Research article

Eighth order, Numerov-like schemes with coefficients tailored for superior performance on ODE systems with oscillatory solutions

  • Received: 11 April 2024 Revised: 10 July 2024 Accepted: 22 July 2024 Published: 05 August 2024
  • MSC : 65L05, 65L06

  • Second order Ordinary Differential Equations (ODE) were considered. Numerov-like techniques employing effectively seven stages per step and sharing eighth algebraic order were under examination for numerically solving them. The coefficients of these methods were contingent on four independent parameters. To tackle issues with oscillatory solutions, we typically aimed to fulfill specific criteria such as minimizing phase-lag, expanding the periodicity interval, or even neutralizing amplification errors. These latter attributes stemmed from a test problem mimicking an ideal trigonometric trajectory. Here, we suggested training the coefficients of the chosen method family across a broad spectrum of pertinent problems. Following this training using the differential evolution method, we identified a particular method that surpassed others in this category across an even broader array of oscillatory problems.

    Citation: Theodore E. Simos, Charalampos Tsitouras. Eighth order, Numerov-like schemes with coefficients tailored for superior performance on ODE systems with oscillatory solutions[J]. AIMS Mathematics, 2024, 9(9): 23368-23383. doi: 10.3934/math.20241136

    Related Papers:

  • Second order Ordinary Differential Equations (ODE) were considered. Numerov-like techniques employing effectively seven stages per step and sharing eighth algebraic order were under examination for numerically solving them. The coefficients of these methods were contingent on four independent parameters. To tackle issues with oscillatory solutions, we typically aimed to fulfill specific criteria such as minimizing phase-lag, expanding the periodicity interval, or even neutralizing amplification errors. These latter attributes stemmed from a test problem mimicking an ideal trigonometric trajectory. Here, we suggested training the coefficients of the chosen method family across a broad spectrum of pertinent problems. Following this training using the differential evolution method, we identified a particular method that surpassed others in this category across an even broader array of oscillatory problems.



    加载中


    [1] E. Hairer, Unconditionally stable methods for second order differential equations, Numer. Math., 32 (1979), 373–379. https://doi.org/10.1007/BF01401041 doi: 10.1007/BF01401041
    [2] J. R. Cash, High order P–stable formulae for the numerical integration of periodic initial value problems, Numer. Math., 37 (1981), 355–370. https://doi.org/10.1007/BF01400315 doi: 10.1007/BF01400315
    [3] M. M. Chawla, Two–step fourth order P–stable methods for second order differential equations, BIT, 21 (1981), 190–193. https://doi.org/10.1007/BF01933163 doi: 10.1007/BF01933163
    [4] M. M. Chawla, Numerov made explicit has better stability, BIT, 24 (1984), 117–118. https://doi.org/10.1007/BF01934522 doi: 10.1007/BF01934522
    [5] C. Tsitouras, Explicit Numerov type methods with reduced number of stages, Comput. Math. Appl., 45 (2003), 37–42. https://doi.org/10.1016/S0898-1221(03)80005-6 doi: 10.1016/S0898-1221(03)80005-6
    [6] M. M. Chawla, P. S. Rao, An explicit sixth–-Order method with phase-Lag of order eight for $y^{\prime \prime } = f(t, y)$, J. Comput. Appl. Math., 17 (1987), 365–368. https://doi.org/10.1016/0377-0427(87)90113-0 doi: 10.1016/0377-0427(87)90113-0
    [7] C. Tsitouras, Explicit eighth order two–step methods with nine stages for integrating oscillatory problems, Int. J. Modern Phys. C, 17 (2006), 861–876. https://doi.org/10.1142/S0129183106009357 doi: 10.1142/S0129183106009357
    [8] C. Tsitouras, T. E. Simos, On ninth order, explicit Numerov type methods with constant coefficients, Mediterr. J. Math., 15 (2018), 46. https://doi.org/10.1007/s00009-018-1089-9 doi: 10.1007/s00009-018-1089-9
    [9] J. M. Franco, A class of explicit two-step hybrid methods for second-order IVPs, J. Comput. Appl. Math. 187 (2006), 41–57. https://doi.org/10.1016/j.cam.2005.03.035
    [10] J. M. Franco, L. Randez, Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs, Appl. Maths. Comput., 273 (2016), 493–505. https://doi.org/10.1016/j.amc.2015.10.031 doi: 10.1016/j.amc.2015.10.031
    [11] J. M. Franco, L. Randez, Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs, Int. J. Modern. Phys. C, 29 (2018), 1850002. https://doi.org/10.1142/S012918311850002X doi: 10.1142/S012918311850002X
    [12] E. Hairer, G. Wanner, S. P. Nørsett, Solving ordinary differential equations I: nonstiff problems, Springer, Berlin, 1993. https://doi.org/10.1007/978-3-540-78862-1
    [13] J. C. Butcher, Implicit Runge Kutta processes, Math. Comput., 18 (1964), 50–64.
    [14] J. C. Butcher, On Runge–Kutta processes of high order, J. Austral. Math. Soc., 4 (1964), 179–194. https://doi.org/10.1017/S1446788700023387 doi: 10.1017/S1446788700023387
    [15] T. E. Simos, C. Tsitouras, A new family of seven stages, eighth order explicit Numerov-type methods, Math. Meth. Appl. Sci., 40 (2017), 7867–7878. https://doi.org/10.1002/mma.4570
    [16] T. E. Simos, C. Tsitouras, I. T. Famelis, Explicit numerov type methods with constant coefficients: a review, Appl. Comput. Math., 16 (2017), 89–113.
    [17] C. Tsitouras, I. T. Famelis, Symbolic derivation of Runge-Kutta-Nyström order conditions, J. Math. Chem., 46 (2009), 896–912. https://doi.org/10.1007/s10910-009-9560-2 doi: 10.1007/s10910-009-9560-2
    [18] I. T. Famelis, C. Tsitouras, Symbolic derivation of order conditions for hybrid Numerov-type methods solving $y^{\prime\prime} = f(x, y)$, J. Comput. Appl. Math., 218 (2008), 543–555. https://doi.org/10.1016/j.cam.2007.09.017 doi: 10.1016/j.cam.2007.09.017
    [19] Wolfram Research Inc., Mathematica, Version 11.3, Champaign, IL, USA: Wolfram Research Inc., 2018.
    [20] J. P. Coleman, Order conditions for a class of two-step methods for $y^{\prime\prime} = f(x, y)$, IMA J. Numer. Anal., 23 (2003), 197–220. https://doi.org/10.1093/imanum/23.2.197 doi: 10.1093/imanum/23.2.197
    [21] J. D. Lambert, I. A. Watson, Symmetric multistep methods for periodic initial value problems, IMA J. Appl. Math., 18 (1976), 189–202. https://doi.org/10.1093/imamat/18.2.189 doi: 10.1093/imamat/18.2.189
    [22] C. Tsitouras, Neural networks with multidimensional transfer functions, IEEE T. Neural Networs, 13 (2002), 222–228. https://doi.org/10.1109/72.977309 doi: 10.1109/72.977309
    [23] R. Storn, K. Price, Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
    [24] The MathWorks Inc., MATLAB Version 9.4.0 (R2018a), Natick, Massachusetts: The MathWorks Inc., 2018.
    [25] R. M. Storn, K. V. Price, A. Neumaier, J. V. Zandt, DeMatDErand, 2024. Available from: https://github.com/mikeagn/DeMatDEnrand.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(456) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog