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Abstract: Let Fq be the finite field of q elements, and Fqn its extension of degree n. A normal basis
of Fqn over Fq is a basis of the form {α, αq, · · · , αqn−1

}. Some problems on normal bases can be finally
reduced to the determination of the irreducible factors of the polynomial xn − 1 in Fq, while the latter
is closely related to the cyclotomic polynomials. Denote by F(xn − 1) the set of all distinct monic
irreducible factors of xn − 1 in Fq. The criteria for

|F(xn − 1)| ≤ 2

have been studied in the literature. In this paper, we provide the sufficient and necessary conditions for

|F(xn − 1)| = s,

where s is a positive integer by using the properties of cyclotomic polynomials and results from the
Diophantine equations. As an application, we obtain the sufficient and necessary conditions for

|F(xn − 1)| = 3, 4, 5.
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1. Introduction

The study of Diophantine equations plays a very important role in number theory, and the integer
solutions of Diophantine equations are widely used in cryptography and coding theory. Silverman [1]
studied the parametric solution of equation

X3 + Y3 = A,
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Li and Yuan [2] proved that the simultaneous Pell equations possess at most one positive integer
solution under certain conditions.

A Diophantine equation of the form

a1x1 + a2x2 + · · · + atxt = s (1.1)

is called a multivariate linear Diophantine equation, where s, a1, a2, · · · , at are nonzero integers and
t ≥ 2. It is well known that for any given nonzero integers a and b, there are two integers u and v such
that

ua + vb = (a, b),

where (a, b) represents the greatest common divisor of a and b. Now we introduce some symbols
associated with Eq (1.1) as follows:

(a1, a2) = d2, (d2, a3) = d3, · · · , (dt−1, at) = dt.

That is, there exist integers u1, u2, · · · , ut and v2, v3, · · · , vt−1 such that
a1u1 + a2u2 = d2,

d2v2 + a3u3 = d3,
...

dt−1vt−1 + atut = dt.

(1.2)

Li [3] gave the structure of the general solution of the multivariate linear Diophantine equation.

Theorem 1.1. ([3]) The multivariate linear Diophantine Eq (1.1) has solutions if and only if dt|s.
Furthermore, if dt|s and t ≥ 4, then the general solutions of Diophantine Eq (1.1) are

x1 = u1(δ
∏

2≤i≤t−1 vi +
∑

4≤ j≤t ā j
∏

2≤i≤ j−2 vis j−1 + ā3s2) + ā2s1,

x2 = u2(δ
∏

2≤i≤t−1 vi +
∑

4≤ j≤t ā j
∏

2≤i≤ j−2 vis j−1 + ā3s2) − a1d−1
2 s1,

x3 = u3(δ
∏

3≤i≤t−1 vi +
∑

5≤ j≤t ā j
∏

3≤i≤ j−2 vis j−1 + ā4s3) − d2d−1
3 s2,

...

xt−1 = ut−1(δvt−1 + ātst−1) − dt−2d−1
t−1st−2,

xt = utδ − dt−1d−1
t st−1,

(1.3)

where si(1 ≤ i ≤ t − 1) are arbitrary integers and δ = sd−1
t , ā j = a jd−1

j for 2 ≤ j ≤ t.

Let Fq be a finite field of q elements with characteristic p, and Fqn be its extension of degree n,
where p is a prime number and n ≥ 2 is an integer. Zhu et al. [4] obtained an explicit formula for the
number of solutions to the equation

f (x1) + · · · + f (xn) = a

over Fq. Zhao et al. [5] found an explicit formula for the number of solutions of the two-variable
diagonal quartic equation

x4
1 + x4

2 = c
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over Fq.
A basis of Fqn over Fq of the form {α, αq, · · · , αqn−1

} is called a normal basis of Fqn over Fq, and α
is called a normal element of Fqn over Fq. An irreducible polynomial f (x) ∈ Fq[x] is called a normal
polynomial if all the roots of f (x) are normal elements of Fqn over Fq. The trace of α is defined as

Tr(α) = α + αq + · · · + αqn−1

and the trace of f (x) is defined to be the coefficient of xn−1. Theorems 1.1 and 1.2 below give a simple
criterion to check when an irreducible polynomial is a normal polynomial.

Theorem 1.2. ([6]) Let n = pe with e ≥ 1. Then an irreducible polynomial

f (x) = xn + a1xn−1 + · · · + an ∈ Fq[x]

is a normal polynomial if and only if a1 , 0.

Theorem 1.3. ([7]) Let n be a prime different from p, and let q be a primitive root modulo n. Then an
irreducible polynomial

f (x) = xn + a1xn−1 + · · · + an ∈ Fq[x]

is a normal polynomial if and only if a1 , 0.

In 2001, Chang([8]) et al. furthermore proved that the conditions in Theorems 1.1 and 1.2 are also
necessary.

Theorem 1.4. ([8]) If every irreducible polynomial

f (x) = xn + a1xn−1 + · · · + an ∈ Fq[x]

with a1 , 0 is a normal polynomial, then n is either a power of p or a prime different from p, and q is
a primitive root modulo n.

In 2018, Huang et al. [9] presented a unified proof of Theorems 1.1–1.3 by comparing the number
of normal polynomials and that of irreducible polynomials over Fq.

The factorization of xn − 1 and its irreducible factors are closely related to the normal elements in
Fqn over Fq (see [10, Section 2]). Denote by F(xn − 1) the set of all distinct monic irreducible factors
of xn − 1 in a given finite field, Φr(x) a r-th cyclotomic polynomial, and φ(·) the Euler function. Write

n = mpe,

where e ≥ 0 is an integer, p is the characteristic of Fq, and p ∤ m. Below are the known results for

|F(xn − 1)| = 1, 2.

Theorem 1.5. ([11]) The following statements are equivalent:

(a) |F(xn − 1)| = 1.
(b) F(xn − 1)={x − 1}.
(c) n = pe.

AIMS Mathematics Volume 9, Issue 9, 23468–23488.
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Theorem 1.6. ([11]) The following statements are equivalent:

(a) |F(xn − 1)| = 2.

(b) F(xn − 1)={x − 1, 1 + x + · · · + xm−1}.

(c) m is a prime different from p, and q is a primitive root modulo m.

We summarize the five theorems above into the theorem below:

Theorem 1.7. The following statements are equivalent:

(a) Every irreducible polynomial of degree n over Fq with a nonzero trace is a normal polynomial.

(b) F(xn − 1) ⊆ {x − 1, 1 + x + · · · + xn−1}.

(c) (c1) n = pe, or

(c2) n is a prime different from p, with q being a primitive root modulo n.

Cao [11] presented a new and unified proof of Theorem 1.6 and also extended Theorem 1.6. In
this paper, we give the necessary and sufficient condition for the polynomial xn − 1 to have s different
irreducible factors for a given positive integer s.

2. Preliminaries

Lemma 2.1 indicates that factorization of xn − 1 in finite fields is closely related to the cyclotomic
polynomials.

Lemma 2.1. ([12]) Let Fq be a finite field of characteristic p, and let n be a positive integer not divisible
by p. Then

xn − 1 =
∏
d|n

Φd(x).

Lemma 2.2. ([13]) Let l be the order of a modulo m, an ≡ 1 (mod m), then l | n.

Lemma 2.3. ([12]) Let Fq be a finite field and n a positive integer with (q, n) = 1. Then the cyclotomic
polynomial Φn(x) factors into φ(n)

d distinct monic irreducible polynomials in Fq[x] of the same degree
d, where d is the order of q modulo n.

Lemma 2.4 is the well-known theorem about the existence of primitive roots.

Lemma 2.4. ([14]) Let n be a positive integer. Then n possesses primitive roots if and only if n is of
the form 2, 4, pα, or 2pα, where p is an odd prime and α is a positive integer.

By Lemmas 2.3 and 2.4, we have the following lemma:

Lemma 2.5. The cyclotomic polynomial Φn(x) is irreducible over Fq if and only if n = 2, 4, pα, 2pα,
and q is a primitive root modulo n.

We define vp(x) to be the greatest power in which a prime p divides x, that is, if vp(x) = α, then pα|x
but pα+1 ∤ x. The following lemma is called the lifting the exponent lemma (LTE):

Lemma 2.6. ([15]) Let x and y be (not necessarily positive) integers, n be a positive integer, and p be
an odd prime such that p|x − y and none of x and y is divisible by p. We have
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vp(xn − yn) = vp(x − y) + vp(n).

Lemma 2.7. Let p be an odd prime and g be a primitive root modulo p2, with (g, p) = 1. Then g is a
primitive root modulo pl(l ≥ 1).

Proof. We first prove that g is a primitive root modulo pl(l ≥ 2) by induction on l. Let g be a primitive
root modulo pl. The order of g modulo pl+1 is d. We have

φ(pl) | d, d | φ(pl+1),

which shows that
d = pl−1(p − 1)

or
d = pl(p − 1).

We next prove that
d , pl−1(p − 1).

