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Abstract: Second order Ordinary Differential Equations (ODE) were considered. Numerov-like
techniques employing effectively seven stages per step and sharing eighth algebraic order were under
examination for numerically solving them. The coefficients of these methods were contingent on
four independent parameters. To tackle issues with oscillatory solutions, we typically aimed to
fulfill specific criteria such as minimizing phase-lag, expanding the periodicity interval, or even
neutralizing amplification errors. These latter attributes stemmed from a test problem mimicking an
ideal trigonometric trajectory. Here, we suggested training the coefficients of the chosen method family
across a broad spectrum of pertinent problems. Following this training using the differential evolution
method, we identified a particular method that surpassed others in this category across an even broader
array of oscillatory problems.
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1. Introduction

We are exploring the initial value problem (IVP) defined as:

z′′ = f (t, z), z(t0) = z0, z′(t0) = z′0, (1.1)
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where f : R×Rm −→ Rm and z0, z′0 ∈ R
m. The above equation is widely applicable in various scientific

and engineering contexts. Notably, Eq (1.1) lacks z′.
The Numerov method facilitates the numerical advancement of the solution from tk to tk+1 = h + tk,

a well-established approach for solving Eq (1.1). It is expressed as:

zk+1 = 2zk − zk−1 +
h2

12
( fk+1 + 10 fk + fk−1) ,

where zk ≈ z(tk) and fk ≈ z′′n = f (tk, zk). Note that fk, zk ∈ R
m.

Hairer [1], Cash [2] and Chawla [3] introduced hybrid implicit Numerov-type methods (i.e., using
non-mesh points) approximately 40–45 years ago. Addressing the P-stability property, crucial for
handling stiff oscillatory problems, was the primary challenge then. Chawla [4] proposed the modified
Numerov scheme, evaluated explicitly as follows:

v1 = zk−1,

v2 = zk,

v3 = 2zk − zk−1 + h2 f (tk, v2),
zk+1 − 2zk + zk−1 =

1
12h2 · ( f (tk+1, v3) + 10 f (tk, v2) + f (tk−1, v1)),

(1.2)

where h is a constant step length:

h = tk − tk−1 = tk+1 − tk = · · · = t1 − t0.

The vectors zk+1, zk, and zk−1 approximate z(tk + h), z(tk), and z(tk − h) respectively, while v1 ∈

Rm, v2 ∈ R
m, and v3 ∈ R

m represent the stages (alternatively named: function evaluations) used by the
method.

We utilize the information known at the mesh:

v1 = zk−1, v2 = zk.

Since f (tk−1, v1) is computed in the previous step, only f (tk+1, v3) and f (tk, v2) need evaluation each
step, resulting in only two function evaluations per step.

Tsitouras then introduced a Runge–Kutta–Nyström (RKN)-style method [5], significantly reducing
the cost. Consequently, only four steps are required to create a sixth-order method, whereas previous
implementations required six function evaluations (see [6]).

Subsequent to this, our group extensively investigated the topic. Tsitouras developed eighth-order
methods with nine steps per step in [7]. Ninth-order methods were studied in [8]. Concurrently, a group
of Spanish researchers conducted highly interesting work on the same topic [9–11].

In this study, we aim to present a new method for better addressing problems with periodic solutions.
Traditionally, various properties from a simple test equation are fulfilled for this purpose. The novelty
lies in training the available free parameters across a wide set of relevant problems. Differential
evolution is employed for this training. It is anticipated that this methodology will yield a method
better tuned for oscillatory problems.
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2. Order conditions for hybrid Numerov-type methods

For the numerical treatment of Eq (1.1) with higher-order algebraic methods, there exists a
considerable demand. We can represent the independent variable t as one of the components of z
(if necessary, add t′′ = 0 see [12, pg. 286] for details). Consequently, our focus, without loss of
generality, lies on the autonomous system z′′ = f (z). Subsequently, a hybrid Numerov method with s
stages, as delineated in [7], may be expressed as:

zk+1 = 2zk − zk−1 + h2 · (w ⊗ Is) · f (v) , v = (1 + a) ⊗ zk − a ⊗ zk−1 + h2 · (D ⊗ Is) · f (v) (2.1)

where Is ∈ R
s×s represents the identity matrix, D ∈ Rs×s,wT ∈ Rs, a ∈ Rs denote the coefficient

matrices of the method, and
1 = [1 1 · · · 1]T ∈ Rs.

To present the coefficients, we utilize the Butcher tableau [13, 14],

a D
w
.

The method described in (1.2) can be represented using matrices [8]. As the function evaluations are
computed sequentially, these methods are explicit. Therefore, D represents a strictly lower triangular
matrix. For the case when s = 8, the method takes the following structure:

fk−1 = f (tk−1, zk−1)

fk = f (tk, zk)

zα = a3zk−1 + (1 − a3) zk + h2 (d31 fk−1 + ad2 fk) ,
fα = f (tk − a3h, zα) ,
zβ = a4zk−1 + (1 − a4) zk + h2 (d41 fk−1 + d42 fk + d43 fα) ,

fβ = f
(
tk − a4h, zβ

)
,

zc = a5zk−1 + (1 − a5) zk + h2
(
d51 fk−1 + d52 fk + d53 fα + d54 fβ

)
,

fc = f (tk − a5h, zc) ,
zδ = a6zk−1 + (1 − a6) zk + h2

(
d61 fk−1 + d62 fk + d63 fα + d64 fβ + d65 fc

)
,

fδ = f (tk − a6h, zδ) ,
ze = a7zk−1 + (1 − a7) zk + h2

(
d71 fk−1 + d72 fk + d73 fα + d74 fβ + d75 fc + d76 fδ

)
,

fe = f (tk − a7h, ze) ,
zg = a8zk−1 + (1 − a8) zk + h2

(
d81 fk−1 + d82 fk + d83 fα + d84 fβ + d85 fc + d86 fδ + d87 fe

)
,

zk+1 = 2zk − zk−1 + h2
(
w1 fk−1 + w2 fk + w3 fα + w4 fβ + w5 fc + w6 fδ + w7 fe + w8 fg

)
.
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After assuming [15]

w3 = 0,w5 = w4,w7 = w6,w8 = w1, a5 = −a4, a6 = −a7, a8 = 1,

the associated matrices take the form

D =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
d31 d32 0 0 0 0 0 0
d41 d42 d43 0 0 0 0 0
d51 d52 d53 d54 0 0 0 0
d61 d62 d63 d64 d65 0 0 0
d71 d72 d73 d74 d75 d76 0 0
d81 d82 d83 d84 d85 d86 d87 0


,

w =
[

w1 w2 0 w4 w4 w6 w6 w1

]
and a =

[
−1 0 a3 a4 −a4 −a5 a5 1

]T
.

Given that fk−1 is determined from the preceding stage, seven function assessments are performed
per step. To achieve an algebraic order eight, it is imperative to nullify the corresponding error
truncation components (refer to [16]).

Our technique encompasses a total of 34 parameters. As noted earlier, there exist 27 coefficients for
matrix D, denoted as

d31, d32, d41, d42, d43, · · · , d87.

Moreover, there are 4 coefficients associated with vector w and 3 elements pertaining to vector a. The
quantity of condition equations for various orders matches those of the RKN methods [17, 18], as
presented in Table 1. To attain an eighth order, a cumulative total of 1 + 1 + 2 + 3 + 6 + 10 + 20 + 36 =
79 equations must be fulfilled. The equations up to the ninth order can be found in assorted tables
within [16].

Table 1. Number of order conditions.

Order p 1 2 3 4 5 6 7 8 9 10 11
No of conditions 1 1 2 3 6 10 20 36 72 137 275

The parameters are fewer than the equations, presenting a comparable challenge encountered in
devising Runge-Kutta (RK) techniques. Hence, we are compelled to employ simplifying assumptions
that diminish the quantity of conditions, thereby also decreasing the number of coefficients. The most
prevalent options include

(D · 1)(3−8) =
1
2

(
a2 + a

)
(3−8)

(D · a)(3−8) =
1
6

(
a3 − a

)
(3−8)

(D · a2)(4−8) =
1
12

(
a4 + a

)
(4−8)

(2.2)
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with
ai =
[

(−1)i 0 ai
3 ai

4 (−a4)i (−a5)i ai
5 1

]T
,

and for κ1 < κ2

(v)(κ1−κ2) = [vκ1 vκ1+1 · · · vκ2]
T .

