Research article Special Issues

An explicit Jacobian for Newton's method applied to nonlinear initial boundary value problems in summation-by-parts form

  • Received: 10 June 2024 Revised: 15 July 2024 Accepted: 23 July 2024 Published: 01 August 2024
  • MSC : 65M06, 65M22

  • We derived an explicit form of the Jacobian for discrete approximations of a nonlinear initial boundary value problems (IBVPs) in matrix-vector form. The Jacobian is used in Newton's method to solve the corresponding nonlinear system of equations. The technique was exemplified on the incompressible Navier-Stokes equations discretized using summation-by-parts (SBP) difference operators and weakly imposed boundary conditions using the simultaneous approximation term (SAT) technique. The convergence rate of the iterations is verified by using the method of manufactured solutions. The methodology in this paper can be used on any numerical discretization of IBVPs in matrix-vector form, and it is particularly straightforward for approximations in SBP-SAT form.

    Citation: Jan Nordström, Fredrik Laurén, Oskar Ålund. An explicit Jacobian for Newton's method applied to nonlinear initial boundary value problems in summation-by-parts form[J]. AIMS Mathematics, 2024, 9(9): 23291-23312. doi: 10.3934/math.20241132

    Related Papers:

  • We derived an explicit form of the Jacobian for discrete approximations of a nonlinear initial boundary value problems (IBVPs) in matrix-vector form. The Jacobian is used in Newton's method to solve the corresponding nonlinear system of equations. The technique was exemplified on the incompressible Navier-Stokes equations discretized using summation-by-parts (SBP) difference operators and weakly imposed boundary conditions using the simultaneous approximation term (SAT) technique. The convergence rate of the iterations is verified by using the method of manufactured solutions. The methodology in this paper can be used on any numerical discretization of IBVPs in matrix-vector form, and it is particularly straightforward for approximations in SBP-SAT form.



    加载中


    [1] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, 2nd Edition, Vol. 37 of Texts in Applied Mathematics, Springer-Verlag, Berlin, 2007. https://doi.org/10.1007/b98885
    [2] A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, in: 10th Computational Fluid Dynamics Conference, (1991). https://doi.org/10.2514/6.1991-1596
    [3] J. Nordström, A. A. Ruggiu, Dual time-stepping using second derivatives, J. Sci. Comput., 81 (2019), 1050–1071. https://doi.org/10.1007/s10915-019-01047-5 doi: 10.1007/s10915-019-01047-5
    [4] J. Nocedal, S. J. Wright, Numerical optimization, 2nd Edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.
    [5] D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches and applications, J. Comput. Phys., 193 (2004), 357–397. https://doi.org/10.1016/j.jcp.2003.08.010 doi: 10.1016/j.jcp.2003.08.010
    [6] P. N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11 (1990), 450–481. https://doi.org/10.1137/0911026 doi: 10.1137/0911026
    [7] M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268 (2014), 17–38. https://doi.org/10.1016/j.jcp.2014.02.031 doi: 10.1016/j.jcp.2014.02.031
    [8] D. C. Del Rey Fernández, J. E. Hicken, D. W. Zingg, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95 (2014), 171–196. https://doi.org/10.1016/j.compfluid.2014.02.016 doi: 10.1016/j.compfluid.2014.02.016
    [9] M. H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes, J. Comput. Phys., 111 (1994), 220–236, https://doi.org/10.1006/jcph.1994.1057 doi: 10.1006/jcph.1994.1057
    [10] J. Nordström, C. La Cognata, Energy stable boundary conditions for the nonlinear incompressible Navier-Stokes equations, Math. Comput., 88 (2019), 665–690. https://doi.org/10.1090/mcom/3375 doi: 10.1090/mcom/3375
    [11] J. Nordström, F. Laurén, The spatial operator in the incompressible Navier–Stokes, Oseen and Stokes equations, Comput. Meth. Appl. Mech. Eng., 363 (2020), https://doi.org/10.1016/j.cma.2020.112857 doi: 10.1016/j.cma.2020.112857
    [12] J. Chan, C. G. Taylor, Efficient computation of Jacobian matrices for entropy stable summation-by-parts schemes, J. Comput. Phys., 448 (2022). https://doi.org/10.1016/j.jcp.2021.110701 doi: 10.1016/j.jcp.2021.110701
    [13] T. C. Papanastasiou, N. Malamataris, K. Ellwood, A new outflow boundary condition. Int. J. Numer. Meth. Fluids, 14 (1992), 587–608. https://doi.org/10.1002/fld.1650140506 doi: 10.1002/fld.1650140506
    [14] J. Nordström, A roadmap to well posed and stable problems in computational physics, J. Sci. Comput., 71 (2017), 365–385. https://doi.org/10.1007/s10915-016-0303-9 doi: 10.1007/s10915-016-0303-9
    [15] P. J. Roache, Code verification by the method of manufactured solutions, J. Fluid. Eng-T. ASME, 124 (2002), 4–10. https://doi.org/10.1115/1.1436090 doi: 10.1115/1.1436090
    [16] M. Svärd, J. Nordström, On the order of accuracy for difference approximations of initial-boundary value problems, J. Comput. Phys., 218 (2006), 333–352. https://doi.org/10.1016/j.jcp.2006.02.014 doi: 10.1016/j.jcp.2006.02.014
    [17] M. Svärd, J. Nordström, On the convergence rates of energy-stable finite-difference schemes, J. Comput. Phys., 397 (2019). https://doi.org/10.1016/j.jcp.2019.07.018 doi: 10.1016/j.jcp.2019.07.018
    [18] L. Kovasznay, Laminar flow behind a two-dimensional grid, Math. Proc. Cambridge, 344 (1948), 58–62. https://doi.org/10.1017/S0305004100023999 doi: 10.1017/S0305004100023999
    [19] M. Galbraith, 5th International Workshop on High-Order CFD Methods, VI2 Smooth Gaussian bump. https://acdl.mit.edu/HOW5/WorkshopPresentations/HOW5_Welcome.pdf
    [20] O. Ålund, J. Nordström, Encapsulated high order difference operators on curvilinear non-conforming grids, J. Comput. Phys., 385 (2019), 209–224, https://doi.org/10.1016/j.jcp.2019.02.007 doi: 10.1016/j.jcp.2019.02.007
    [21] T. Lundquist, F. Laurén, J. Nordström, A multi-domain summation-by-parts formulation for complex geometries, J. Comput. Phys., 463 (2022). https://doi.org/10.1016/j.jcp.2022.111269 doi: 10.1016/j.jcp.2022.111269
    [22] J. Nordström, K. Forsberg, C. Adamsson, P. Eliasson, Finite volume methods, unstructured meshes and strict stability for hyperbolic problems, Appl. Numer. Math., 45 (2003), 453–473. https://doi.org/10.1016/S0168-9274(02)00239-8 doi: 10.1016/S0168-9274(02)00239-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(760) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog