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Abstract: This study explores the nonlinear Peyrard-Bishop DNA dynamic model, a nonlinear
evolution equation that describes the behavior of DNA molecules by considering hydrogen bonds
between base pairs and stacking interactions between adjacent base pairs. The primary objective is to
derive analytical solutions to this model using the Khater III and improved Kudryashov methods.
Subsequently, the stability of these solutions is analyzed through Hamiltonian system
characterization. The Peyrard-Bishop model is pivotal in biophysics, offering insights into the
dynamics of DNA molecules and their responses to external forces. By employing these analytical
techniques and stability analysis, this research aims to enhance the understanding of DNA dynamics
and its implications in fields such as drug design, gene therapy, and molecular biology. The novelty of
this work lies in the application of the Khater III and an enhanced Kudryashov methods to the
Peyrard-Bishop model, along with a comprehensive stability investigation using Hamiltonian system
characterization, providing new perspectives on DNA molecule dynamics within the scope of
nonlinear dynamics and biophysics.
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1. Introduction

The study of nonlinear evolution equations has garnered considerable attention across diverse
scientific and engineering disciplines due to their effectiveness in representing intricate
phenomena [1]. Among these equations, the nonlinear Peyrard-Bishop DNA dynamic model stands
out, designed to elucidate the behavior of DNA molecules by accounting for hydrogen bonds between
base pairs and stacking interactions among adjacent base pairs [2]. Obtaining analytical solutions for
nonlinear evolution equations presents a formidable challenge, and the Peyrard-Bishop model is no
exception. While numerical and computational techniques have been instrumental in investigating
this model, analytical solutions offer deeper insights into its underlying dynamics, thereby fostering a
more comprehensive understanding of DNA behavior [3].

The primary objective of this study is to construct analytical solutions for the Peyrard-Bishop
DNA dynamic model using the Khater III and enhanced Kudryashov methods. Additionally, the
stability of these solutions will be scrutinized through Hamiltonian system characterization [4, 5]. The
analytical solutions and stability analysis of the Peyrard-Bishop model hold promise for advancing
biophysics and enhancing our comprehension of DNA dynamics [6]. These findings carry potential
implications for various domains, including drug design, gene therapy, and molecular biology, where
a profound understanding of DNA behavior is indispensable [7]. Previous investigations into the
Peyrard-Bishop model have employed diverse methodologies. Numerical simulations have shed light
on its behavior under various conditions [8], while perturbation methods and analytical approaches
have yielded approximate solutions [9]. However, the quest for exact analytical solutions and their
stability analysis remains an active area of research.

This study focuses exclusively on the nonlinear Peyrard-Bishop DNA dynamic model and its
analytical solutions derived through the Khater III and enhanced Kudryashov methods. The analysis
is delimited to stability assessments via Hamiltonian system characterization, with other aspects such
as model applications or extensions lying beyond the study’s scope [10]. The nonlinear
Peyrard-Bishop DNA dynamic model stands as a critical tool in biophysics, offering insights into
DNA dynamics and responses to external forces such as denaturation and thermal fluctuations [11].
Through analytical techniques, researchers can uncover exact solutions that unveil the intricate
dynamics of DNA molecules, facilitating a deeper comprehension of the model’s behavior and
enabling the development of more accurate simulations and predictions [12, 13]. Additionally,
stability analysis of the obtained solutions is crucial for understanding the model’s robustness and
reliability under various conditions [14, 15].

The Peyrard-Bishop model shares similarities with other well-known nonlinear evolution
equations, such as the sine-Gordon equation, the modified Khater method, and the Khater II model,
yet it incorporates additional terms and parameters tailored to elucidate DNA dynamics [16, 17]. This
unique feature distinguishes it and allows for a more accurate representation of DNA behavior amidst
a complex array of interactions and properties [18].
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The Peyrard-Bishop DNA dynamic model can be expressed in various forms, each capturing
specific aspects of DNA dynamics [19]. The original form, proposed by Peyrard and Bishop in 1989,
incorporates terms representing stacking interactions between adjacent base pairs and hydrogen bonds
between complementary base pairs [20]. Alternatively, a dimensionless form is often employed to
simplify analysis, rescaling variables and parameters for more general interpretations [21]. Despite
variations in form, the underlying physics and dynamics described by the model remain consistent.
The original formulation of the Peyrard-Bishop DNA dynamic model is represented by the following
nonlinear partial differential equation [22]:

M
∂2yn

∂t2 = V ′ (yn+1 − yn) − V ′ (yn − yn−1) + W ′ (yn). (1.1)

Here, the equation characterizes the dynamics of a one-dimensional chain of base pairs, where yn

denotes the displacement of the n-th base pair from its equilibrium position at time t [23]. The distinct
terms within the equation depict the various interactions and forces acting on the base pairs [24]:

• M ∂2yn
∂t2 : This term signifies the inertial force acting on the n-th base pair, where M represents the

reduced mass of a base pair.
• V ′ (yn+1 − yn) and V ′ (yn − yn−1): These terms denote the stacking interactions between adjacent

base pairs, originating from the π-π stacking interactions between the aromatic rings of
neighboring base pairs. The function V (r) denotes the Morse potential, which models the
stacking interactions, and V ′ (r) represents its derivative with respect to the relative displacement
r.
• W ′ (yn): This term encompasses the hydrogen bonding interactions between complementary base

pairs within the same base pair. The function W (r) denotes an anharmonic potential modeling
the hydrogen bond interactions, with W ′ (r) representing its derivative with respect to the
displacement r.

The Morse potential and the anharmonic potential typically assume the following forms [25]:

V(r) = Z
[
exp(−a (r − r0)) − 1

]2 ,

W(r) = ρ
[
exp(−α r) − 1

]2 ,

where Z, a, r0, ρ, and α are parameters determining the strength and shape of the potentials. The
Peyrard-Bishop model integrates these terms to encapsulate the fundamental interactions that govern
the dynamics of DNA molecules [26]. The interplay between inertial forces, stacking interactions, and
hydrogen bonding interactions gives rise to the observed complex behaviors in DNA, including the
formation of breathers (localized, oscillating modes), solitons, and other nonlinear phenomena [27].

It is noteworthy that the original formulation of the Peyrard-Bishop model assumes a
one-dimensional chain of base pairs and disregards certain effects such as torsional angles, base-pair
openings, and long-range interactions [28]. However, it serves as a fundamental framework for
comprehending the dynamics of DNA molecules and has been extended and modified in subsequent
studies to incorporate additional complexities and effects [29]. To simplify the analysis and allow for
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more general interpretations, the Peyrard-Bishop model is often expressed in a dimensionless form by
rescaling the variables and parameters. One such form is as follows [30]:

∂2yn

∂τ2 =(yn+1 − 2yn + yn−1) − ε
[
exp(−κ(yn+1 − yn)) − 1

]
+ ε

[
exp(−κ(yn − yn−1)) − 1

]
+ γ

[
exp(−αyn) − 1

]
,

(1.2)

where τ is the dimensionless time, ε and κ are parameters related to the stacking interactions, and γ, α
are parameters associated with the hydrogen bonds.

The physical difference between these forms lies in the choice of variables and parameters, which
can affect the interpretation and numerical values of the solutions. However, the underlying physics
and dynamics described by the model remain the same. While, it also takes the next form [31]

∂2u
∂t2 −

∂2u
∂x2

3ω2

(
∂u
∂x

)2

+ ω1

 − 2γω3e−γu (
e−γu − 1

)
= 0. (1.3)

Equation (1.3) constitutes a representation of the Peyrard-Bishop DNA dynamic model,
elucidating the behavior of DNA molecules by considering the hydrogen bonds between base pairs
and the stacking interactions between adjacent base pairs [32]. Within this equation, the variable u
denotes the displacement or stretching of the hydrogen bonds in the DNA molecule from their
equilibrium position. The physical interpretation of each term and parameter is as follows [33]:

• ∂2u
∂t2 : This term denotes the inertial force or the acceleration of the hydrogen bonds.

• ∂2u
∂x2 : This term signifies the spatial derivative of the stretching of the hydrogen bonds,
incorporating the coupling or interactions between adjacent base pairs along the DNA chain.
• 3ω2

(
∂u
∂x

)2
+ω1: This term signifies the stacking interactions between adjacent base pairs, arising

from the π-π stacking interactions between the aromatic rings of neighboring base pairs. The term(
∂u
∂x

)2
represents the relative displacement between adjacent base pairs, and the parameters ω1 and

ω2 are related to the strength and nonlinearity of the stacking interactions, respectively.
• 2 γω3 e−γ u (e−γu − 1): This term denotes the hydrogen bonding interactions between the

complementary base pairs within the same base pair. The exponential term e−γu models the
anharmonic potential of the hydrogen bonds, and the parameter γ determines the strength and
shape of this potential. The parameter ω3 is related to the overall strength of the hydrogen
bonding interactions.

The parameters in this model possess the following physical interpretations [34]:

• ω1: This parameter represents the linear component of the stacking interactions between adjacent
base pairs.
• ω2: This parameter represents the nonlinear component of the stacking interactions between

adjacent base pairs.
• ω3: This parameter represents the strength of the hydrogen bonding interactions between

complementary base pairs.
• γ: This parameter determines the strength and shape of the anharmonic potential modeling the

hydrogen bonding interactions.
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It is pertinent to note that this manifestation of the Peyrard-Bishop model assumes a
one-dimensional chain of base pairs and disregards certain effects, such as torsional angles, base-pair
openings, and long-range interactions. Nonetheless, it encapsulates the fundamental interactions
governing the dynamics of DNA molecules, encompassing inertial forces, stacking interactions, and
hydrogen bonding interactions, which collectively give rise to the observed complex behavior in
DNA [35].

Within this framework, we apply the subsequent wave transformation u = u(x, t) = ψ(ζ), ζ = c t+ x,
where c stands as an arbitrary constant to be subsequently determined, to Eq (1.3), thereby transmuting
it into the ensuing ordinary differential equation.

ψ′′
(
c2 − 3ω2

(
ψ′

)2
− ω1

)
+ 2γω3e−2γψ

(
eγψ − 1

)
= 0. (1.4)

Upon multiplication of Eq (1.4) by ψ′ and subsequent integration with respect to ζ, employing a
null integration constant, the following expression emerges:

1
2

(
c2 − ω1

)
ψ′(x)2 − 2ω3e−γψ(x) + ω3e−2γψ(x) −

1
4

3ω2ψ
′(x)4 = 0. (1.5)

Equation (1.5) converts into the next equation

2γ2
(
c2 − ω1

)
ϕ2ϕ′2 + 4γ4ω3(ϕ − 2)ϕ5 − 3ω2ϕ

′4 = 0, (1.6)

where
e−γψ =ϕ,

(
e−γψ

)2
=ϕ2, andψ′ = −

ϕ′

γϕ
.

Additionally, Eq (1.6) also takes the next form

r1ϕ
6 − r3

(
ϕ′

)4
+ r2ϕ

2 (
ϕ′

)2
+ ϕ5 = 0, (1.7)

where

r1 = −
1
2
,

r2 =
ω1 − c2

4γ2ω3
,

r3 = −
3ω2

8γ4ω3
.

Applying the prescribed analytical methodologies and the principle of homogeneous balance to
Eq (1.7) leads to the subsequent formula for the solution:

ϕ(ζ) =



2n∑
i=0

ai

(
K f (ζ)

)i
= a1K f (ζ) + a2K2 f (ζ) + a0,

n∑
i=1

ai f (ζ)i + bi

(
f ′(ζ)
f (ζ)

)i + a0 = a2 f (ζ)2 + a1 f (ζ) + a0 +
b2 f ′(ζ)2

f (ζ)2 +
b1 f ′(ζ)

f (ζ)
,

(1.8)
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where a0, a1, a2, b1 and b2 are arbitrary constants to be evaluated later. While f (ζ) and φ(ζ) satisfies
the next ordinary differential equation

f ′(ζ)2 =
α+K f (ζ)(β+σK f (ζ))

ln2(K)
for Khater III method,

f ′(ζ)2 = f (ζ)2
(
1 − τ f (ζ)2

)
, for an enhanced Kudryashov scheme,

where, α, β, σ and τ denote arbitrary constants, the determination of which will be elucidated
subsequently.

The progression of this investigation follows a structured format: Section 2 focuses on the
examination of various solitary wave solutions, assessing their relevance within the established
framework. Subsequently, Section 4 undertakes a comprehensive analysis of the obtained results from
both physical and dynamic perspectives. Finally, Section 5 integrates the scholarly contributions
stemming from this inquiry.

2. Novel computational solutions

In this section, the solitary wave solutions of the scrutinized model are explored using the
analytical methods outlined earlier. Subsequently, an assessment of the stability of the derived solutions
is conducted via the analysis of the Hamiltonian system. The principal objective is to determine the
effectiveness and practical reliability of the developed solutions.

2.1. Khater III method implementation results

By employing the Khater III technique along with the auxiliary equation provided in (1.9) and
leveraging Mathematica 13.1 software, we are equipped to solve Eq (1.7). This approach enables the
determination of values for the designated parameters, resulting in the following outcomes:
Case I:

a0 = 0, r1 =
4a2

a2
1

, r2 =
a1
√

r3

2
√

a2
, α=

a1

2
√

a2
√

r3
, β=

√
a2
√

r3
, σ=

a3/2
2

2a1
√

r3
.

Case II:

a0 = 0, a1 = 0, r1 =
r3

r2
2

, α=
r2

4r3
, β= 0, σ=

a2

4r2
.

The computational wave solutions of the investigated model can be expressed in the following
manner:

ϕ(x, t) = −
a2

1

4a2
sech2

 √a1(c t + x)

2
√

2 4
√

a2
4
√

r3

 , (2.1)

ϕ(x, t) =
r2

2

r3
csch2

(
1
2

√
r2

r3
(c t + x)

)
. (2.2)
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2.2. Results of the enhanced Kudryashov scheme implementation results

Utilizing an improved Kudryashov scheme and employing the auxiliary equation delineated
in (1.9), in conjunction with Mathematica 13.1 software, facilitates the resolution of Eq (1.7). This
approach streamlines the process of determining values for the aforementioned parameters, resulting
in the following outcomes:

a0 = − b2, a1 = 0, b1 = 0, r1 =
τ

b2τ − a2
, r2 =

1
4

(
b2 −

a2

τ

)
, r3 = −

a2 − b2τ

16τ
.

The computational wave solutions of the investigated model can be articulated as follows:

ϕ(x, t) = −
sech2(c t + x) (−2a2 + b1τ sinh(2(c t + x)) + 2b2τ)

2τ
, (2.3)

ϕ(x, t) =
16c2 (a2 − b2τ) e2(c t+x) − 16b1c4e4(c t+x) + b1τ

2(
4c2e2(c t+x) + τ

)2 . (2.4)

2.3. Solutions’ stability

A comprehensive analysis of the stability of solitary wave solutions is essential for a thorough
understanding of the dynamic behavior and applicability of the Peyrard-Bishop DNA model. This
model, acclaimed for its nonlinear dynamics and soliton solutions, has become a crucial framework for
exploring the complex biophysics associated with DNA transcription and denaturation. The model’s
significance and accuracy are profoundly dependent on the stability of its solutions within specified
system parameters.

This study conducts an exhaustive stability analysis of the solitary wave solutions under
perturbations within the Hamiltonian system. The Hamiltonian structure provides a fundamental basis
for evaluating solution stability, employing the Lyapunov method for rigorous scrutiny. Specifically,
we derive the expression for the Hamiltonian, identify conserved quantities, and formulate the
Lyapunov functional to rigorously assess stability. Evaluating the momentum of Eqs (2.1) and (2.3)
yields

M

∣∣∣∣∣∣
Eq. (2.1)

= −
1

24c

(
tanh2

(
5(c − 1)

2
√

2

)
− 2 tanh2

(
5(c + 1)

2
√

2

)
+ tanh2

(
5 − 5c

2
√

2

)
+ 8 log

(
cosh

(
5(c − 1)

2
√

2

))
− 8 log

(
cosh

(
5(c + 1)

2
√

2

)) )
,

(2.5)

M

∣∣∣∣∣∣
Eq. (2.3)

=
1
8c

(
− 27sech2(5(c + 1)) + 27sech2(5 − 5c) + 10

(
640c

+ log
(
1 − tanh2(5(c + 1))

)
− log

(
1 − tanh2(5 − 5c)

) ))
.

(2.6)

Consequently, we get

dM
dc

=


0.441542829, for (c = −1) ,

2.77777766, for (c = 3) .
(2.7)
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Hence, the solutions constructed above (Eqs (2.1) and (2.3)) demonstrate stability within the
domain x ∈ [−5, 5] and t ∈ [−5, 5]. The results of the stability analysis carry profound implications for
the validity and utility of the model in DNA dynamics research. Unstable solutions would manifest as
non-physical artifacts, undermining the model’s quantitative reliability in accurately describing DNA
behavior. Conversely, stable and robust solutions, confined within appropriate parameter boundaries,
inspire confidence in utilizing the model to elucidate DNA transcription mechanisms and guide
experimental endeavors. Essentially, this stability analysis provides crucial insights into the dynamic
structures within the model, delineates accurate parameter ranges, and defines suitable application
domains. It establishes the groundwork for constructing precise DNA models and offers deeper
insights into the intricate equilibrium of forces governing DNA molecular processes.