According to Euler’s theorem, we have

gpl−2(p−1) ≡ 1 (mod pl−1),

there exists an integer k such that

gpl−2(p−1) = 1 + kpl−1,

since g is a primitive root modulo pl, we have

gpl−2(p−1) . 1 (mod pl), pl ∤ kpl−1, (k, p) = 1.

Obviously, for l ≥ 2, we have
2l − 1 ≥ l + 1

and
3(l − 1) ≥ l + 1,

which shows that

gpl−1(p−1) = (1 + kpl−1)p

= 1 + kpl + k2 p(p − 1)
2

p2(l−1) + tp3(l−1) + · · ·

≡ 1 + kpl(modpl+1),

where t is an integer and (k, p) = 1. It follows that

gpl−1(p−1) ≡ 1 + kpl . 1 (mod pl+1).

Therefore
d , pl−1(p − 1), d = pl(p − 1),

and g is a primitive root modulo pl+1.
We next use the LTE to prove that g is a primitive root modulo p. The Euler’s theorem shows that

gφ(p) ≡ 1(modp),

since g is a primitive root modulo p2, we have
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vp(gφ(p) − 1) = 1.

Let h be the order of g modulo p, then h|φ(p). Similarly, we can obtain

vp(gh − 1) = 1.

Let x = gh, y = 1, then (p, gh) = 1, p|gh − 1. By the LTE, we have

vp(gph − 1) = vp(gh − 1) + vp(p) = 1 + 1 = 2,

which shows that

p2|gph − 1, gph ≡ 1 (mod p2),

if h < φ(p), then ph < φ(p2), a contradiction. Thus h = φ(p), g is a primitive root modulo p. □

Lemma 2.8. Let g be a primitive root modulo pl. Then g is a primitive root modulo 2pl, where g is
odd and p and l are the same as mentioned above.

Proof. Let s be the order of g modulo 2pl. Then

gs ≡ 1 (mod 2pl), s|φ(2pl).

So we have

gs ≡ 1 (mod pl).

Since g is a primitive root modulo pl, we have φ(pl)|s and hence φ(2pl)|s. So

s = φ(2pl)

and g is a primitive root modulo 2pl. □

3. Main result

Combining Lemmas 2.1 and 2.3, we can calculate the number of different irreducible factors for
xn − 1 over Fq. Let m be a positive integer,

m = pα1
1 pα2

2 · · · p
αl
l

be its prime decomposition. If
n = mpe,

where e ≥ 0 is an integer, and p is the characteristic of Fq with p ∤ m. Then we can calculate that

|F(xn − 1)| =
∑
m′ |m

φ(m′)
dm′
,

where dm′ denotes the order of q modulo m′. Note that there are
∏l

k=1(αk + 1) items in the summation,
where

∏l
k=1(αk + 1) is the number of factors of m.
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Now assume that s and m are given positive integers, m1, · · · ,mt are the t factors of m. Thus, we
have

xn − 1 =
t∏

i=1

Φmi(x)pe
.

If xn − 1 factors into s distinct irreducible polynomials in Fq[x], then

|F(xn − 1)| =
t∑

i=1

φ(mi)
dmi

= s, (3.1)

there are t items in the summation, the necessary and sufficient condition for

|F(xn − 1)| = s

is determined as follows:
Observe φ(mi)

dmi
(i = 1, 2, · · · , t), and φ(mi) are known; with the difference of q, the values of dmi will

also change, that is, the values of φ(mi)
dmi

will change in the different Fq. Therefore, the t items in (3.1)

can be regarded as t variables, and (3.1) can be regarded as the Diophantine equation with t variables

x1 + x2 + · · · + xt = s. (3.2)

Remark 3.1. Combining Lemma 2.2 and Euler’s theorem, we know that φ(mi)
dmi

(i = 1, 2, · · · , t) are

positive integers. So we only need to consider the positive integer solutions of (3.2).

Remark 3.2. The positive integers s and t satisfy t ≤ s. Otherwise, if t > s, then it follows from
Lemmas 2.1 and 2.3 that

|F(xn − 1)| > s.

Remark 3.3. As we all know
Φ1(x) = x − 1

is a factor of xn − 1, and x − 1 is irreducible over Fq; the order of q modulo 1 is d1 = 1. Thus, at least
one positive integer solution of (3.2) whose value is 1.

