Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

An explicit Jacobian for Newton's method applied to nonlinear initial boundary value problems in summation-by-parts form

  • We derived an explicit form of the Jacobian for discrete approximations of a nonlinear initial boundary value problems (IBVPs) in matrix-vector form. The Jacobian is used in Newton's method to solve the corresponding nonlinear system of equations. The technique was exemplified on the incompressible Navier-Stokes equations discretized using summation-by-parts (SBP) difference operators and weakly imposed boundary conditions using the simultaneous approximation term (SAT) technique. The convergence rate of the iterations is verified by using the method of manufactured solutions. The methodology in this paper can be used on any numerical discretization of IBVPs in matrix-vector form, and it is particularly straightforward for approximations in SBP-SAT form.

    Citation: Jan Nordström, Fredrik Laurén, Oskar Ålund. An explicit Jacobian for Newton's method applied to nonlinear initial boundary value problems in summation-by-parts form[J]. AIMS Mathematics, 2024, 9(9): 23291-23312. doi: 10.3934/math.20241132

    Related Papers:

    [1] D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115
    [2] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [3] Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar . On generalized k-fractional derivative operator. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129
    [4] Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar . Some new inequalities for the generalized Fox-Wright functions. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322
    [5] Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929
    [6] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [7] Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla . Solution of fractional kinetic equations involving extended (k,τ)-Gauss hypergeometric matrix functions. AIMS Mathematics, 2022, 7(8): 14474-14491. doi: 10.3934/math.2022798
    [8] D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096
    [9] Ji Hyang Park, Hari Mohan Srivastava, Nak Eun Cho . Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Mathematics, 2021, 6(10): 11380-11402. doi: 10.3934/math.2021660
    [10] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876
  • We derived an explicit form of the Jacobian for discrete approximations of a nonlinear initial boundary value problems (IBVPs) in matrix-vector form. The Jacobian is used in Newton's method to solve the corresponding nonlinear system of equations. The technique was exemplified on the incompressible Navier-Stokes equations discretized using summation-by-parts (SBP) difference operators and weakly imposed boundary conditions using the simultaneous approximation term (SAT) technique. The convergence rate of the iterations is verified by using the method of manufactured solutions. The methodology in this paper can be used on any numerical discretization of IBVPs in matrix-vector form, and it is particularly straightforward for approximations in SBP-SAT form.



    Fractional calculus is an essential research area, which is equally useful not only in pure mathematics but also in applied mathematics, physics, biology, engineering, economics and control theory etc. In recent years, study on fractional differential equations is very dynamic and widespread around the world. Some of its applications in diverse fields are discussed in [1,2]. Optical solitons of time-fractional higher-order nonlinear Schr¨odinger equation and soliton molecule solutions of nonlinear Schr¨odinger equations are established by Dai et al. [3,4]. A hybrid analytical solution to examine the fractional model of the nonlinear wave-like equation is explored by Kumar et al. [5]. Numerical solutions with linearization techniques of the fractional Harry Dym equation are established in [6].

    Many researchers have discussed fractional calculus operators [7,8]. The composition of Erdélyi-Kober fractional operators is presented in [9]. Mishra et al. discussed the Marichev-Saigo-Maeda fractional calculus operators on the product of Srivastava polynomials and generalized Mittag-Leffler function [10]. Certain Integral operators involving the Gauss hypergeometric functions are elaborated in [11,12]. A brief study of fractional calculus operators on generalized multivariable Mittag-Leffler function is presented by Suthar et al. [13]. A brief systematic history of the generalized fractional calculus operators and their applications is being profoundly analyzed in [14,15]. A concise description of generalized fractional calculus operators together with their applications is available in [16,17,18].

