Strong and steady convergence characterizes the upper-crossing/solution (US) algorithm, which is an effective method for identifying roots of a complicated nonlinear equation $ h(\theta) = 0 $. Only the case where one parameter of a distribution function can be directly specified by another parameter is taken into account by the research that is currently available. However, whether this approach can be applied in multi-parameter scenarios where one parameter cannot be clearly represented by the other is an issue deserving of more investigation. In order to extend the applicability of the US algorithm, this article used the Type Ⅰ discrete Weibull distribution with two parameters as an example. It then combined the US algorithm with the first-derivative lower bound (FLB) function method to estimate the complex situation where two parameters cannot be expressed as each other. Simulation studies and empirical analysis demonstrated that the US algorithm performs more accurately and steadily than the traditional Newton method.
Citation: Yuanhang Ouyang, Ruyun Yan, Jianhua Shi. The multi-parameter estimation of discrete distribution without closed-form solutions by the US algorithm[J]. AIMS Mathematics, 2024, 9(9): 24507-24524. doi: 10.3934/math.20241193
Strong and steady convergence characterizes the upper-crossing/solution (US) algorithm, which is an effective method for identifying roots of a complicated nonlinear equation $ h(\theta) = 0 $. Only the case where one parameter of a distribution function can be directly specified by another parameter is taken into account by the research that is currently available. However, whether this approach can be applied in multi-parameter scenarios where one parameter cannot be clearly represented by the other is an issue deserving of more investigation. In order to extend the applicability of the US algorithm, this article used the Type Ⅰ discrete Weibull distribution with two parameters as an example. It then combined the US algorithm with the first-derivative lower bound (FLB) function method to estimate the complex situation where two parameters cannot be expressed as each other. Simulation studies and empirical analysis demonstrated that the US algorithm performs more accurately and steadily than the traditional Newton method.
[1] | M. Szymkowiak, M. Iwińska, Characterizations of discrete weibull related distributions, Stat. Probab. Lett., 111 (2016), 41–48. https://doi.org/10.1016/j.spl.2016.01.004 doi: 10.1016/j.spl.2016.01.004 |
[2] | D. Roy, Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, J. Multivar. Anal., 46 (1993), 362–373. https://doi.org/10.1006/jmva.1993.1065 doi: 10.1006/jmva.1993.1065 |
[3] | D. Roy, The discrete normal distribution, Commun. Stat.-Theory Methods, 32 (2003), 1871–1883. |
[4] | H. Krishna, P. S. Pundir, Discrete burr and discrete pareto distributions, Stat. Methodol., 6 (2009), 177–188. https://doi.org/10.1016/j.stamet.2008.07.001 doi: 10.1016/j.stamet.2008.07.001 |
[5] | C. Bracquemond, O. Gaudoin, A survey on discrete lifetime distributions, Int. J. Reliab., Qual. Saf. Eng., 10 (2003), 69–98. https://doi.org/10.1142/S0218539303001007 doi: 10.1142/S0218539303001007 |
[6] | K. Samuel, N. Balakrishnan, N. L. Johnson, Continuous Multivariate Distributions: Models and Applications, New York: John Wiley & Sons, Inc, 2000. https://doi.org/10.1002/0471722065 |
[7] | T. Nakagawa, S. Osaki, The discrete weibull distribution, IEEE Trans. Reliab., R-24 (1975), 300–301. https://doi.org/10.1109/TR.1975.5214915 doi: 10.1109/TR.1975.5214915 |
[8] | W. E. Stein, R. Dattero, A new discrete weibull distribution, IEEE Trans. Reliab., R-33 (1984), 196–197. https://doi.org/10.1109/TR.1984.5221777 doi: 10.1109/TR.1984.5221777 |
[9] | W. J. Padgett, J. D. Spurrier, On discrete failure models, IEEE Trans. Reliab., R-34 (1985), 253–256. |
[10] | J. D. Englehardt, R. Li, The discrete weibull distribution: An alternative for correlated counts with confirmation for microbial counts in water, Risk Anal.: Int. J., 31 (2011), 370–381. https://doi.org/10.1111/j.1539-6924.2010.01520.x doi: 10.1111/j.1539-6924.2010.01520.x |
[11] | A. Barbiero, A comparison of methods for estimating parameters of the type i discrete weibull distribution, Stat. Interface, 9 (2016), 203–212. https://doi.org/10.4310/SII.2016.v9.n2.a7 doi: 10.4310/SII.2016.v9.n2.a7 |
[12] | A. Barbiero, Least-squares and minimum chi-square estimation in a discrete weibull model, Commun. Stat.-Simul. Comput., 46 (2017), 8028–8048. https://doi.org/10.1080/03610918.2016.1263733 doi: 10.1080/03610918.2016.1263733 |
[13] | R. Vila, E. Y. Nakano, H. Saulo, Theoretical results on the discrete weibull distribution of nakagawa and osaki, Statistics, 53 (2019), 339–363. https://doi.org/10.1080/02331888.2018.1550645 doi: 10.1080/02331888.2018.1550645 |
[14] | H. Yoo, Application of discrete weibull regression model with multiple imputation, Commun. Stat. Appl. Methods, 26 (2019), 325–336. https://doi.org/10.29220/CSAM.2019.26.3.325 doi: 10.29220/CSAM.2019.26.3.325 |
[15] | M. El-Morshedy, M. Eliwa, A. El-Gohary, A. Khalil, Bivariate exponentiated discrete weibull distribution: Statistical properties, estimation, simulation and applications, Math. Sci., 14 (2020), 29–42. |
[16] | P. Liu, K. C. Yuen, L. C. Wu, G. L. Tian, T. Li, Zero-one-inflated simplex regression models for the analysis of continuous proportion data, Stat. Interface, 13 (2020), 193–208. |
[17] | X. Li, G.-L. Tian, The upper-crossing/solution (US) algorithm for root-finding with strongly stable convergence, 2022. https://doi.org/10.48550/arXiv.2212.00797 |
[18] | Y. Cai, Maximum likelihood estimates of parameters in generalized gamma distribution with self algorithm, 2023. https://doi.org/10.48550/arXiv.2306.16419 |
[19] | H. S. Bakouch, M. A. Jazi, S. Nadarajah, A new discrete distribution, Statistics, 48 (2012), 200–240. https://doi.org/10.1080/02331888.2012.716677 |
[20] | H. Bozdogan, Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions, Psychometrika, 52 (1987), 345–370. https://doi.org/10.1007/BF02294361 doi: 10.1007/BF02294361 |
[21] | S. I. Vrieze, Model selection and psychological theory: A discussion of the differences between the akaike information criterion (AIC) and the bayesian information criterion (BIC), Psychol. Methods, 17 (2012), 228. https://doi.org/10.1037/a0027127 doi: 10.1037/a0027127 |