3. Graphical illustrations of solution sets

The graphical representations provided in Figures 1-5 offer profound insights into the intricate
dynamics and physical phenomena inherent in DNA denaturation and renaturation processes, as
elucidated by the Peyrard-Bishop DNA model. These visual depictions serve as indispensable tools
for interpreting and comprehending the complex interplay among various forces and interactions
governing DNA molecule behavior.

• Figure 1: Numerical representations of solitary wave solutions:
Panels (a-f) of Figure 1 exhibit the bright solitary wave solutions obtained using the Khater III
method (Eqs (2.1) and (2.2)), while panels (g-i) illustrate the solitary wave solutions derived from
an enhanced Kudryashov scheme (Eq (2.3)). These qualitative plots authenticate the diversity
of analytical solitary wave solutions acquired from the two distinct methodologies within the
nonlinear framework of the Peyrard-Bishop DNA model. The depicted localized wave profiles
offer a visual representation of the localized melting bubbles that arise during the denaturation
process, enabling researchers to qualitatively evaluate the characteristics and behavior of these
bubbles.
• Figure 2: Numerical representations of solitary wave solutions:

Panels (a-c) of Figure 2 portray the bright solitary wave solutions computed using the Khater II
method (Eq (2.4)). Analogous to Figure 1, these qualitative plots affirm the diversity of analytical
solitary wave solutions and their localized wave profiles acquired from the two distinct techniques
within the nonlinear framework of the Peyrard-Bishop DNA model. These visual depictions aid
in comprehending the localized nature of denaturation bubbles and their propagation along the
DNA strand.
• Figure 3: Conserved Quantities in the Hamiltonian Framework:

Panels (a, b) and (c, d) of Figure 3 illustrate the momentum M as described by Eqs (2.5) and
(2.6), representing conserved quantities arising from the intrinsic nonlinearity governing the
Peyrard-Bishop DNA model. The graphical depiction of these conserved quantities offers
valuable insights into the equilibrium conditions maintaining DNA strand integrity within the
physically consistent nonlinear dynamics of the model. By analyzing these conserved quantities,
researchers can gain deeper understanding of solution stability, robustness, and the parameter
ranges wherein the model accurately describes DNA behavior.
• Figure 4: Interpretation of the Bright Solitary Wave Solution Stream Plot:
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The stream plot depicted in Figure 4, representing the bright solitary wave solution expressed by
Eqs (2.1) and (2.2), provides a visual representation of localized melting bubbles within the DNA
strand. The continuous lines illustrate the gradual variation in DNA strand displacement (u) with
respect to distance (x) and time (t), capturing the dynamic process of bubble nucleation, growth,
and propagation along the DNA strand during the denaturation process.
The smooth, continuous nature of the lines reflects the bubble breathing dynamics, wherein the
denaturation bubbles exhibit oscillatory behavior as they expand and contract. This phenomenon
is directly related to the nonlinear strand fluctuations governed by the Peyrard-Bishop model,
accounting for the interplay between hydrogen bond interactions and stacking forces between
adjacent base pairs.
As the denaturation process progresses, the localized melting bubbles smoothly rise and fall
along the strand, indicating the formation and dissolution of these unstable regions. This visual
representation effectively captures the dynamic nature of bubble nucleation and growth,
providing insights into the local dynamics governed by the Peyrard-Bishop model.
• Figure 5: Interpretation of the Dark Solitary Wave Solution Stream Plot:

The stream plot in Figure 5, depicting the dark solitary wave solution formulated by Eqs (2.3) and
(2.4), offers a visual representation of the periodic fluctuations in strand displacement (u) across
spatial and temporal coordinates. The oscillating contour pattern showcases the bubble oscillation
phenomena within the denaturing regions of the DNA strand.
The localized ripples propagating along the strand, while retaining their shape and amplitude,
effectively illustrate the collective behavior of denaturation bubbles and their interactions through
Ripple-Like soliton interactions. This visual representation provides valuable insights into the
dynamics of bubble propagation and coalescence during the denaturation-renaturation transitions.
The oscillating contour pattern reflects the periodic nature of the denaturation-renaturation
process, wherein the bubbles undergo cycles of growth and shrinkage. This behavior is governed
by the complex interplay between hydrogen bond breaking, stacking interactions, and the
nonlinear dynamics inherent to the Peyrard-Bishop model.
Moreover, the propagation of localized ripples along the strand highlights the collective behavior
of denaturation bubbles, where individual bubbles can interact, merge, or split, leading to the
formation of larger or smaller bubbles. This phenomenon is crucial for understanding the overall
dynamics of the denaturation-renaturation process, as it directly impacts the stability and integrity
of the DNA molecule.

In conclusion, the graphical representations presented in Figures 1, 2, and 3 provide researchers
with powerful visual aids for interpreting the physical meaning and properties of the Peyrard-Bishop
DNA model. By capturing the dynamic behavior of denaturation bubbles, their nucleation, growth,
propagation, and interactions, as well as the conserved quantities and equilibrium conditions, these
plots offer invaluable insights into the complex interplay between various forces and interactions
governing DNA dynamics. Ultimately, these visual representations contribute to a deeper
understanding of the underlying mechanisms driving DNA denaturation and renaturation processes,
facilitating further research and advancements in the field of biophysics and molecular biology.

The graphical representations presented in Figures 4 and 5 provide researchers with powerful visual
aids for interpreting the physical meaning and properties of the Peyrard-Bishop DNA model. By
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capturing the dynamic behavior of denaturation bubbles, their nucleation, growth, propagation, and
interactions, these plots offer invaluable insights into the complex interplay between various forces and
interactions that govern DNA dynamics. Ultimately, these visual representations contribute to a deeper
understanding of the underlying mechanisms driving DNA denaturation and renaturation processes,
facilitating further research and advancements in the field of biophysics and molecular biology.

Figure 1. Numerical representations of the solitary wave solutions obtained through
analytical methods are presented. Panels (a-f) display the bright solitary wave solutions
computed using the Khater III method (Eqs (2.1) and (2.2)). Panels (g-i) illustrate the solitary
wave solutions derived from an enhanced Kudryashov scheme (Eq (2.3)). These qualitative
plots serve to validate the diversity of analytical solitary wave solutions and their localized
wave profiles obtained from the two distinct techniques within the nonlinear framework of
the Peyrard-Bishop DNA model.
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Figure 2. Numerical representations of the solitary wave solutions obtained through
analytical methods are depicted. Panels (a-c) illustrate the bright solitary wave solutions
computed utilizing the Khater II method (Eq (2.4)). These qualitative plots serve to validate
the diversity of analytical solitary wave solutions and their localized wave profiles acquired
from the two distinct techniques within the nonlinear framework of the Peyrard-Bishop DNA
model.

Figure 3. The Hamiltonian framework of the Peyrard-Bishop DNA model reveals conserved
quantities, illustrated in Panels (a, b) and (c, d), depicting the momentum M as described
by Eqs (2.5) and (2.6). These conserved dynamic properties arise from the intrinsic
nonlinearity governing the system. Graphical representation of these conserved quantities
offers valuable insights into the equilibrium conditions that uphold DNA strand integrity
within the physically-consistent nonlinear dynamics of the Peyrard-Bishop model.
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Figure 4. A stream plot of the bright solitary wave solution, expressed by Eq (2.1) and
(2.2), is presented with specific parameter values denoted as (a-i). Continuous lines depict
the gradual variation in DNA strand displacement (u) concerning distance (x) and time (t),
illustrating localized melting bubbles that smoothly rise and fall along the strand during
the denaturation process. This visual representation qualitatively captures bubble breathing
dynamics and nonlinear strand fluctuations associated with bubble nucleation and growth.
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Figure 5. A stream plot of the dark solitary wave solution, formulated by Eqs (2.3)
and (2.4), is presented with parameter values denoted as (j-o). The oscillating contour
pattern showcases periodic fluctuations in the strand displacement (u) across spatial and
temporal coordinates, offering a visual representation of bubble oscillation phenomena within
denaturing regions. Localized ripples propagate along the strand, retaining their shape and
amplitude, effectively illustrating bubble propagation and coalescence through Ripple-Like
soliton interactions during denaturation-renaturation transitions.

4. Results and discussion

The present study investigates the nonlinear Atangana conformable Peyrard-Bishop DNA dynamic
model, a nonlinear evolution equation that describes the behavior of DNA molecules by accounting for
hydrogen bonds between base pairs and stacking interactions between adjacent base pairs. The primary
objective was to construct analytical solutions to this model using the Khater III and an enhanced
Kudryashov methods, and subsequently analyze the stability of the obtained solutions through the
Hamiltonian system characterization. The results obtained from this study contribute significantly to
the understanding of DNA dynamics and offer novel insights into the properties and behavior of DNA
molecules.

• Analytical solutions:
The application of the Khater III method to the nonlinear Atangana conformable Peyrard-Bishop
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DNA dynamic model yielded two distinct sets of analytical solutions, represented by Eqs (2.1) and
(2.2). These solutions capture the bright solitary wave behavior of the DNA molecule, depicting
localized melting bubbles that smoothly rise and fall along the strand during the denaturation
process. The visual representations of these solutions, as shown in Figure 1 (panels a-f), provide
a qualitative validation of the diversity of analytical solitary wave solutions and their localized
wave profiles obtained through this technique.
Furthermore, the implementation of an enhanced Kudryashov scheme yielded two additional
sets of analytical solutions, represented by Eqs (2.3) and (2.4). These solutions capture the dark
solitary wave behavior of the DNA molecule, showcasing periodic fluctuations in strand
displacement across spatial and temporal coordinates. The visual representations of these
solutions, as depicted in Figures 1 (panels g-i) and 2 (panels a-c), offer insights into the bubble
oscillation phenomena within the denaturing regions of the DNA strand, effectively illustrating
the collective behavior of denaturation bubbles and their interactions through Ripple-Like
soliton interactions during the denaturation-renaturation transitions.
The novelty of this study lies in the successful application of the Khater III and an enhanced
Kudryashov methods to the nonlinear Atangana conformable Peyrard-Bishop DNA dynamic
model, resulting in the derivation of analytical solutions that capture both bright and dark
solitary wave behaviors. These solutions provide a valuable contribution to the field of nonlinear
dynamics and biophysics, as they offer a deeper understanding of the complex interplay between
various forces and interactions that govern DNA dynamics.
• Stability analysis:

In addition to obtaining analytical solutions, this study undertook a comprehensive stability
analysis of the derived solitary wave solutions within the Hamiltonian system framework. The
Hamiltonian structure serves as a foundational basis for scrutinizing solution stability, utilizing
the Lyapunov method. The results of the stability analysis, as illustrated in Figure 3 (panels a-d),
reveal the conserved quantities and equilibrium conditions that uphold DNA strand integrity
within the physically-consistent nonlinear dynamics of the Peyrard-Bishop model.
The momentum M, as described by Eqs (2.5) and (2.6), represents a conserved quantity arising
from the intrinsic nonlinearity governing the system. The graphical representation of this
conserved quantity offers valuable insights into the equilibrium conditions and stability of the
solutions. The results indicate that the obtained solutions demonstrate stability within the
domain x ∈ [−5, 5] and t ∈ [−5, 5], as evidenced by the calculated values of dM

dc (Eq (2.7)).
The stability analysis carried out in this study is a significant contribution to the field, as it
establishes the robustness and reliability of the obtained solutions within the defined parameter
ranges. By identifying the stable regions and equilibrium conditions, researchers can gain
confidence in utilizing the Peyrard-Bishop DNA model to accurately describe DNA behavior
and guide experimental endeavors.
• Scientific contributions:

The primary scientific contributions of this study can be summarized as follows:

(1) Derivation of analytical solutions: The successful application of the Khater III and an
enhanced Kudryashov methods to the nonlinear Atangana conformable Peyrard-Bishop
DNA dynamic model has yielded novel analytical solutions that capture both bright and
dark solitary wave behaviors. These solutions provide a deeper understanding of the
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complex dynamics involved in DNA denaturation and renaturation processes, facilitating
the development of more accurate simulations and predictions.

(2) Stability analysis: The comprehensive stability analysis of the obtained solutions within the
Hamiltonian system framework has established the robustness and reliability of the
solutions within specific parameter ranges. By identifying the stable regions and
equilibrium conditions, researchers can confidently utilize the Peyrard-Bishop DNA model
to accurately describe DNA behavior and guide experimental investigations.

(3) Visual representations: The graphical illustrations of the solitary wave solutions, as depicted
in Figures 1-5, offer powerful visual aids for interpreting the physical meaning and
properties of the Peyrard-Bishop DNA model. These visual representations capture the
dynamic behavior of denaturation bubbles, their nucleation, growth, propagation, and
interactions, providing invaluable insights into the underlying mechanisms driving DNA
dynamics.

(4) Contribution to biophysics and molecular biology: The findings of this study hold
significant implications for the fields of biophysics and molecular biology. By advancing
the understanding of DNA dynamics and the interplay between various forces and
interactions, this research paves the way for further advancements in areas such as drug
design, gene therapy, and the development of innovative therapeutic interventions.

Overall, this study represents a significant contribution to the field of nonlinear dynamics and
biophysics, offering novel analytical solutions, comprehensive stability analysis, and visual
representations that enhance the understanding of DNA dynamics within the framework of the
nonlinear Atangana conformable Peyrard-Bishop DNA dynamic model. The results obtained from
this research have the potential to inspire and guide future investigations, ultimately leading to a more
profound comprehension of the intricate mechanisms governing DNA behavior and their implications
in various scientific domains.

5. Conclusions

This study marks a substantial advancement in our comprehension of the Peyrard-Bishop DNA
dynamic model, a pivotal framework for scrutinizing the intricate dynamics governing DNA
denaturation and renaturation processes. Employing two distinct analytical techniques, the Khater III
method and an enhanced Kudryashov scheme, we have successfully derived novel analytical solutions
that encapsulate the nuanced behavior of DNA molecules. The bright solitary wave solutions obtained
via the Khater III method, portrayed by Eqs (2.1) and (2.2), delineate localized melting bubbles that
smoothly propagate along the DNA strand during denaturation. These solutions furnish crucial
insights into the dynamics of denaturation bubbles, encompassing nucleation, growth, and
propagation dynamics, which reflect the interplay between hydrogen bond interactions and stacking
forces between adjacent base pairs.

Additionally, the dark solitary wave solutions derived from the enhanced Kudryashov scheme, as
articulated by Eqs (2.2) and (2.4), unveil the oscillatory nature of strand displacement, effectively
illustrating the bubble oscillation phenomena within denaturing regions. These solutions elucidate the
collective behavior of denaturation bubbles, their interactions through ripple-like solitons, and the
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intricate dynamics underlying denaturation-renaturation transitions. The visual representations of
these analytical solutions, showcased in Figures 1-5, serve as potent tools for interpreting the physical
meaning and properties of the Peyrard-Bishop DNA model. By encapsulating the dynamic behavior
of denaturation bubbles, including their nucleation, growth, propagation, and interactions, these
graphical illustrations offer invaluable insights into the underlying mechanisms steering DNA
dynamics.

A noteworthy contribution of this study lies in the comprehensive stability analysis conducted
within the Hamiltonian system framework. The conserved quantities, specifically the momentum M
described by Eqs (2.5) and (2.6), provide valuable insights into the equilibrium conditions
maintaining DNA strand integrity. The graphical representations of these conserved quantities, as
depicted in Figure 3, establish the robustness and reliability of the obtained solutions within defined
parameter ranges, bolstering our confidence in utilizing the Peyrard-Bishop DNA model for accurate
predictions and simulations. The findings of this research bear profound implications for various
domains within biophysics and molecular biology. By advancing our understanding of DNA
dynamics and the interplay between various forces and interactions, this study lays the groundwork
for further advancements in areas such as drug design, gene therapy, and the development of
innovative therapeutic interventions.

Moreover, the analytical solutions and stability analyses presented herein provide a sturdy
foundation for future investigations and model extensions. Researchers can build upon this work by
incorporating additional complexities and effects, such as torsional angles, base-pair openings, and
long-range interactions, to further refine the model’s accuracy and predictive capabilities.

In summation, this study represents a significant stride in the exploration of DNA dynamics within
the realm of nonlinear dynamics and biophysics. The novel analytical solutions, comprehensive
stability analysis, and visual representations collectively contribute to a deeper understanding of the
intricate mechanisms governing DNA behavior. These findings not only enrich our fundamental
knowledge but also pave the way for future advancements in areas such as drug design, gene therapy,
and the development of innovative biomedical technologies, ultimately benefiting humanity through
improved healthcare and therapeutic interventions. “
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