We can find the positive integer solutions of (3.2). Without loss of generality, we suppose that

xi =
φ(mi)
dmi

= ki (i = 1, 2, · · · , t) (3.3)

is the positive integer solution of (3.2), thus we have

dmi =
φ(mi)

ki
(i = 1, 2, · · · , t). (3.4)

If there exists q such that the order of q modulo mi is

dmi =
φ(mi)

ki
(i = 1, 2, · · · , t),
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then it follows from Lemma 2.3 that Φmi(x) factors into

φ(mi)
φ(mi)

ki

= ki

distinct monic irreducible polynomials over Fq of the same degree

dmi =
φ(mi)

ki
.

Therefore, we have
|F(xn − 1)| = k1 + k2 + · · · + kt = s,

that is, xn − 1 factors into s distinct irreducible polynomials over Fq.
In conclusion, we have the following result:

Theorem 3.4. (Main result) Let Fq denote the finite field of q elements with characteristic p. Let p be
a prime. Let

n = mpe

with e ≥ 0, p ∤ m. Let s be a positive integer. The t factors of m are m1,m2, · · · ,mt and dmi denotes the
order of q modulo mi. Then

|F(xn − 1)| = s,

if and only if

xi =
φ(mi)
dmi

(i = 1, 2, · · · , t)

is a solution to the Diophantine equation

x1 + x2 + · · · + xt = s.

Proof. We first assume that

xi =
φ(mi)
dmi

= ki (i = 1, 2, · · · , t)

is the solution of the Diophantine equation

x1 + x2 + · · · + xt = s.

By Lemmas 2.1 and 2.3, we have

xn − 1 =
t∏

i=1

Φmi(x)pe

and Φmi(x) factors into
φ(mi)
φ(mi)

ki

= ki

distinct monic irreducible polynomials in Fq[x] of the same degree

dmi =
φ(mi)

ki
(i = 1, 2, · · · , t).

AIMS Mathematics Volume 9, Issue 9, 23468–23488.
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Hence, we obtain

|F(xn − 1)| =
t∑

i=1

ki = s.

Suppose
|F(xn − 1)| = s.

According to Lemma 2.3, we have

|F(xn − 1)| =
t∑

i=1

φ(mi)
dmi

= s.

So
xi =
φ(mi)
dmi

(i = 1, 2, · · · , t)

is the solution of the Diophantine equation

x1 + x2 + · · · + xt = s.

□

4. Applications

We apply Theorem 3.4 to deduce Theorem 1.6. Note that Theorem 1.5 is trivial. Recall that

n = mpe,

where e ≥ 0 is an integer and p is the characteristic of Fq with p ∤ m.
For Theorem 1.6

|F(xn − 1)| = 2,

we know that m has two factors; thus, m is a prime different from p,

xn − 1 = (Φ1(x)Φm(x))pe
.

The unique positive integer solution of the Diophantine equation

x1 + x2 = 2

is
x1 = x2 = 1.

Since
φ(1)
d1
= 1,

and by Theorem 3.4, we have
φ(m)
dm
= 1,

AIMS Mathematics Volume 9, Issue 9, 23468–23488.



23477

that is, dm = φ(m), q is a primitive root modulo m. It follows from Lemma 2.5 that the cyclotomic
polynomial Φm(x) is irreducible over Fq. Thus

|F(xn − 1)| = 2.

The necessary and sufficient conditions for

|F(xn − 1)| = 3, 4, 5

are given, respectively, below: for
|F(xn − 1)| = 3,

we know that t ≤ 3, where t is the number of factors of m.
Case 1. If m has three factors, then m = r2, where r is a prime different from p.

xn − 1 = (Φ1(x)Φr(x)Φr2(x))pe
.

The unique positive integer solution of the Diophantine equation

x1 + x2 + x3 = 3

is
x1 = x2 = x3 = 1.

By Theorem 3.4, we have
φ(r)
dr
= 1,

φ(r2)
dr2
= 1,

that is,
dr = φ(r), dr2 = φ(r2),

q is a primitive root modulo r and r2. Recall Lemma 2.7: If q is a primitive root modulo r2, then q is a
primitive root modulo r. Cyclotomic polynomials Φr(x) and Φr2(x) are irreducible over Fq. Thus

|F(xn − 1)| = 3.

Case 2. If m has two factors, then m = r,

xn − 1 = (Φ1(x)Φr(x))pe
.

The positive integer solution of the Diophantine equation

x1 + x2 = 3

is x1 = 1, x2 = 2. Hence, we obtain
φ(r)
dr
= 2,

that is,

dr =
φ(r)

2
,

AIMS Mathematics Volume 9, Issue 9, 23468–23488.



23478

the order of q modulo r is φ(r)
2 . According to Lemma 2.3, the cyclotomic polynomial Φr(x) factors into

φ(r)
φ(r)

2

= 2

distinct monic irreducible polynomials in Fq[x] of the same degree

dr =
φ(r)

2
.

Thus
|F(xn − 1)| = 3.

In conclusion, we have the following result:

Theorem 4.1. The following statements are equivalent:

(a) |F(xn − 1)| = 3.

(b) (b1) F(xn − 1)={x − 1, f1(x), f2(x)}, where m = r,

f1(x) f2(x) = Φr(x), deg f1 = deg f2 =
φ(r)

2 .

(b2) F(xn − 1)={x − 1,Φr(x),Φr2(x)}, where m = r2.

(c) (c1) m = r, and the order of q modulo r is φ(r)
2 .

(c2) m = r2, and q is a primitive root modulo r2.

For
|F(xn − 1)| = 4,

we know that t ≤ 4, where t is the number of factors of m. In the remaining part of this paper, we
always assume that r is an odd prime different from p.

If m has four factors, then the possible values of m are r3, 2r, p1 p2 or 8, where p1 and p2 are odd
primes different from p. The unique positive integer solution of the Diophantine equation

x1 + x2 + x3 + x4 = 4

is
x1 = x2 = x3 = x4 = 1.

Case 1. If m = r3, then

xn − 1 = (Φ1(x)Φr(x)Φr2(x)Φr3(x))pe
,

and we have
φ(r)
dr
=
φ(r2)
dr2
=
φ(r3)
dr3
= 1,

that is, q is a primitive root modulo rl, l = 1, 2, 3, which requires that q is a primitive root modulo r2.
The cyclotomic polynomials Φr(x), Φr2(x), and Φr3(x) are irreducible over Fq. Thus

|F(xn − 1)| = 4.

Case 2. If m = 2r, then

AIMS Mathematics Volume 9, Issue 9, 23468–23488.



23479

xn − 1 = (Φ1(x)Φ2(x)Φr(x)Φ2r(x))pe
,

and we have
φ(2)
d2
=
φ(r)
dr
=
φ(2r)
d2r

= 1,

that is, q is a primitive root modulo r and 2r. Recall Lemma 2.8: If q is a primitive root modulo r, then
q is a primitive root modulo 2r. The cyclotomic polynomials Φr(x) and Φ2r(x) are irreducible over Fq.
Obviously, the order of q modulo 2 is d2 = 1, and

Φ2(x) = x + 1

is irreducible over Fq. Thus
|F(xn − 1)| = 4.

Case 3. If m = p1 p2, then

xn − 1 = (Φ1(x)Φp1(x)Φp2(x)Φp1 p2(x))pe
,

and we have
φ(p1)
dp1

=
φ(p2)
dp2

=
φ(p1 p2)

dp1 p2

= 1.

It follows from Lemma 2.4 that p1 p2 has no primitive root, which contradicts

dp1 p2 = φ(p1 p2).

The cyclotomic polynomial Φp1 p2(x) is reducible over Fq. Thus

|F(xn − 1)| > 4.

Case 4. If m = 8, then

xn − 1 = (Φ1(x)Φ2(x)Φ4(x)Φ8(x))pe
.

Since 8 has no primitive root, Φ8(x) is reducible over Fq. Thus

|F(xn − 1)| > 4.

If m has three factors, then the possible values of m are r2 or 4. The positive integer solution of the
equation

x1 + x2 + x3 = 4

is
x1 = x2 = 1, x3 = 2.

Case 1. If m = r2, then

xn − 1 = (Φ1(x)Φr(x)Φr2(x))pe
,

AIMS Mathematics Volume 9, Issue 9, 23468–23488.
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and we have
φ(r)
dr
= 2,

φ(r2)
dr2
= 1

or
φ(r)
dr
= 1,

φ(r2)
dr2
= 2.

For the former, the order of q modulo r is

dr =
φ(r)

2
,

and q is a primitive root modulo r2, which is impossible by Lemma 2.7. For the latter, q is a primitive
root modulo r, and the order of q modulo r2 is φ(r2)

2 . It follows that

qφ(r) ≡ 1 (mod r), q
φ(r2)

2 = q
rφ(r)

2 ≡ 1 (mod r2), q
rφ(r)

2 ≡ 1 (mod r).

Thus φ(r)| rφ(r)
2 . Since r is an odd prime, r

2 is not an integer, and the divisibility is not valid.

Case 2. If m = 4, then

xn − 1 = (Φ1(x)Φ2(x)Φ4(x))pe
,

and we have
φ(4)
d4
= 2,

that is, the order of q modulo 4 is

d4 =
φ(4)

2
= 1.

The cyclotomic polynomial
Φ4(x) = 1 + x2

factors into
φ(4)
φ(4)

2

= 2

distinct monic irreducible polynomials in Fq[x] of the same degree, d4 = 1. Thus

|F(xn − 1)| = 4.

If m has two factors, then m = r,

xn − 1 = (Φ1(x)Φr(x))pe
.

The positive integer solution of the Diophantine equation

x1 + x2 = 4

is x1 = 1, x2 = 3. Hence, we have
φ(r)
dr
= 3,

AIMS Mathematics Volume 9, Issue 9, 23468–23488.
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that is, the order of q modulo r is φ(r)
3 . The cyclotomic polynomial Φr(x) factors into three distinct

monic irreducible polynomials in Fq[x] of the same degree φ(r)
3 . Thus

|F(xn − 1)| = 4.

In conclusion, we have the following result:

Theorem 4.2. The following statements are equivalent:

(a) |F(xn − 1)| = 4.

(b) (b1) F(xn − 1)={x − 1, f1(x), f2(x), f3(x)}, where m = r,

f1(x) f2(x) f3(x) = Φr(x), deg f1 = deg f2 = deg f3 =
φ(r)

3 .

(b2) F(xn − 1)={x − 1,Φr(x),Φr2(x),Φr3(x)}, where m = r3.

(b3) F(xn − 1)={x − 1, x + 1,Φr(x),Φ2r(x)}, where m = 2r.

(b4) F(xn − 1)={x − 1, x + 1, x + e1, x + e2}, where m = 4, e1 and e2 are integers.

(c) (c1) m = r, and the order of q modulo r is φ(r)
3 .

(c2) m = r3, and q is a primitive root modulo r2.

(c3) m = 2r, and q is a primitive root modulo r.

(c4) m = 4, and the order of q modulo 4 is 1.

For
|F(xn − 1)| = 5,

we know that t ≤ 5, where t is the number of factors of m.
If m has five factors, then the possible values of m are r4 or 16. The unique positive integer solution

of the equation
x1 + x2 + x3 + x4 + x5 = 5

is
x1 = x2 = x3 = x4 = x5 = 1.

Case 1. If m = r4, then

xn − 1 = (Φ1(x)Φr(x)Φr2(x)Φr3(x)Φr4(x))pe
,

and we have
φ(r)
dr
=
φ(r2)
dr2
=
φ(r3)
dr3
=
φ(r4)
dr4
= 1,

that is, q is a primitive root modulo rl, l = 1, 2, 3, 4, which requires that q is a primitive root modulo r2.
The cyclotomic polynomials Φr(x),Φr2(x),Φr3(x), and Φr4(x) are irreducible over Fq. Thus

|F(xn − 1)| = 5.

Case 2. If m = 16, then

xn − 1 = (Φ1(x)Φ2(x)Φ4(x)Φ8(x)Φ16(x))pe
.
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Since 8 and 16 have no primitive root, we know that Φ8(x) and Φ16(x) are reducible over Fq. Thus

|F(xn − 1)| > 5.

If m has four factors, then the possible values of m are r3, 8, 2r or p1 p2. The positive integer solution
of the equation

x1 + x2 + x3 + x4 = 5

is
x1 = x2 = x3 = 1, x4 = 2.

Case 1. If m = r3, then

xn − 1 = (Φ1(x)Φr(x)Φr2(x)Φr3(x))pe
.

It follows from Lemma 2.7 that
φ(r2)
dr2
= 2

and
φ(r)
dr
=
φ(r3)
dr3
= 1,

that is, q is a primitive root modulo r3, the order of q modulo r2 is φ(r2)
2 . It follows that

qφ(r3) ≡ 1 (mod r3), q
φ(r2)

2 ≡ 1 (mod r2), q
φ(r2)

2 ≡ 1 (mod r).

Since q is a primitive root modulo r3, we have

vr(q
φ(r2)

2 − 1) = 2.

By Lemma 2.6, we have

vr(qr φ(r2)
2 − 1) = vr(q

φ(r2)
2 − 1) + vr(r) = 2 + 1 = 3,

q
φ(r3)

2 ≡ 1(mod r3),

which is a contradiction. Thus, if m = r3, then

|F(xn − 1)| , 5.

Case 2. If m = 8, then

xn − 1 = (Φ1(x)Φ2(x)Φ4(x)Φ8(x))pe
,

and we have
φ(4)
d4
= 1,

φ(8)
d8
= 2,

that is, q is a primitive root modulo 4, which means q is congruent to 3 modulo 4, therefore the order
of q modulo 8 is

φ(8)
2
= 2.
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Φ4(x) is irreducible over Fq, and Φ8(x) factors into

φ(8)
φ(8)

2

= 2

distinct monic irreducible polynomials in Fq[x] of the same degree 2. Thus

|F(xn − 1)| = 5.

Case 3. If m = 2r, then

xn − 1 = (Φ1(x)Φ2(x)Φr(x)Φ2r(x))pe
.

It follows from Lemma 2.8 that
φ(r)
dr
= 2,

φ(2r)
d2r

= 1,

that is, q is a primitive root modulo 2r, and the order of q modulo r is φ(r)
2 , Φ2r(x) is irreducible over Fq

and Φr(x) factors into
φ(r)
φ(r)

2

= 2

distinct monic irreducible polynomials in Fq[x] of the same degree φ(r)
2 . Thus

|F(xn − 1)| = 5.

Case 4. If m = p1 p2, then

xn − 1 = (Φ1(x)Φp1(x)Φp2(x)Φp1 p2(x))pe
.

Since p1 p2 has no primitive root, we have

φ(p1)
dp1

=
φ(p2)
dp2

= 1,
φ(p1 p2)

dp1 p2

= 2,

that is, q is a primitive root modulo p1 and p2, and the order of q modulo p1 p2 is φ(p1 p2)
2 , Φp1(x) and

Φp2(x) are irreducible over Fq, and Φp1 p2(x) factors into

φ(p1 p2)
φ(p1 p2)

2

= 2

distinct monic irreducible polynomials in Fq[x] of the same degree φ(p1 p2)
2 . Thus

|F(xn − 1)| = 5.

If m has three factors, then the possible values of m are 4 or r2. If m = 4, there are at most four
distinct irreducible factors for xn − 1. Thus

|F(xn − 1)| < 5.

If m = r2, then
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xn − 1 = (Φ1(x)Φr(x)Φr2(x))pe
.

The positive integer solutions of the equation

x1 + x2 + x3 = 5

are
x1 = 1, x2 = x3 = 2, or x1 = x2 = 1, x3 = 3.

For the former, we have
φ(r)
dr
=
φ(r2)
dr2
= 2,

that is, the order of q modulo r is φ(r)
2 and the order of q modulo r2 is φ(r2)

2 , Φr(x), and Φr2(x) factor
into 2 distinct monic irreducible polynomials in Fq[x]. Thus

|F(xn − 1)| = 5.

For the latter, it follows from Lemma 2.7 that

φ(r)
dr
= 1 and

φ(r2)
dr2
= 3,

that is, q is a primitive root modulo r, and the order of q modulo r2 is φ(r2)
3 , Φr(x) is irreducible over Fq

and Φr2(x) factors into 3 distinct monic irreducible polynomials in Fq[x]. Thus

|F(xn − 1)| = 5.

If m has two factors, then
m = r, xn − 1 = (Φ1(x)Φr(x))pe

.

The positive integer solution of the equation x1 + x2 = 5 is x1 = 1, x2 = 4. Hence, we have

φ(r)
dr
= 4,

that is, the order of q modulo r is φ(r)
4 . The cyclotomic polynomialΦr(x) factors into four distinct monic

irreducible polynomials in Fq[x]. Thus

|F(xn − 1)| = 5.

In conclusion, we obtain the following result:

Theorem 4.3. The following statements are equivalent:

(a) |F(xn − 1)| = 5.

(b) (b1) F(xn − 1)={x − 1,Φr(x),Φr2(x),Φr3(x),Φr4(x)}, where m = r4.

(b2) F(xn − 1)={x − 1, x + 1,Φ4(x), f1(x), f2(x)}, where m = 8,

f1(x) f2(x) = Φ8(x), deg f1 = deg f2 = 2.
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(b3) F(xn − 1)={x − 1, x + 1, g1(x), g2(x),Φ2r(x)}, where m = 2r,

g1(x)g2(x) = Φr(x), deg g1 = deg g2 =
φ(r)

2 .

(b4) F(xn − 1)={x − 1,Φp1(x),Φp2(x), h1(x), h2(x)}, where m = p1 p2,

h1(x)h2(x) = Φp1 p2(x), deg h1 = deg h2 =
φ(p1 p2)

2 .

(b5) F(xn − 1)={x − 1, k1(x), k2(x), r1(x), r2(x)}, where m = r2,

k1(x)k2(x) = Φr(x), deg k1 = deg k2 =
φ(r)

2 and r1(x)r2(x) = Φr2(x), deg r1 = deg r2 =
φ(r2)

2 .