The remaining order conditions are presented in Table 2. In this table, the symbol “*” can be interpreted
as element-wise multiplication:

[u1 u2 · · · un]T ∗ [v1 v2 · · · vn]T = [u1v1 u2v2 · · · unnn]T .

This operation holds lower precedence. Parentheses, exponents, and dot products are always computed
prior to “*”.

Table 2. Equations of condition up to eighth order, under assumptions (2.2).

w · 1 = 1, w · a2 = 1
6 , w · a4 = 1

15 , w · a6 = 1
28 ,

w · D2 · a = 0, w · D3 · 1 = 1
20160 , w · D · (a ∗ Dc) = − 11

15120 ,

w · D3 · a = 0, w · D ·
(
a ∗ D2 · 1

)
= 1

7560 , w ·
(
a ∗ D2c

)
= 17

10080 ,

w · (a ∗ D · (a ∗ D · a)) = − 1
720 , w ·

(
a ∗ D3 · 1

)
= 23

60480 , w ·
(
D · 1 ∗ D2 · a

)
= 17

20160 .

Given the thirteen order conditions outlined in Table 2 and the fulfillment of 17 assumptions (2.2),
we determine that only thirty equations are necessary. This results in four coefficients remaining as
variables. Let’s consider a3, a4, a5, and d64. The issue can be resolved explicitly, and the corresponding
efficient Mathematica [19] module is depicted in Table 3.

For comprehensive details regarding the computation of truncation error coefficients, refer to
the comprehensive overview in [16]. Coleman [20] emphasized the utilization of the B2 series
representation of the local truncation error, drawing connections with the T2 rooted trees.
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Table 3. Mathematica listing for the derivation of the coefficients with respect to a3, a4, a5

and d64.

BeginPackage["Numerov8‘"];

Clear["Numerov8‘*"]

Numerov8::usage = " Numerov8[x1,x2,x3,x4] for 7-stages 8-order explicit Numerov"

Begin["‘Private‘"];

Clear["Numerov8‘Private‘*"];

Numerov8[aa3_?NumericQ, aa4_?NumericQ, aa5_?NumericQ, dd64_?NumericQ] :=

Module[{a3, a4, a5, w, w1, w2, w4, w6, w7, a, d, d31, d32, d41, d42, d43,

d85, d54, d61, d63, d72, d74, d53, d51, d84, d62, d52, e, so,

d87, d75, d64, d71, d81, d83, d85, d65, d73, d82, d86, d76},

w = {w1, w2, 0, w4, w4, w6, w6, w1};

a = {-1, 0, a3, a4, -a4, -a5, a5, 1};

d = {{0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0},

{d31, d32, 0, 0, 0, 0, 0, 0},

{d41, d42, d43, 0, 0, 0, 0, 0},

{d51, d52, d53, d54, 0, 0, 0, 0},

{d61, d62, d63, d64, d65, 0, 0, 0},

{d71, d72, d73, d74, d75, d76, 0, 0},

{d81, d82, d83, d84, d85, d86, d87, 0}};

e = {1, 1, 1, 1, 1, 1, 1, 1};

a3 = Rationalize[aa3, 10ˆ-17]; a4 = Rationalize[aa4, 10ˆ-17];

a5 = Rationalize[aa5, 10ˆ-17]; d64 = Rationalize[dd64, 10ˆ-17];

so = Solve[{-1 + w . e, -(1/12) + w . aˆ2/2, -(1/360) + w . aˆ4/24,

-(1/20160) + w . aˆ6/720} == {0, 0, 0, 0}, {w1, w2, w4, w6}];

w = Simplify[w /. so[[1]]];

so = Solve[

Join[(d . e - 1/2*(aˆ2 + a))[[3 ;; 8]], (d . a - 1/6*(aˆ3 - a))[[3 ;; 8]],

(d . aˆ2 - 1/12*(aˆ4 + a))[[4 ;; 8]], {w . d . d . a,

w . d . d . d . e - 1/20160, w . d . (a d . a) + 11/15120,

- w . d . d . d . a, w . d . (a d . d . e) + 1/7560,

w . (a d . d . a) - 17/10080, w . (a d . (a d . a)) + 1/720,

w . (a d . d . d . e) - 23/60480, w . (d . e d . d . a) - 17/20160}]