    A variety of research publications are continuously in progress regarding the generalization of classical fractional calculus operators. In this continuation, many researchers established generalized fractional operator and their applications[19,20]. Smraiz et al. modified the (k,s) fractional integral operator involving k-Mittag-Leffler function and also discussed the applications of (k,s)-Hilfer-Prabhakar fractional derivative in mathematical physics [21,22]. Can et al. have discussed the global existence for a mild solution of fractional Volterra integro-differential equations [23] and inverse source problem for the time-fractional diffusion equation with Mittag-Leffler kernel [24]. They also explored regularized solution approximation for the fractional pseudo-parabolic problem with a nonlinear source term in [25].

    For our study, we start with k versions of Saigo fractional integral and derivative operators involving the k-hypergeometric function in the kernel which were introduced by Gupta and Parihar [26] and are defined as follows:

    For wR+, ϵ,ϱ,χC with Re(ϵ)>0, k>0, we have

    (Iϵ,ϱ,χ0+,kf)(w)=wϵϱkkΓk(ϵ)w0(wt)ϵk1×2F1,k((ϵ+ϱ,k),(χ,k);(ϵ,k);(1tw))f(t)dt. (1.1)
    (Iϵ,ϱ,χ,kf)(w)=1kΓk(ϵ)w(tw)ϵk1tϵϱk×2F1,k((ϵ+ϱ,k),(χ,k);(ϵ,k);(1wt))f(t)dt. (1.2)
    (Dϵ,ϱ,χ0+,kf)(w)=(ddw)n(Iϵ+n,ϱn,ϵ+χn0+,kf)w,n=[Re(ϵ)+1]=(ddw)nwϵ+ϱkkΓk(ϵ+n)w0(wt)ϵk+n1×2F1,k((ϵϱ,k),(χϵ+n,k);(ϵ+n,k);(1tw))f(t)dt. (1.3)
    (Dϵ,ϱ,χ,kf)(w)=(ddw)n(Iϵ+n,ϱn,ϵ+χ,kf)w,n=[Re(ϵ)+1]=(ddw)n1kΓk(ϵ+n)w(tw)ϵnk1tϵ+ϱk×2F1,k((ϵϱ,k),(χϵ+n,k);(ϵ+n,k);(1wt))f(t)dt. (1.4)

    Where [Re(ϵ)] is the integer part of Re(ϵ) and 2F1,k((ϵ,k),(ϱ,k);(χ,k);w) is the k-hypergeometric function defined by Mubeen and Habibullah in [19] as:

    For wC, |w|<1, Re(χ)>Re(ϱ)>0,

    2F1,k((ϵ,k),(ϱ,k);(χ,k);w)=n=0(ϵ)n,k(ϱ)n,kwn(χ)n,kn!. (1.5)

    The benefit of the generalized k-fractional calculus operators is that they generalize classical Saigo's fractional operators and classical Riemann-Liouville operators. For k1, (1.1)–(1.4) condense to the Saigo's fractional integral and differential operators [11]. If we take ϱ=ϵ in (1.1)–(1.4), we have the k- Riemann-Liouville operators as follows:

    (Iϵ,ϱ,χ0+,kf)(w)=(Iϵ0+,kf)(w), (1.6)
    (Iϵ,ϱ,χ,kf)(w)=(Iϵ,kf)(w), (1.7)
    (Dϵ,ϱ,χ0+,kf)(w)=(Dϵ0+,kf)(w), (1.8)
    (Dϵ,ϱ,χ,kf)(w)=(Dϵ,kf)(w) (1.9)

    and for k1, Eqs (1.6)–(1.9) reduce to classical Riemann-Liouville fractional operators.

    Now, we will state the lemmas presented in [26] which will be helpful to prove our main results.

    Lemma 1.1. Let ϵ,ρ,χ,λC, kR+(0,), Re(λ)>max[0,Re(ϱχ)]. Then

    (Iϵ,ϱ,χ0+,ktλk1)(w)=n=0knΓk(λ)Γk(λϱ+χ)Γk(λϱ)Γk(λ+ϵ+χ)wλϱk1. (1.10)

    Lemma 1.2. Let ϵ,ρ,χ,λC, kR+(0,), Re(λ)>max[Re(ϱ),Re(χ)]. Then

    (Iϵ,ϱ,χ,ktλk)(w)=n=0knΓk(λ+ϱ)Γk(λ+χ)Γk(λ)Γk(λ+ϵ+ϱ+χ)wλϱk. (1.11)

    Lemma 1.3. Let ϵ,ρ,χ,λC, kR+(0,), n=Re[ϵ]+1 such that Re(λ)>max[0,Re(ϵϱχ)]. Then

    (Dϵ,ϱ,χ0+,ktλk1)(w)=n=0Γk(λ)Γk(λ+ϱ+χ+ϵ)Γk(λ+χ)Γk(λ+ϱ+nnk)wλ+ϱ+nkn1. (1.12)

    Lemma 1.4. Let ϵ,ρ,χ,λC, n=Re[ϵ]+1, kR+(0,) such that Re(λ)>max[Re(ϵχ),Re(ϱnk+n)]. Then

    (Dϵ,ϱ,χ,ktλk)(w)=n=0Γk(λϱn+nk)Γk(λ+ϵ+χ)Γk(λ)Γk(λϱ+χ)wλϱ+nkn. (1.13)

    Gehlot and Prajapati in [27] defined the k-Wright function as follows:

    For kR+, w,ai,bjC, Ai,BjR(Ai,Bj)0 where i=1,2,..u;j=1,2,..v and (ai+Ain),(bj+Bjn)CkZ,

    uψkv[(a1,A1),..(au,Au);(b1,B1),..(bv,Bv);z]=n=0Γk(a1,nA1)..Γk(au,nAu)znΓk(b1,nB1)..Γk(bv,nBv)n!, (1.14)

    with convergence condition

    1+uj=1Bjkvi=1Aik>0, (1.15)

    for reasonably bounded values of |z|.

    The Lommel-Wright k-function is defined as follows:

    J,m,,k(z)=(z2)+2kn=0(1)n(z2)2n(Γk(+k+nk))mΓk(++k+n), (1.16)

    where zC|(,0],>0,mN,kR,,C and Γk(Z) is the k-gamma function introduced by Diaz and Pariguan [28] given by

    Γk(z)=limnn!kn(nk)ωk1(ω)n,k,

    with k-Pochhammer symbol (ω)n,k given by

    (ω)n,k=ω(ω+k)(ω+2k)....(ω+(n1)k),xC,kR,nN+.

    The classical Eulers Gamma function and Gamma k-function are related with following relation

    Γk(ω)=kωk1Γ(ωk).

    The Lommel-Wright k-function can also be expressed in the form of k-Wright function as:

    J,m,,k(z)=(z2)+2k1ψkm+1[(k,k);(+k,k)mtimes,(++k,);z24k]. (1.17)

    For m=1 in (1.16), we define the generalized Bessel-Maitland k-function as:

    J,,k(z)=(z2)+2kn=0(1)n(z2)2nΓk(+k+nk)Γk(++k+n). (1.18)

    It is observed that for k=1, generalized Lommel-Wright k-function reduces to generalized Lommel-Wright function as given in [29] and for m=k=1, we get the Bessel-Maitland function presented in [29]. It also capitulates connection with the classical Bessel function J(z) mentioned in [30] for m==k=1 and =0.

    As various kinds of generalized fractional calculus operators involving different special functions are in consistent development. The papers on certain generalized fractional operators and integral transform [31,32,33] serve as inspiration for our presented work. This work backs up the prior results and contributes to the field by making broad generalizations.

    The layout of the paper is as follows: In section 2, we established the formulas for generalized Saigo fractional integrals involving generalized Lommel-Wright function and some of its cases are also discussed as corollaries. Section 3 is devoted to developing the generalized Saigo fractional differentiation formulas involving generalized Lommel-Wright function along with its special consequences. In Section 4, extended Beta transform is applied to the generalized Lommel-Wright function. The last section contains concluding remarks.

    In this section, we develop the formulas for Saigo k-fractional integrals (1.1) and (1.2) associated with Lommel-Wright k-function. These results are expressed in terms of k-Wright function.

