Let $ \mathbb{F}_q $ be the finite field of $ q $ elements, and $ \mathbb{F}_{q^{n}} $ its extension of degree $ n $. A normal basis of $ \mathbb{F}_{q^{n}} $ over $ \mathbb{F}_q $ is a basis of the form $ \{\alpha, \alpha^{q}, \cdots, \alpha^{q^{n-1}}\} $. Some problems on normal bases can be finally reduced to the determination of the irreducible factors of the polynomial $ x^{n}-1 $ in $ \mathbb{F}_q $, while the latter is closely related to the cyclotomic polynomials. Denote by $ \mathfrak{F}(x^{n}-1) $ the set of all distinct monic irreducible factors of $ x^{n}-1 $ in $ \mathbb{F}_q $. The criteria for
$ |\mathfrak{F}(x^{n}-1)|\leq 2 $
have been studied in the literature. In this paper, we provide the sufficient and necessary conditions for
$ |\mathfrak{F}(x^{n}-1)| = s, $
where $ s $ is a positive integer by using the properties of cyclotomic polynomials and results from the Diophantine equations. As an application, we obtain the sufficient and necessary conditions for
$ |\mathfrak{F}(x^{n}-1)| = 3, 4, 5. $
Citation: Weitao Xie, Jiayu Zhang, Wei Cao. On the number of the irreducible factors of $ x^{n}-1 $ over finite fields[J]. AIMS Mathematics, 2024, 9(9): 23468-23488. doi: 10.3934/math.20241141
Let $ \mathbb{F}_q $ be the finite field of $ q $ elements, and $ \mathbb{F}_{q^{n}} $ its extension of degree $ n $. A normal basis of $ \mathbb{F}_{q^{n}} $ over $ \mathbb{F}_q $ is a basis of the form $ \{\alpha, \alpha^{q}, \cdots, \alpha^{q^{n-1}}\} $. Some problems on normal bases can be finally reduced to the determination of the irreducible factors of the polynomial $ x^{n}-1 $ in $ \mathbb{F}_q $, while the latter is closely related to the cyclotomic polynomials. Denote by $ \mathfrak{F}(x^{n}-1) $ the set of all distinct monic irreducible factors of $ x^{n}-1 $ in $ \mathbb{F}_q $. The criteria for
$ |\mathfrak{F}(x^{n}-1)|\leq 2 $
have been studied in the literature. In this paper, we provide the sufficient and necessary conditions for
$ |\mathfrak{F}(x^{n}-1)| = s, $
where $ s $ is a positive integer by using the properties of cyclotomic polynomials and results from the Diophantine equations. As an application, we obtain the sufficient and necessary conditions for
$ |\mathfrak{F}(x^{n}-1)| = 3, 4, 5. $
[1] | J. H. Silverman, Taxicabs and sums of two cubes, Amer. Math. Mon., 100 (1993), 331–340. http://doi.org/10.1080/00029890.1993.11990409 doi: 10.1080/00029890.1993.11990409 |
[2] | Z. G. Li, P. Z. Yuan, On the number of solutions of some special simultaneous Pell equations, Acta Math. Sin. Chinese Ser., 50 (2007), 1349–1356. |
[3] | B. Li, The solution structure of multivariate linear indeterminate equation and its application, J. Anhui Univ., 39 (2015), 6–12. http://doi.org/10.3969/j.issn.1000-2162.2015.05.002 doi: 10.3969/j.issn.1000-2162.2015.05.002 |
[4] | C. X. Zhu, Y. L. Feng, S. F. Hong, J. Y. Zhao, On the number of zeros of to the equaton $f(x_{1})+\cdots+f(x_{n}) = a$ over finite fields, Finite Fields Their Appl., 76 (2021), 101922. https://doi.org/10.1016/j.ffa.2021.101922 doi: 10.1016/j.ffa.2021.101922 |
[5] | J. Y. Zhao, Y. Zhao, Y. J. Niu, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., 5 (2020), 2979–2991. https://doi.org/10.3934/math.2020192 doi: 10.3934/math.2020192 |
[6] | S. Perlis, Normal bases of cyclic fields of prime-power degree, Duke Math. J., 9 (1942), 507–517. http://doi.org/10.1215/S0012-7094-42-00938-4 doi: 10.1215/S0012-7094-42-00938-4 |
[7] | D. Pei, C. Wang, J. Omura, Normal basis of finite field $GF(2^{m})$, IEEE Trans. Inf. Theory, 32 (1986), 285–287. http://doi.org/10.1109/TIT.1986.1057152 doi: 10.1109/TIT.1986.1057152 |
[8] | Y. Chang, T. K. Truong, I. S. Reed, Normal bases over $GF(q)$, J. Algebra, 241 (2001), 89–101. https://doi.org/10.1006/jabr.2001.8765 doi: 10.1006/jabr.2001.8765 |
[9] | H. Huang, S. M. Han, W. Cao, Normal bases and irreducible polynomials, Finite Fields Their Appl., 50 (2018), 272–278. https://doi.org/10.1016/j.ffa.2017.12.004 doi: 10.1016/j.ffa.2017.12.004 |
[10] | S. H. Gao, Normal bases over finite fields, University of Waterloo, 1993. |
[11] | W. Cao, Normal bases and factorization of $x^n-1$ in finite fields, Appl. Algebra Eng. Commun. Comput., 35 (2024), 167–175. http://doi.org/10.1007/s00200-022-00540-z doi: 10.1007/s00200-022-00540-z |
[12] | R. Lidl, H. Niederreiter, Finite fields, Cambridge University Press, 1997. http://doi.org/10.1017/CBO9780511525926 |
[13] | Z. Ke, Q. Sun, Lectures on number theory, Higher Education Press, 2001. |
[14] | K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag, 1990. https://doi.org/10.1007/978-1-4757-2103-4 |
[15] | A. H. Parvardi, Lifting the exponent lemma (LTE), Art of Problem Solving, 2011. |