== Array[0 &, 26],

{d32, d31, d42, d41, d52, d51, d62, d61, d72, d71, d82, d81, d43,

d53, d63, d73, d83, d54, d65, d74, d75, d76, d84, d85, d86, d87}];

d = Simplify[d /. so][[1]];

Return[{a, w, d}]]

End[];

EndPackage[];
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3. Phase-lag and amplification errors

In [21], the scalar test problem
z′′ = −ω2z, ω ∈ R, (3.1)

was introduced to examine the periodic characteristics of techniques applied to solve (1.1).
Upon employing a Numerov-style approach akin to (2.1) to tackle problem (3.1), a discrete equation

is formulated, taking the form

zk+1 + S
(
ψ2
)

zk + P
(
ψ2
)

zk−1 = 0, (3.2)

where ψ = ωh, and S
(
ψ2
)
, P
(
ψ2
)

represent polynomials in ψ2.

The periodicity interval (0, ψ0) encompasses all 0 < ψ < ψ0 with P
(
ψ2
)
≡ 1 and 0 < |S

(
ψ2
)
| < 2.

A method deemed P-stable exhibits ψ0 = ∞.
The fulfillment of the zero dissipation property necessitates that

P
(
ψ2
)
= 1 − ψ2w

(
Is + ψ

2D
)−1

a ≡ 1,

ensuring that the numerical method approximating (3.1) remains within its cyclic orbit.
The dissipation order ρ of a method is characterized by the number for which 1 − P

(
ψ2
)
= O(ψρ).

It is worth noting that

P
(
ψ2
)
= 1 +

∞∑
j=0

ψ2 j+1w · D j · a = 1 + ψq1 + ψ
3q3 + · · · .

A method with algebraic order 2·i satisfies the terms in the aforementioned series for j = 0, 1, · · · , i−1.
Consequently, for an eighth order method, it is advantageous to address

q9 = w · D4 · a = 0, q11 = w · D5 · a = 0, · · · etc.,

to enhance the dissipation order. In the case of a zero-dissipative method, only q9 = z11 = q13 = q15 =

q17 = 0 is necessary, and as for the lower triangular matrix D, all other q′-s vanish,

q2i+1 = w · Di · a = 0, for i > 8.

The difference in angles between the numerical and theoretical cyclic solution of (3.1) is called phase-
lag. Since the solution of (3.1) is

z(t) = eωt
√
−1,

we may write Eq (3.2) as

Λ = e2ψ
√
−1 + S

(
ψ2
)
· eψ

√
−1 + P

(
ψ2
)
= O(ψτ), (3.3)

with the number τ the phase-lag order of the method. Since

S
(
ψ2
)
= 2 − ψ2w ·

(
I + ψ2D

)−1
· (1 + a) ,
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we observe that expression (3.3) is a series of the form

Λ =

∞∑
i=1

ψ2i(−1)i+1

 i∑
j=1

1
(2(i − j))!

w · D j−1 · (1 + a) − w · Di−1 · a − 2
i∑

j=1

1
(2 j)! · (2(i − j))!

 , (3.4)

or in a compact form
Λ = ψ2λ2 + ψ

4λ4 + ψ
6λ6 + O(ψ8).

In this series, λ2 = λ4 = · · · = λ2i = 0 for i = 1, 2, · · · , ⌊ p−1
2 ⌋ + 1, where p denotes the algebraic

order of the method. For eighth order methods, the order conditions yield λ2 = λ4 = λ6 = λ8 = 0.
Given that p = 8, and for i = 3, we infer from (3.4):

λ6 =
1

(2 · (3 − 1))!
w · (1 + a) +

1
2!

w · D · (1 + a) + w · D2 · 1 − 2 · (
1

2!4!
+

1
4!2!
+

1
6!0!

) = 0.

In case of i = 4, we get (observe already that w · 1 = 1, w · c = 0, w · D · c = 0, etc.),

λ8 = −
127

20160
+

1
720

(w · a + w · 1) +
1

24
(w · D · a + w · D · 1)

+
1
2

(w · D2 · a + w · D2 · 1) + w · D3 · 1 = 0.