    Theorem 2.1. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. If condition given by (1.15) is satisfied and Iϵ,ϱ,χ0+,k is the left sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula

    (Iϵ,ϱ,χ0+,ktλk1J,m,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψkm+3[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ);w2σk4] (2.1)

    holds.

    Proof. Using Eq (1.16) in the left hand side of Eq (2.1), we get

    =[Iϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)(tσk2)+2k+2n](w) (2.2)
    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Iϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w). (2.3)

    Applying Lemma 1.1, we obtain

    =wσ(+2k)+λϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)(kw2σk4)n. (2.4)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λϱk1(12)+2kn=0knΓk(k+nk)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)(kw2σk4)n. (2.5)

    Using Eq (1.14) in (2.5), we have the desired formula.

    Theorem 2.2. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). If condition (1.15) is satisfied and Iϵ,ϱ,χ,k is the right sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula

    (Iϵ,ϱ,χ,ktϵλkJ,m,,k(tσk))(w)=wσ(+2k)+ϵ+λϱk(12)(+2k)×3ψkm+3[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ);w2σk4] (2.6)

    holds.

    Proof. The proof of Theorem 2.2 runs parallel to Theorem 2.1.

    The findings in (2.1) and (2.6) are very general in nature and can result in a large number of individual cases. Allocating some acceptable values to the parameters involved, we have the following corollaries.

    Using m=1, the results (2.1) and (2.6) take the form.

    Corollary 2.3. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. Then the subsequent formula

    (Iϵ,ϱ,χ0+,ktλk1J,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψk4[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ);w2σk4] (2.7)

    is true.

    Corollary 2.4. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). Then the subsequent formula

    (Iϵ,ϱ,χ,ktϵλkJ,,k(tσk))(w)=wσ(+2k)+ϵ+λϱk(12)(+2k)×3ψk4[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ);w2σk4] (2.8)

    is true.

    Letting k=1, we have the generalized Lommel-Wright function and the corresponding formulas are presented in subsequent corollaries.

    Corollary 2.5. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. Then the subsequent formula

    (Iϵ,ϱ,χ0+tλ1J,m,(tσ))(w)=wσ(+2)+λϱ1(12)(+2)×3ψm+3[(σ(+2)+λ,2σ),(σ(+2)+λϱ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϱ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ);w2σ4] (2.9)

    holds.

    Corollary 2.6. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). Then the subsequent formula

    (Iϵ,ϱ,χtϵλJ,m,(tσ))(w)=wσ(+2)+ϵ+λ+ϱ(12)(+2)×3ψm+3[(σ(+2)+ϵ+λ+ϱ,2σ),(σ(+2)+ϵ+λ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+ϵ+λ,2σ),(σ(+2)+2ϵλ+ϱ+χ,2σ);w2σ4] (2.10)

    holds.

    For m=k==1 and =0, the corresponding corollaries are as given below.

    Corollary 2.7. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. Then the subsequent formula holds

    (Iϵ,ϱ,χ0+tλ1J1,1(tσ))(w)=wσ(+)+λϱ1(12)×2ψ3[(σ+λ,2σ),(σ+λϱ+χ,2σ);(+1,1),(σ+λϱ,2σ),(σ+λ+ϵ+ϱ+χ,2σ);w2σ4]. (2.11)

    Corollary 2.8. Let ϵ,ϱ,χ,λ,σC, mN, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). Then the subsequent formula holds

    (Iϵ,ϱ,χtϵλJ1,1(tσ))(w)=wσ+ϵ+λ+ϱ(12)×2ψ3[(σ+ϵ+λ+ϱ,2σ),(σ+ϵ+λ+χ,2σ);(+1,1),(σ+ϵ+λ,2σ),(σ+2ϵλ+ϱ+χ,2σ);w2σ4]. (2.12)

    In this part, we will present formulas for differentiation using Saigo k-fractional differential operators given by (1.3) and (1.4) involving generalized Lomme-Wright k-function. These formulae are presented in terms of k-Wright function.

