This study explores the nonlinear Peyrard-Bishop DNA dynamic model, a nonlinear evolution equation that describes the behavior of DNA molecules by considering hydrogen bonds between base pairs and stacking interactions between adjacent base pairs. The primary objective is to derive analytical solutions to this model using the Khater Ⅲ and improved Kudryashov methods. Subsequently, the stability of these solutions is analyzed through Hamiltonian system characterization. The Peyrard-Bishop model is pivotal in biophysics, offering insights into the dynamics of DNA molecules and their responses to external forces. By employing these analytical techniques and stability analysis, this research aims to enhance the understanding of DNA dynamics and its implications in fields such as drug design, gene therapy, and molecular biology. The novelty of this work lies in the application of the Khater Ⅲ and an enhanced Kudryashov methods to the Peyrard-Bishop model, along with a comprehensive stability investigation using Hamiltonian system characterization, providing new perspectives on DNA molecule dynamics within the scope of nonlinear dynamics and biophysics.
Citation: Mostafa M. A. Khater, Mohammed Zakarya, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty. Dynamics and stability analysis of nonlinear DNA molecules: Insights from the Peyrard-Bishop model[J]. AIMS Mathematics, 2024, 9(9): 23449-23467. doi: 10.3934/math.20241140
This study explores the nonlinear Peyrard-Bishop DNA dynamic model, a nonlinear evolution equation that describes the behavior of DNA molecules by considering hydrogen bonds between base pairs and stacking interactions between adjacent base pairs. The primary objective is to derive analytical solutions to this model using the Khater Ⅲ and improved Kudryashov methods. Subsequently, the stability of these solutions is analyzed through Hamiltonian system characterization. The Peyrard-Bishop model is pivotal in biophysics, offering insights into the dynamics of DNA molecules and their responses to external forces. By employing these analytical techniques and stability analysis, this research aims to enhance the understanding of DNA dynamics and its implications in fields such as drug design, gene therapy, and molecular biology. The novelty of this work lies in the application of the Khater Ⅲ and an enhanced Kudryashov methods to the Peyrard-Bishop model, along with a comprehensive stability investigation using Hamiltonian system characterization, providing new perspectives on DNA molecule dynamics within the scope of nonlinear dynamics and biophysics.
[1] | J. Manafian, O. A. Ilhan, S. A. Mohammed, Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model, Aims Mathematics, 5 (2020), 2461–2483. http://doi.org/10.3934/math.2020163 doi: 10.3934/math.2020163 |
[2] | L. Ouahid, Plenty of soliton solutions to the DNA Peyrard-Bishop equation via two distinctive strategies, Phys. Scr., 96 (2021), 035224. https://doi.org/10.1088/1402-4896/abdc57 doi: 10.1088/1402-4896/abdc57 |
[3] | M. B. Riaz, M. Fayyaz, Rahman, R. U., Martinovic, J., O. Tunç, Analytical study of fractional DNA dynamics in the Peyrard-Bishop oscillator-chain model, Ain Shams Eng. J., 15 (2024), 102864. https://doi.org/10.1016/j.asej.2024.102864 doi: 10.1016/j.asej.2024.102864 |
[4] | K. K. Ali, M. I. Abdelrahman, K. R. Raslan, W. Adel, On analytical and numerical study for the peyrard-bishop DNA dynamic model, Appl. Math. Inf. Sci, 16 (2022), 749–759. |
[5] | M. I. Asjad, W. A. Faridi, S. E. Alhazmi, A. Hussanan, The modulation instability analysis and generalized fractional propagating patterns of the Peyrard-Bishop DNA dynamical equation, Opt. Quant. Electron., 55 (2023), 232. https://doi.org/10.1007/s11082-022-04477-y doi: 10.1007/s11082-022-04477-y |
[6] | A. Hussain, M. Usman, F. D. Zaman, S. M. Eldin, Optical solitons with DNA dynamics arising in oscillator-chain of Peyrard-Bishop model, Results Phys., 50 (2023), 106586. https://doi.org/10.1016/j.rinp.2023.106586 doi: 10.1016/j.rinp.2023.106586 |
[7] | T. E. Sutantyo, A. Ripai, Z.Abdullah, W. Hidayat, Nonlinear dynamics of modified peyrard-bishop DNA model in nosé-hoover thermostat, J. Phys.: Conf. Ser., 1876 (2021), 012021. https://doi.org/10.1088/1742-6596/1876/1/012021 doi: 10.1088/1742-6596/1876/1/012021 |
[8] | M. V. Bezhenar, A. A. Elkina, J. H. Caceres, M. G. Baryshev, A. O. Sulima, S. S. Dzhimak, et al., Review of Mathematical Models Describing the Mechanical Motion in a DNA Molecule, Biophysics, 67 (2022), 867–875. https://doi.org/10.1134/S0006350922060021 doi: 10.1134/S0006350922060021 |
[9] | A. Tripathy, S. Sahoo, New dynamic multiwave solutions of the fractional Peyrard-Bishop DNA model, J. Comput. Nonlinear Dyn., 18 (2023), 101005. https://doi.org/10.1115/1.4063223 doi: 10.1115/1.4063223 |
[10] | T. E. P. Sutantyo, A. Ripai, Z. Abdullah, W. Hidayat, F. P. Zen, Soliton-like solution on the dynamics of modified Peyrard-Bishop DNA model in the thermostat as a bio-fluid, Emerg. Sci. J., 6 (2022), 667–678. https://doi.org/10.28991/ESJ-2022-06-04-01 doi: 10.28991/ESJ-2022-06-04-01 |
[11] | A. Zafar, K. K. Ali, M. Raheel, N. Jafar, K. S. Nisar, Soliton solutions to the DNA Peyrard-Bishop equation with beta-derivative via three distinctive approaches, Eur. Phys. J. Plus, 135 (2020), 726. https://doi.org/10.1140/epjp/s13360-020-00751-8 doi: 10.1140/epjp/s13360-020-00751-8 |
[12] | G. Akram, S. Arshed, Z. Imran, Soliton solutions for fractional DNA Peyrard-Bishop equation via the extended-expansion method, Phys. Scr., 96 (2021), 094009. https://doi.org/10.1088/1402-4896/ac0955 doi: 10.1088/1402-4896/ac0955 |
[13] | L. Ouahid, M. A. Abdou, S. Owyed, S. Kumar, New optical soliton solutions via two distinctive schemes for the DNA Peyrard-Bishop equation in fractal order, Modern Phys. Lett. B, 35 (2021), 2150444. https://doi.org/10.1142/S0217984921504443 doi: 10.1142/S0217984921504443 |
[14] | A. Djine, G. R. Deffo, S. B. Yamgoué, Bifurcation of backward and forward solitary waves in helicoidal Peyrard-Bishop-Dauxois model of DNA, Chaos, Soliton. Fract., 170 (2023), 113334. https://doi.org/10.1016/j.chaos.2023.113334 doi: 10.1016/j.chaos.2023.113334 |
[15] | A. Djine, N. O. Nfor, G. R. Deffo, S. B. Yamgoué, Higher order investigation on modulated waves in the Peyrard-Bishop-Dauxois DNA model, Chaos, Soliton. Fract., 181 (2024), 114706. https://doi.org/10.1016/j.chaos.2024.114706 doi: 10.1016/j.chaos.2024.114706 |
[16] | R. A. Attia, D. Baleanu, D. Lu, M. Khater, E. S. Ahmed, Computational and numerical simulations for the deoxyribonucleic acid (DNA) model, Discrete Contin. Dyn. Syst.-Ser. S, 14 (2021), 3459–3478. https://doi.org/10.3934/dcdss.2021018 doi: 10.3934/dcdss.2021018 |
[17] | M. M. Khater, D. Lu, M. Inc, Diverse novel solutions for the ionic current using the microtubule equation based on two recent computational schemes, J. Comput. Electron., 20 (2021), 2604–2613. https://doi.org/10.1007/s10825-021-01810-8 doi: 10.1007/s10825-021-01810-8 |
[18] | M. M. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. A. Akbar, M.Inc, et al., New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques, Opt. Quant. Electron., 53 (2021), 609. https://doi.org/10.1007/s11082-021-03267-2 doi: 10.1007/s11082-021-03267-2 |
[19] | M. M. Khater, S. H. Alfalqi, J. F. Alzaidi, R. A. Attia, Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a quasi-monochromatic medium, Results Phys., 46 (2023), 106312. |
[20] | A. Rani, M. Ashraf, M. Shakeel, Q. Mahmood-Ul-Hassan, J. Ahmad, Analysis of some new wave solutions of DNA-Peyrard-Bishop equation via mathematical method, Modern Phys. Lett. B, 36 (2022), 2250047. https://doi.org/10.1142/S0217984922500476 doi: 10.1142/S0217984922500476 |
[21] | T. Shafique, M. Abbas, A. Mahmood, F. A. Abdullah, A. S. Alzaidi, T. Nazir, Solitary wave solutions of the fractional Peyrard Bishop DNA model, Opt. Quant. Electron., 56 (2024), 815. |
[22] | A. Secer, M. Ozisik, M. Bayram, N. Ozdemir, M. Cinar, Investigation of soliton solutions to the Peyrard-Bishop-Deoxyribo-Nucleic-Acid dynamic model with beta-derivative, Modern Phys. Lett. B, 38 (2024), 2450263. https://doi.org/10.1142/S0217984924502634 doi: 10.1142/S0217984924502634 |
[23] | N. A. Jolfaei, N. A. Jolfaei, M. Hekmatifar, A. Piranfar, D. Toghraie, R. Sabetvand, et al., Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches, Comput. Methods Programs Biomed., 185 (2020), 105169. https://doi.org/10.1016/j.cmpb.2019.105169 doi: 10.1016/j.cmpb.2019.105169 |
[24] | X. Wang, G. Akram, M. Sadaf, H. Mariyam, M. Abbas, Soliton Solution of the Peyrard-Bishop-Dauxois Model of DNA Dynamics with M-Truncated and $\beta$-Fractional Derivatives Using Kudryashov's R Function Method, Fractal Fract., 6 (2022), 616. https://doi.org/10.3390/fractalfract6100616 doi: 10.3390/fractalfract6100616 |
[25] | J. B. Okaly, T. Nkoa Nkomom, Nonlinear Dynamics of DNA Chain with Long-Range Interactions, In: Nonlinear Dynamics of Nanobiophysics, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-5323-1_4 |
[26] | A. Bugay, Soliton excitations in a Twist-Opening Nonlinear DNA Model, In: Nonlinear Dynamics of Nanobiophysics, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-5323-1_7 |
[27] | I. Hubac, F. Blaschke, O. N. Karpisek, Quantum information in biomolecules: Transcription and replication of DNA using a soliton model, Opava, Proceedings of RAGtime 22: Workshops on Black Holes and Neutron Stars, 2020, 55–71. |
[28] | N. Ayyappan, C. M. Joy, L. Kavitha, Stability analysis of DNA with the effect of twist and Morse potential, Mater. Today: Proc., 51 (2022), 1793–1796. |
[29] | M. A. Abdou, L. Ouahid, J. S. Al Shahrani, M. M. Alanazi, S. Kumar, New analytical solutions and efficient methodologies for DNA (Double-Chain Model) in mathematical biology, Modern Phys. Lett. B, 36 (2022), 2250124. https://doi.org/10.1142/S021798492250124X doi: 10.1142/S021798492250124X |
[30] | R. Saleh, S. M. Mabrouk, A. M. Wazwaz, Lie symmetry analysis of a stochastic gene evolution in double-chain deoxyribonucleic acid system, Waves Random Complex Media, 32 (2022), 2903–2917. https://doi.org/10.1080/17455030.2020.1871109 doi: 10.1080/17455030.2020.1871109 |
[31] | D. Shi, H. U. Rehman, I. Iqbal, M. Vivas-Cortez, M. S. Saleem, X. Zhang, Analytical study of the dynamics in the double-chain model of DNA, Results Phys., 52 (2023), 106787. https://doi.org/10.1016/j.rinp.2023.106787 doi: 10.1016/j.rinp.2023.106787 |
[32] | M. Vivas-Cortez, S. Arshed, M. Sadaf, Z. Perveen, G. Akram, Numerical simulations of the soliton dynamics for a nonlinear biological model: Modulation instability analysis, PLoS One, 18 (2023), e0281318. https://doi.org/10.1371/journal.pone.0281318 doi: 10.1371/journal.pone.0281318 |
[33] | T. Han, K. Zhang, Y. Jiang, H. Rezazadeh, Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System, Fractal Fract., 8 (2024), 415. https://doi.org/10.3390/fractalfract8070415 doi: 10.3390/fractalfract8070415 |
[34] | N. O. Nfor, Higher order periodic base pairs opening in a finite stacking enthalpy DNA model, J. Modern Phys., 12 (2021), 1843–1865. |
[35] | S. W. Yao, S. M. Mabrouk, M. Inc, A. S. Rashed, Analysis of double-chain deoxyribonucleic acid dynamical system in pandemic confrontation, Results Phys., 42 (2022), 105966. https://doi.org/10.1016/j.rinp.2022.105966 doi: 10.1016/j.rinp.2022.105966 |