Further we have that,

λ10 = w · D4 · 1 −
1

1814400
,

λ12 =
1
2

w · D4 · a + w · D5 · 1 −
1

239500800
,

λ14 =
1

24
w · D4 · c +

1
2

w · D5 · a +
1
2

w · D5 · 1 + w · D6 · 1 −
23

10897286400
,

λ16 =
1

720
w · D4 · c +

1
24

w · d5 · c +
1

24
w · D5 · 1

+
1
2

w · D6 · c +
1
2

w · D6 · 1 + w · D7 · 1 −
647

3487131648000
.

Then we may ask for simultaneous satisfaction of phase-lag order conditions:

λ10 = 0, λ12 = 0, λ14 = 0, λ16 = 0. (3.5)

The set of four nonlinear equations (3.5) can be resolved to determine the four independent
parameters. Our analysis reveals that the method exhibits a phase error on the order of O(ψ18), whereas
the amplification error is O(ψ9). Consequently, the newly devised method demonstrates dissipative
characteristics and lacks a periodicity interval.

The free parameters satisfying (3.5) in double precision are the following [15],

a3 = 0.870495922977052833, a4 = −0.265579060733883584,

a5 = −1.11694341482497459, d64 = −2.43624015403357971,
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and form the method N8ph18 that outperforms other methods in oscillatory problems.
Another noteworthy characteristic is P-stability [2,3]. In this context, it is essential to ensure σ ≡ 1,

while also meeting the condition

−2 ≤ (2 − ψ2w · (Is − ψ
2D)−1 · (1 + a)) ≤ 2.

Only implicit methods are capable of fulfilling these two criteria simultaneously.

4. Training the free parameters in a wide set of periodic problems

From the aforementioned set, our aim is to create a specific hybrid Numerov-style approach. The
resultant technique should excel when applied to challenges exhibiting oscillatory solutions. Therefore,
we opt to evaluate the following scenarios for testing purposes.

z′′(x) = −µ2z(t), z(0) = 1, z′(0) = 0, t ∈ [0, 10π],

with the analytical solution z(t) = cos(µx). This scenario was tested using five distinct values of µ:
specifically, µ = 1, 3, 5, 7, 9. These numbers were chosen arbitrarily. Different choices will produce
slightly different coefficients. Anyway, Differential Evolution is a metaheuristic method that produces
random results in (hopefully) the direction of desired solutions. We may get thousands of results
extremely close to each other. Consequently, we have five scenarios denoted as 1–5.

Our current project’s primary framework is rooted in [22]. Upon selection of the independent
parameters a3, a4, a5, d64, we establish a method termed NEW8. Each scenario undergoes four runs
with varying step counts. For each run we evaluated the maximum global error geproblem,steps observed
and we record the “accurate digits” i.e., −log10(geproblem,steps). The mean value r, computed over these
20 problems, serves as an efficacy metric to be optimized. To facilitate this optimization, we employ
the differential evolution technique [23].

DE operates through iterative steps, where each iteration, or generation g, involves a “population”
of individuals

(
a(g)

3,i , a
(g)
4,i , a

(g)
5,i , d

(g)
64,i

)
, i = 1, 2, · · · ,N, with N denoting the population size. The initial

population
(
a(0)

3,i , a
(0)
4,i , a

(0)
5,i , d

(0)
64,i

)
, i = 1, 2, · · · ,N is randomly generated in the first step. Furthermore,

we designate r as the fitness function, computed as the average precision over the 20 aforementioned
runs. This fitness function is then assessed for each individual within the initial population. In every
generation (iteration) g, a three-step sequential process updates all individuals involved, consisting of
Differentiation, Crossover, and Selection.

We utilized MATLAB [24] software DeMat [25] for the implementation of the aforementioned
technique. Indeed, notable enhancements were achieved through selection:

a3 = 0.9442042052877105, a4 = 0.4611624530665672,
a5 = −0.8575664014828354, d64 = 12.56127525577038.