    Theorem 3.1. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition (1.15) holds and Dϵ,ϱ,χ0+,k is the left sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the following formula

    (Dϵ,ϱ,χ0+,ktλk1J,m,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψkm+3[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1);w(2σ+1k)14k] (3.1)

    holds true.

    Proof. By means of Eq (1.16) we can write the left hand side of Eq (3.1) as follows:

    =[Dϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)(tσk2)+2k+2n](w), (3.2)
    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Dϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w). (3.3)

    Using Lemma 1.3 in Eq (3.3), we obtain

    =wσ(+2k)+λ+ϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n).(w2σ+1k14)n. (3.4)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λ+ϱk1(12)+2kn=0knΓk(nk+k)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n)(w2σ+1k14)n. (3.5)

    By means of Definition (1.14) in (3.5), we obtain the formula (3.1).

    Theorem 3.2. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1] If condition (1.15) is satisfied and (Dϵ,ϱ,χ,k is the right sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the subsequent formula

    (Dϵ,ϱ,χ,ktϵλkJ,m,,k(tσk))(w)=wσ(+2k)+ϵλ+ϱk(12)(+2k)×3ψkm+3[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ);w2σ+1k14k] (3.6)

    holds.

    Proof. The proof of Theorem 3.2 is similiar to Theorem 3.1.

    Now, we discuss some special cases.

    For m=1 the results (3.1) and (3.6) are established in the form of following corollaries.

    Corollary 3.3. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula

    (Dϵ,ϱ,χ0+,ktλk1J,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψk4[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1);w(2σ+1k)14k] (3.7)

    is true.

    Corollary 3.4. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds

    (Dϵ,ϱ,χ,ktϵλkJ,m,,k(tσk))(w)=wσ(+2k)+ϵλ+ϱk(12)(+2k)×3ψk4[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ);w2σ+1k14k]. (3.8)

    For k=1, in Eqs. (3.1) and (3.6), the obtained corollaries are given below.

    Corollary 3.5. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true

    (Dϵ,ϱ,χ0+tλ1J,m,(tσ))(w)=wσ(+2)+λϱ1(12)(+2)×3ψm+3[(σ(+2)+λ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λ+χ,2σ),(σ(+2)+λ,2σ);w2σ4]. (3.9)

    Corollary 3.6. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds

    (Dϵ,ϱ,χtϵλJ,m,(tσ))(w)=wσ(+2)+ϵλ+ϱ(12)(+2)×3ψm+3[(σ(+2)+λϵϱ,2σ),(σ(+2)+λ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϵ,2σ),(σ(+2)+λϵϱ+χ,2σ);w2σ4]. (3.10)

    For m=k==1 and =0, the subsequent corollaries are as follows:

    Corollary 3.7. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true

    (Dϵ,ϱ,χ0+tλ1J1,1(tσ))(w)=wσ)+λϱ1(12)()×2ψ3[(σ)+λ,2σ),(σ+λ+ϵ+ϱ+χ,2σ);(+1,1),(σ+λ+χ,2σ),(σ+λ,2σ);w2σ4]. (3.11)

    Corollary 3.8. Let ϵ,ϱ,χ,λ,σC such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1] If condition in (1.15) is satisfied then the subsequent formula holds

    (Dϵ,ϱ,χtϵλJ1,1(tσ))(w)=wσ+ϵλ+ϱ(12)×2ψ3[(σ+λϵϱ,2σ),(σ+λ+χ,2σ),(1,1);(+1,1),(σ+λϵ,2σ),(σ+λϵϱ+χ,2σ);w2σ4]. (3.12)

    In this part, we will discuss some theorems on integral transforms of generalized Lommel-Wright k-function connecting with the results established in previous sections.

    The k-beta function presented in [34] as:

    For r,s>0

    Bk(r,s)=1k10trk1(1t)sk1dt. (4.1)

    It can also be written as

    Bk(l(t);r,s)=1k10trk1(1t)sk1l(t)dt. (4.2)

    The relation between k-beta function and the classical one is

    Bk(r,s)=1kB(rk,sk)=Γk(r)Γk(s)Γk(r+s). (4.3)

    Theorem 4.1. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    Bk((Iϵ,ϱ,χ0+,ktλk1J,m,,k(zt)σk))(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(r+σ(+2k),2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.4)

    Proof. Using Eqs (1.16) and (4.2) in the left hand side of Eq (4.4), we can write

    =1k10zrk1(1z)sk1[Iϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)×((zt)σk2)+2k+2n](w)dz, (4.5)

    which implies

    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Iϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w)×10zr+σ(+2k)+2σnk1(1z)sk1dz. (4.6)

    Applying Lemma 1.1 and using Eq (4.3), we obtain

    =wσ(+2k)+λϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(kw2σk4)n. (4.7)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λϱk1(12)+2kn=0knΓk(k+nk)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(w2σk4)n. (4.8)

    By combining Eqs (1.14) and (4.8), we get our required result (4.4).

    Theorem 4.2. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then the following formula is true

    Bk((Iϵ,ϱ,χ,ktϵλkJ,m,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵ+λϱk(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.9)

    Proof. The proof is similar to Theorem 4.1.

    Theorem 4.3. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ0+,ktλk1J,m,,k(zt)σk)(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1),(r+s+σ(+2k,2σ);w(2σ+1k)14k]. (4.10)

    Proof. By means of Eqs (1.16) and (4.2) in the left hand side of Eq (4.10), we have

    =1k10zrk1(1z)sk1[Dϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)×(tσk2)+2k+2n](w)dz. (4.11)

    On simplification, we obtain

    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Dϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w)×10zr+σ(+2k)+2σnk1(1z)sk1dz. (4.12)

    Using Lemma 1.3 and relation (4.3), we get

    =wσ(+2k)+λ+ϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(w2σ+1k14)n. (4.13)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λ+ϱk1(12)+2kn=0knΓk(nk+k)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(w2σ+1k14)n. (4.14)

    By means of definition (1.14), the proof is done.

    Theorem 4.4. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)nk+n]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ,ktϵλkJ,m,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵλ+ϱk(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σ+1k14k]. (4.15)

    Proof. The proof of Theorem 4.4 runs parallel to Theorem 4.3.

    Now, we will discuss some special cases.

    By substituting m=1 in Eqs (4.4), (4.9), (4.10) and (4.15), we establish the following corollaries.

    Corollary 4.5. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    Bk((Iϵ,ϱ,χ0+,ktλk1J,,k(zt)σk))(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.16)

    Corollary 4.6. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then prove the following formula

    Bk((Iϵ,ϱ,χ,ktϵλkJ,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵ+λϱk(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.17)

    Corollary 4.7. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ0+,ktλk1J,,k(zt)σk)(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1),(r+s+σ(+2k,2σ);w(2σ+1k)14k]. (4.18)

    Corollary 4.8. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)nk+n]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ,ktϵλkJ,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵλ+ϱk(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σ+1k14k]. (4.19)

    For k=1, we establish the following formulas from Eqs (4.4), (4.9), (4.10) and (4.15).

    Corollary 4.9. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    B((Iϵ,ϱ,χ0+tλ1J,m,(zt)σ))(w);r,s)=wσ(+2)+λϱ1(12)+2Γ(s)×4ψm+4[(σ(+2)+λ,2σ),(σ(+2)+λϱ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϱ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.20)

    Corollary 4.10. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then the following formula is true

    B((Iϵ,ϱ,χtϵλJ,m,(zt)σ)(w);r,s)=wσ(+2)+ϵ+λϱ(12)(+2)Γ(s)×4ψm+4[(σ(+2)+ϵ+λ+ϱ,2σ),(σ(+2)+ϵ+λ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.21)

    Corollary 4.11. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χ0+tλ1J,m,(zt)σ)(w);r,s)=wσ(+2)+λϱ1(12)(+2)Γ(s)×4ψm+4[(σ(+2)+λ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λ+χ,2σ),(σ(+2)+λ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.22)

    Corollary 4.12. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χtϵλJ,m,(zt)σ)(w);r,s)=wσ(+2)+ϵλ+ϱ(12)(+2)Γ(s)×4ψm+4[(σ(+2)+λϵϱ,2σ),(σ(+2)+λ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϵ,2σ),(σ(+2)+λϵϱ+χ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.23)

    For m=k==1 and =0, the subsequent corollaries are as follows.