Or F(xn − 1)={x − 1,Φr(x), u1(x), u2(x), u3(x)}, where m = r2,

u1(x)u2(x)u3(x) = Φr2(x), deg u1 = deg u2 = deg u3 =
φ(r2)

3 .

(b6) F(xn − 1)={x − 1, v1(x), v2(x), v3(x), v4(x)}, where m = r,

v1(x)v2(x)v3(x)v4(x) = Φr(x), deg v1 = deg v2 = deg v3 = deg v4 =
φ(r)

4 .

(c) (c1) m = r4, and q is a primitive root modulo r2.

(c2) m = 8, q is a primitive root modulo 4, and the order of q modulo 8 is 2.

(c3) m = 2r, the order of q modulo r is φ(r)
2 and q is a primitive root modulo 2r.

(c4) m = p1 p2, the order of q modulo p1 p2 is φ(p1 p2)
2 , and q is a primitive root modulo p1 and p2.

(c5) m = r2, the order of q modulo r is φ(r)
2 and the order of q modulo r2 is φ(r2)

2 ; or q is a primitive
root modulo r and the order of q modulo r2 is φ(r2)

3 .

(c6) m = r, and the order of q modulo r is φ(r)
4 .

5. Examples

In this final section, we provide two examples.

Example 5.1. Let Fq denote the finite field of q elements with characteristic p. Let p be a prime, let
r be a prime different from p, and let n = rl pe, with l ≥ 1, e ≥ 0. Denote by F(xn − 1) the set of all
distinct monic irreducible factors of xn−1 in a given finite field. Given a positive integer s, we consider
the special case for

|F(xn − 1)| = s = l + 1.

Since n = rl pe,

xn − 1 = (Φ1(x)Φr(x)Φr2(x) · · ·Φrl(x))pe
.

The unique positive integer solution of the equation

x0 + x1 + x2 + · · · + xl = l + 1

is

xi =
φ(ri)
dri
= 1 (i = 0, 1, · · · , l),
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where dri denotes the order of q modulo ri (i = 0, 1, · · · , l). That is, q is a primitive root modulo r j

( j = 1, 2, · · · , l). Recall Lemma 2.7 that if q is a primitive root modulo r2, then q is a primitive root
modulo r j ( j = 1, 2, · · · , l). Cyclotomic polynomials Φr j(x) ( j = 1, 2, · · · , l) are irreducible over Fq.

In conclusion, if q is a primitive root modulo r2, then

|F(xrl pe
− 1)| = l + 1.

Example 5.2. We factor polynomial x25 − 1 into distinct monic irreducible polynomials over F7.
Since 25 = 52,

x25 − 1 = x52
− 1 = Φ1(x)Φ5(x)Φ25(x).

We first calculate

7 ≡ 2 (mod 5), 72 ≡ 4 ≡ −1 (mod 5), 74 ≡ 1 (mod 5),

where 7 is a primitive root modulo 5, thus

Φ5(x) = 1 + x + x2 + x3 + x4

is irreducible over F7.
We next calculate

7 ≡ 7 (mod 25), 72 ≡ 24 ≡ −1 (mod 25), 74 ≡ 1 (mod 25),

the order of 7 modulo 25 is 4, thus

Φ25(x) = 1 + x5 + x10 + x15 + x20

factors into
φ(25)

4
= 5

distinct monic irreducible polynomials over F7 of the same degree 4,

f1(x) = 1 + 2x + 4x2 + 2x3 + x4,

f2(x) = 1 + 4x + 4x3 + x4,

f3(x) = 1 + 4x + 3x2 + 4x3 + x4,

f4(x) = 1 + 5x + 5x2 + 5x3 + x4,

f5(x) = 1 + 6x + 5x2 + 6x3 + x4,

respectively.
Thus

x25 − 1 =((x − 1)(1 + x + x2 + x3 + x4)(1 + 2x + 4x2 + 2x3 + x4)(1 + 4x + 4x3 + x4)
(1 + 4x + 3x2 + 4x3 + x4)(1 + 5x + 5x2 + 5x3 + x4)(1 + 6x + 5x2 + 6x3 + x4))

and
|F(x25 − 1)| = 7.
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6. Conclusions

Let Fq be the finite field of q elements, and Fqn be its extension of degree n. Denote by F(xn − 1)
the set of all distinct monic irreducible factors of the polynomial xn − 1 in the finite field Fq. Given a
positive integer s, we use the properties of cyclotomic polynomials in finite fields and results from the
Diophantine equations to provide the sufficient and necessary condition for

|F(xn − 1)| = s.

As an application, we also obtain the sufficient and necessary conditions for

|F(xn − 1)| = 3, 4, 5.
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