The coefficients of the new method in matrix forms are given below, which are suitable for double
precision computations.
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D =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

13073231
765816835

1162425931
1290448873 0 0 0 0 0 0

15504301
303446304

204546529
691503620 − 5468561

548112870 0 0 0 0 0

− 46437667
980424298 − 95091815

1054858556
13784899
946911356 − 1290636

998791667 0 0 0 0

−2384643161
951946033 −5551854734

301857693 −862090392
293777917

897911057
71482476

10304258074
853918619 0 0 0

276746015
1037399899

1131050235
688407688

186740362
1030099325 −1139314213

1212843869 −
1500147825
1231327489

6071398
1089814211 0 0

−34899406663
1129559599 −291110149698

1237155877 −44963114191
1183071678

62726461355
397241959

142749796241
969555741

123970163
1671884409 −

1993137
584124064 0



,

w =
[
− 1341579

392312827
461160043

1084958442 0 306071289
1258074655

306071289
1258074655

42607879
894937316

42607879
894937316 −

1341579
392312827

]
,

and

a =
[
−1 0 198781151

210527712
43361502
94026523 −

43361502
94026523

96673439
112729975 −

96673439
112729975 1

]T
.

With this approach, we achieved a value of approximately r ≈ 9.24, which demonstrates remarkable
performance. In fact, numerous methods yielding r > 9.1 were obtained, indicating the presence of a
narrow range of parameter combinations a3, a4, a5, d64 where r reaches elevated levels. It is noteworthy
that in the current configuration, the amplification differs from unity (σ , 1), and the phase lag is on
the order of O(v8), implying ρ = O(v8), where ρ8 , 0. Moreover, no specific property is satisfied under
these conditions.

In Table 4 we present the results for the new method and the method N8ph18 presented in [15]
that was especially formed for addressing oscillatory problems. For this latter method we observe a
performance ρ ≈ 7.82 which is much smaller.

5. Numerical results

The NEW8 method was designed to excel following multiple iterations on model scenarios. In the
assessments outlined in Table 4, it was anticipated to outperform alternative methods for the specified
intervals and step counts.
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Table 4. Training phase. Accurate digits delivered after using various steps by NEW8 and
N8ph18 in the interval [0, 10π].

Problem Steps NEW8 N8ph18
1 20 7.5 6.6

40 11.2 9.4
60 12.3 11.0
80 13.3 12.1

2 50 6.0 5.4
100 10.1 8.2
150 11.2 9.8
200 12.0 10.9

3 80 5.6 5.0
130 8.2 7.0
180 10.8 8.3
230 12.0 9.2

4 100 4.7 4.4
150 7.0 6.0
200 8.6 7.2
250 11.0 8.1

5 150 5.5 4.9
225 7.7 6.6
300 9.6 7.7
375 10.3 8.6

Hence, we aim to subject NEW8 to a distinct array of challenges, encompassing varying intervals
and step counts. To this end, we re-evaluate problems 1–5 over an extended interval [0, 20π]. These
problems are now labeled as 1′, 2′, · · · , 5′. Additionally, we introduce two additional nonlinear
problems and a wave equation to broaden the scope of evaluation. Specifically, we consider:

5.1. The inhomogeneous problem

z′′(t) = −100z(t) + 99 sin t, z(0) = 1, z′(0) = 11, t ∈ [0, 20π],

with the theoretical solution z(t) = cos(10t) + sin(10t) + sin t.

5.2. The Duffing equation

Next, we choose the equation

z′′(t) =
1

500
· cos (1.01t) − z(t) − z(t)3,

z(0) = 0.2004267280699011, z′ (0) = 0,
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with an approximate analytical solution given in [16],

z(t) ≈


6 · 10−16 cos(11.11t) + 4.609 · 10−13 cos(9.09t)
+3.743495 · 10−10 cos(7.07t) + 3.040149839 · 10−7 cos(5.05t)
+2.469461432611 · 10−4 cos(3.03t) + 0.2001794775368452 cos(1.01t)

 .
5.3. Wave equation

Finally, we consider the linearized wave equation, which is a rather large-scale problem [16],

ϑ2u
ϑt2 = 4

ϑ2u
ϑx2 + sin t · cos

(
πx
b

)
, 0 ≤ x ≤ b = 100, t ∈ [0, 20π],

ϑu
ϑx

(t, 0) =
ϑu
ϑx

(t, b) = 0,

u (0, x) ≡ 0,
ϑu
ϑt

(0, x) =
b2

4π2 − b2 cos
πx
b
,

with the theoretical solution

u (t, x) =
b2

4π2 − b2 · sin t · cos
πx
b
. (5.1)

