases and the resonance domain decreases. In
Figure 7(b), with the nonlinear stiffness coefficient β increases, the curve shifts to the right and
the bending degree increases. In Figure 7(c), with the increase of rolling force, the amplitude and
resonance region of the system increase obviously. In Figure 7(d), when µ increases, the amplitude
and the resonance domain decrease, and the nonlinear jump of the system weakens.
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Figure 6. The amplitude-frequency response curve of third-order superharmonic resonance.
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Figure 7. Parameter effect on the amplitude-frequency curves of third-order superharmonic
resonance when (a) β = 0.2, µ = 0.08, f = 0.24, (b) α = 0.08, µ = 0.08, f = 0.24,
(c) α = 0.08, β = 0.2, µ = 0.08, (d) α = 0.08, β = 0.2, f = 0.24.

4.2. Time-delay feedback control of superharmonic resonance

4.2.1. Amplitude-frequency response equation

In order to study the control problem of superharmonic resonance, the fractional equation with
time-delay feedback control can be established as follows:

ẍ + ω2
0x + εµDq

t x + εα(x2 − 1)ẋ + εβx3 = f cosωt + εg1x(t − τ1) + εg2x3(t − τ2). (4.8)

Substituting (4.1), (2.5a)–(2.5c) into (4.8), we can obtain

(D2
0 + 2εD0D1 + ε2D2

1)(x0 + εx1) + ω2
0(x0 + εx1) + εµ · (Dq

0 + qεDq−1
0 D1)(x0 + εx1)

+ εα[(x0 + εx1)2 − 1] · (D0 + εD1)(x0 + εx1) + εβ(x0 + εx1)3

= f cos(ωT0) + g1x0(T0 − τ1) + g2x3
0(T0 − τ2).
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Equating the coefficients of the same power of ε, a set of linear differential equations are obtained:

O(ε0) : D2
0x0 + ω2

0x0 = f cos(ωT0), (4.9)
O(ε1) : D2

0x1 + ω2
0x1 = − 2D0D1x0 − µDq

0x0 − βx3
0 − α(x2

0 − 1)D0x0

+ g1x0(t − τ1) + g2x3
0(t − τ2). (4.10)

Assume that the solution of the zeroth approximation equation (4.9) is (4.4), substituting (4.4) into
Eq (4.10), the right-hand of Eq (4.10) becomes

[−2iω0D1A − µA(iω0)q − (3A2Ā + 6AB2 + B3eiσT1)β − (A2Ā + 2AB2 − A)iω0α

− αiωB3eiσT1 + g1Ae−iω0τ1 + 3g2A2Āe−iω0τ2]eiω0T0 + NS T + cc,
(4.11)

where NS T stands for the terms that do not produce secular terms, cc denotes the complex conjugate
of the preceding terms.

The solvability condition takes the form

2iω0D1A + µA(iω0)q + (3A2Ā + 6AB2 + B3eiσT1)β + (A2Ā + 2AB2 − A)iω0α

+ αiωB3eiσT1 − g1Ae−iω0τ1 − 3g2A2Āe−iω0τ2 = 0.
(4.12)

Based on the condition of steady solution, the nonlinear amplitude-frequency equation of
superharmonic vibration with time-delay control can be obtained as follows

[(
1
2
µs +

αs

8
a2)2 + (σs −

3βs

8ω0
a2)2]a2 =

(β2 + α2ω2)B6

ω2
0

, (4.13)

in which

µs = µω
q−1
0 sin

qπ
2

+
g1

ω0
sin(ω0τ1) − α + 2B2α, αs = α +

3g2

ω0
sin(ω0τ2),

σs = σ −
µ

2
ω

q−1
0 cos

qπ
2

+
g1

2ω0
cos(ω0τ1) −

3B2β

ω0
, βs = β −

g2

ω0
cos(ω0τ2).

From Eq (4.13), it can be concluded that there is an interaction between the feedback gain, time
delay, nonlinear term and the external force term to the third-order superharmonic resonance of the
first-order perturbation analysis.

4.2.2. Numerical simulation

The impact of adding time-delay feedback control on the amplitude-frequency response curve of the
third-order superharmonic resonance is presented through numerical simulation, as shown in Figure 8.
Figure 8 shows that the amplitude and resonance region can be controlled and the superharmonic
resonance bifurcations can be reduced by properly adjusting the delay parameters (τ1, τ2) and feedback
gains (g1, g2). After adding time-delay feedback control, the resonance peak value decreases, the
curvature of the curve decreases, and the jumping phenomenon has weakened.

In Figure 8(a), as the feedback gains (g1, g2) gradually increase, the amplitude of the system
gradually decreases, the resonance domain gradually decreases, and the curve bifurcation is eliminated.
The resonance domain also shows significant movement. It can be concluded that using feedback
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control gain as the control parameter and increasing both linear and nonlinear feedback control gains
can effectively control the phenomenon of superharmonic vibration in the system. In Figure 8(b), when
the delay parameters (τ1, τ2) gradually increases, the amplitude of the system gradually decreases and
the resonance domain gradually decreases. Through comparison, it can be found that whether using
feedback control gains or time-delay parameters as the control object, the control effect is significant
during the control of superharmonic vibration.

At the end of this section, a time history diagram is used to briefly illustrate the impact of feedback
control on the model. Figure 9 shows the time history of the superharmonic resonance under feedback
control. The various parameters of the system in Figure 9 are q = 0.9, ω0 = 1, α = 0.08, β = 0.2,
µ = 0.08, and f = 0.24. It can be observed that the amplitude of the resonance decreases obviously
after the delay control is added, and the larger the delay is, the greater the amplitude reduction is.
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Figure 8. Effect of time-delay feedback control on the amplitude-frequency response curve
of the third-order superharmonic resonance.
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Figure 9. The time history of the superharmonic resonance under feedback control for (a) τ =

0.01, (b) τ = 0.02.
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5. Comparison between approximate analytical solution and numerical solution

According to Eq (3.13), the primary resonance amplitude-frequency response curve of
the system can be drawn. For comparison, we adopt the power series method introduced in
reference [33, 34], and its calculation formula is

Dq
tn[y(tn)] ≈ h−q

n∑
j=0

Cq
j y(tn− j), (5.1)

where tn = nh is the sample points, h is the sample step, and Cq
j is the fractional binomial coefficient

with the iterative relationship as

Cq
0 = 1, Cq

j = (1 −
1 + q

j
)Cq

j−1. (5.2)

According to Eqs (5.1) and (5.2), the numerical scheme for Eq (2.4) can be expressed as

x(tn) = y(tn−1)h −
n∑

j=1

C1
j x(tn− j), (5.3a)

y(tn) = { f cos(ωtn) − λx(tn) − βx3(tn) + α[1 − x2(tn)]x(tn−1) − µz(tn−1)}h −
n∑

j=1

C1
j y(tn− j), (5.3b)

z(tn) = y(tn)h1−q −

n∑
j=1

C1−q
j z(tn− j). (5.3c)

The numerical amplitude-frequency curve marked with circle in Figure 10, where the stepsize of
time is h = 0.005, and the total computation time is 100s with the first 25s neglected. It shows that
the resonant amplitude calculated from Eq (3.13) is in good agreement with the numerical results,
especially when the ω ≈ ω0.
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Figure 10. Comparison between approximate analytical solution and numerical solution
when ω0 = 1, q = 0.75, µ = 0.2, α = 0.04, β = 0.1, f = 0.02.
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6. Conclusions

In the present research, we study the nonlinear vibration characteristics and time-delay feedback
controllability of a fractional horizontal roll systems for rolling mill, described by a damped fractional
Duffing-van der Pol oscillator under external harmonic excitation. In response to the inaccurate
conclusions in existing literature, we conducted rigorous derivation. The accurate amplitude-frequency
response equations were obtained by the multiple scale method. The influence of parameters on system
characteristics was studied using amplitude frequency response equation. Furthermore, the time-delay
feedback controller is designed to control the parameter excitation vibration. The numerical simulation
results verified the effectiveness of the time-delay controller in eliminating the jumping and hysteresis
phenomena of the rolling system. It can also be concluded that fractional order and the damping
coefficient are very important in fractional horizontal roll systems. For example, a larger fractional
order and larger damping coefficient can reduce the effective amplitude of resonance and change the
resonance frequency.

Through the study of the roll model, it is inspired that in the design process of strip rolling mills,
the influence of rolling force amplitude on primary resonance and superharmonic resonance should be
avoided and reduced. Further research is needed to combine active vibration control techniques such as
PID control, adaptive control, fuzzy control, and other control methods to analyze the vibration control
effect of the rolling mill.
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Jiménez, Artificial neural networks: A practical review of applications involving fractional
calculus, Eur. Phys. J. Spec. Top., 231 (2022), 2059–2095. https://doi.org/10.1140/epjs/s11734-
022-00455-3

16. Z. Cui, Z. Wang, Primary resonance of a nonlinear fractional model for cerebral aneurysm at the
circle of Willis, Nonlinear Dyn., 108 (2022), 4301–4314. http://dx.doi.org/10.1007/s11071-022-
07445-z

17. Z. Cui, Solutions of some typical nonlinear differential equations with Caputo-Fabrizio fractional
derivative, AIMS Mathematics, 7 (2022), 14139–14153. https://doi.org/10.3934/math.2022779

18. K. A. Lazopoulos, Stability criteria and Λ-fractional mechanics, Fractal Fract., 7 (2023), 248.
https://doi.org/10.3390/fractalfract7030248

19. J. Liu, H. Tian, Z. Wang, Y. Guan, Z. Cao, Dynamical analysis and misalignment projection
synchronization of a novel RLCM fractional-order memristor circuit system, Axioms, 12 (2023),
1125. https://doi.org/10.3390/axioms12121125

20. Z. Li, Z. Zhang, Stabilization control for a class of fractional-order HIV-1 infection model with
time delays, Axioms, 12 (2023), 695. https://doi.org/10.3390/axioms12070695

21. H. You, Y. Shen, H. Xing, S. Yang, Optimal control and parameters design for the fractional-
order vehicle suspension system, J. Low Freq. Noise Vibration Active Control, 37 (2018), 456–467.
https://doi.org/10.1177/0263092317717166

22. H. Zhu, J. Yang, Y. Zhang, X. Feng, A novel air spring dynamic model with pneumatic
thermodynamics, effective friction and viscoelastic damping, J. Sound Vibration, 408 (2017), 87–
104. https://doi.org/10.1016/j.jsv.2017.07.015

23. J. Niu, J. Hou, Y. Shen, S. Yang, Dynamic analysis and vibration control of nonlinear boring
bar with fractional-order model of magnetorheological fluid, Internat. J. Non-Linear Mech., 121
(2020), 103459. https://doi.org/10.1016/j.ijnonlinmec.2020.103459

24. L. Fredette, R. Singh, Effect of fractionally damped compliance elements on amplitude sensitive
dynamic stiffness predictions of a hydraulic bushing, Mech. Syst. Signal Process., 112 (2018),
129–146. https://doi.org/10.1016/j.ymssp.2018.04.031

25. G. Wang, L. Ma, A Dynamic behavior analysis of a rolling Mill’s main drive
system with fractional derivative and stochastic disturbance, Symmetry, 15 (2023), 1509.
https://doi.org/10.3390/sym15081509

26. L. Jiang, T. Wang, Q. Huang, W. Shi, Study on chaotic characteristics of horizontal
nonlinear roller system with fractional order, Arch. Appl. Mech., 93 (2023), 2435–2447.
https://doi.org/10.1007/s00419-023-02389-1

27. L. Jiang, T. Wang, Q. Huang, Analysis of dynamic characteristics of forced and free vibrations
of mill roll system based on fractional order theory, J. Beijing Inst. Tech., 32 (2023), 640–652.
https://doi.org/10.15918/j.jbit1004-0579.2023.051

28. L. Jiang, T. Wang, Q. Huang, Resonance analysis of horizontal nonlinear vibrations of roll
systems for cold rolling mills under double-frequency excitations, Mathematics, 11 (2023), 1626.
https://doi.org/10.3390/math11071626

AIMS Mathematics Volume 9, Issue 9, 24832–24853.

https://dx.doi.org/https://doi.org/10.1140/epjs/s11734-022-00455-3
https://dx.doi.org/https://doi.org/10.1140/epjs/s11734-022-00455-3
https://dx.doi.org/http://dx.doi.org/10.1007/s11071-022-07445-z
https://dx.doi.org/http://dx.doi.org/10.1007/s11071-022-07445-z
https://dx.doi.org/https://doi.org/10.3934/math.2022779
https://dx.doi.org/https://doi.org/10.3390/fractalfract7030248
https://dx.doi.org/https://doi.org/10.3390/axioms12121125
https://dx.doi.org/https://doi.org/10.3390/axioms12070695
https://dx.doi.org/https://doi.org/10.1177/0263092317717166
https://dx.doi.org/https://doi.org/10.1016/j.jsv.2017.07.015
https://dx.doi.org/https://doi.org/10.1016/j.ijnonlinmec.2020.103459
https://dx.doi.org/https://doi.org/10.1016/j.ymssp.2018.04.031
https://dx.doi.org/https://doi.org/10.3390/sym15081509
https://dx.doi.org/https://doi.org/10.1007/s00419-023-02389-1
https://dx.doi.org/https://doi.org/10.15918/j.jbit1004-0579.2023.051
https://dx.doi.org/https://doi.org/10.3390/math11071626


24853

29. Z. Wang, H. Hu, Stability and bifurcation of delayed dynamic systems: From theory to application,
(In Chinese), Adv. Mech., 43 (2013), 3–20. https://doi.org/10.6052/1000-0992-12-018

30. Y. Yan, J. Li, W. Wang, Time-delay feedback control of an axially moving nanoscale
beam with time-dependent velocity, Chaos Solitons Fract., 166 (2023), 112949.
https://doi.org/10.1016/j.chaos.2022.112949

31. P. Zhu, M. Xiao, X. Huang, F. Zhang, Z. Wang, J. Cao, Spatiotemporal dynamics optimization
of a delayed reaction-diffusion mussel-algae model based on PD control strategy, Chaos Solitons
Fract., 173 (2023), 113751. https://doi.org/10.1016/j.chaos.2023.113751

32. Y. Shen, H. Li, S. Yang, M. Peng, Y. Han, Primary and subharmonic simultaneous
resonance of fractional-order Duffing oscillator, Nonlinear Dyn., 102 (2020), 1485–1497.
https://doi.org/10.1007/s11071-020-06048-w

33. R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: Modeling and control
applications, World Scientific, 2010. https://doi.org/10.1142/7709

34. I. Petras, Fractional-order nonlinear systems: Modeling, analysis and simulation, Heidelberg:
Springer Berlin, 2011. http://dx.doi.org/10.1007/978-3-642-18101-6

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 9, 24832–24853.

https://dx.doi.org/https://doi.org/10.6052/1000-0992-12-018
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112949
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.113751
https://dx.doi.org/https://doi.org/10.1007/s11071-020-06048-w
https://dx.doi.org/https://doi.org/10.1142/7709
https://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-18101-6
https://creativecommons.org/licenses/by/4.0

	Introduction
	Nonlinear vibration model
	Problem formulation
	Multiple scale method

	Primary resonance and time-delay feedback control
	Primary resonance
	Amplitude-frequency response equation
	Stability of the steady resonant solutions
	Analysis of the resonant solutions

	Time-delay feedback control of primary resonance 
	Amplitude-frequency response equation
	Numerical simulation


	Secondary resonance and time-delay feedback control
	Third-order superharmonic resonance
	Amplitude-frequency response equation
	Numerical simulation

	Time-delay feedback control of superharmonic resonance
	Amplitude-frequency response equation
	Numerical simulation


	Comparison between approximate analytical solution and numerical solution
	Conclusions