We discretize ϑ2u
ϑx2 using fourth-order symmetric differences for internal points, while boundary

points utilize one-sided differences of the same order (while considering the information about ϑu
ϑx

at those points). This results in the following system:


z′′0
z′′1

z′′N


=

4
(∆x)2



−415
72 8 −3 8

9 −1
8

257
144 −10

3
7
4 −2

9
1

48 0

− 1
12

4
3 −5

2
4
3 − 1

12
. . .

. . .
. . .

. . .
. . .

− 1
12

4
3 −5

2
4
3 − 1

12

0 1
48 −2

9
7
4 −10

3
257
144

−1
8

8
9 −3 8 −415

72



·



z0

z1
...

zN



+ sin t ·



cos
(

0·∆x
b · π

)
cos
(

1·∆x
b · π

)
...

cos
(

N·∆x
b · π

)


.
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Table 5. Numerical tests phase. Accurate digits delivered after using various steps by NEW8
and N8ph18 in the interval [0, 20π].

Problem Steps NEW8 N8ph18
1′ 40 7.2 6.3

80 10.9 9.1
120 12.0 10.7
160 12.9 11.8

2′ 100 5.7 5.1
200 9.8 7.9
300 10.9 9.5
400 11.7 10.6

3′ 160 5.2 4.7
260 7.9 6.7
360 10.5 8.0
460 12.0 8.9

4′ 200 4.4 4.1
300 6.7 5.7
400 8.3 6.9
500 10.7 7.8

5′ 300 5.2 4.6
450 7.4 6.2
600 9.3 7.4
750 10.0 8.3

6 240 2.9 3.0
480 7.0 5.9
720 10.1 7.5
960 10.1 8.6

7 100 4.8 4.9
200 7.7 7.3
300 9.3 8.7
400 10.4 9.7

8 60 6.0 5.0
70 6.1 5.4
80 6.1 5.8
90 6.1 5.9

Here, z0, z1 · · · zN may be understood as coordinates of z ∈ RN+1, and not as time steps. Upon
selecting ∆x = 5, we establish a system with constant coefficients and N = 20. The outcomes for
this scenario were primarily influenced by the errors arising from the semi-discretization process. As
a consequence, an error of about 10−6.1 is added constantly to the theoretical solution (5.1). Thus, no
method can have a true error smaller than this. But, as shown in Table 5, our new method even though
it has limited accuracy, is faster (i.e., uses fewer time steps) than N8ph18.

We execute these 8 scenarios with varying step counts and present the outcomes in Table 5. Notably,
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we also incorporate results obtained using the N8ph18 method. For economy and ease of reading the
results, only the best methods of eighth order were tested on oscillatory problems. i.e., NEW8 and
N8ph18. N8ph18 has already proven to outperform other 8th order methods [15, 16]. It becomes
evident from the table that NEW8 significantly outperforms all other methods documented in the
literature. Overall, an improvement of nearly one decimal digit in accuracy was achieved.

The proposed method is constructed for application to second order Ordinary Differential Equations
(ODEs) with oscillatory solutions. However, this is a rather wide category of problems that is
constantly under the interest of respected scholars. As seen from problem 8 (wave equation), our
method may also apply to a certain kind of partial differential equations sharing periodic solutions
after proper transformation to system of ODEs.

6. Conclusions

The key aspects of our investigation were as follows:

• We explored a family of eighth-order hybrid two-step techniques characterized by minimal stage
counts, with a notable innovation being the proposal of a methodology for selecting appropriate
independent parameters.
• The parameters of the novel technique were determined following extensive evaluation of their

performance across a diverse array of periodic scenarios.
• Optimal parameter selection was achieved through the application of the differential evolution

approach. Across a broad spectrum of challenges featuring oscillatory solutions, the devised
approach demonstrated significant superiority over methods belonging to both similar and
disparate families.
• The method we introduced is finely calibrated for scenarios with periodic solutions, particularly

those featuring substantial linear components.
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