    Corollary 4.13. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    B((Iϵ,ϱ,χ0+tλ1J1,1(zt)σ))(w);r,s)=wσ+λϱ1(12)Γ(s)×3ψ4[(σ+λ,2σ),(σ+λϱ+χ,2σ),(r+σ,2σ);(+1,1),(σ+λϱ,2σ),(σ+λ+ϵ+ϱ+χ,2σ),(r+s+σ,2σ);w2σ4]. (4.24)

    Corollary 4.14. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then the following formula is true

    B((Iϵ,ϱ,χtϵλJ1,1(zt)σ)(w);r,s)=wσ+ϵ+λϱ(12)Γ(s)×3ψ4[(σ+ϵ+λ+ϱ,2σ),(σ+ϵ+λ+χ,2σ),(r+σ,2σ);(+1,1),(σ+ϵ+λ,2σ),(σ+2ϵ+λ+ϱ+χ,2σ),(r+s+σ,2σ);w2σ4]. (4.25)

    Corollary 4.15. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χ0+tλ1J1,1(zt)σ)(w);r,s)=wσ+λϱ1(12)Γ(s)×3ψ4[(σ+λ,2σ),(σ+λ+ϵ+ϱ+χ,2σ),(r+σ,2σ);(+1,1),(σ+λ+χ,2σ),(σ+λ,2σ),(r+s+σ,2σ);w2σ4]. (4.26)

    Corollary 4.16. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χtϵλJ1,1(zt)σ)(w);r,s)=wσ+ϵλ+ϱ(12)Γ(s)×3ψ4[(σ+λϵϱ,2σ),(σ+λ+χ,2σ),(r+σ+,2σ);(+1,1),(σ+λϵ,2σ),(σ+λϵϱ+χ,2σ),(r+s+σ,2σ);w2σ4]. (4.27)

    In this article, we established the relations of fractional integration and differentiation associated with the generalized Lommel-Wright function. We conclude that many other interesting image formulas can be derived as the specific cases of our main results. Like the generalized Lommel-Wright function certain other special functions can also be discussed in the same perspective. Briefly, the recent study confirms the earlier results and plays a significant role by making generalizations. Furthermore, for the choice ϱ=ϵ in our main results and corollaries, we obtain the results for k-Riemann-Liouville fractional operators. We also deduce the results for Saigo's fractional operators by substituting k=1 and for Riemann-Liouville fractional operators, we need to opt k=1 and ϱ=ϵ in our main results.

    The authors declares that there is no conflict of interests regarding the publication of this paper.



    [1] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, 2nd Edition, Vol. 37 of Texts in Applied Mathematics, Springer-Verlag, Berlin, 2007. https://doi.org/10.1007/b98885
    [2] A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, in: 10th Computational Fluid Dynamics Conference, (1991). https://doi.org/10.2514/6.1991-1596
    [3] J. Nordström, A. A. Ruggiu, Dual time-stepping using second derivatives, J. Sci. Comput., 81 (2019), 1050–1071. https://doi.org/10.1007/s10915-019-01047-5 doi: 10.1007/s10915-019-01047-5
    [4] J. Nocedal, S. J. Wright, Numerical optimization, 2nd Edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.
    [5] D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches and applications, J. Comput. Phys., 193 (2004), 357–397. https://doi.org/10.1016/j.jcp.2003.08.010 doi: 10.1016/j.jcp.2003.08.010
    [6] P. N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11 (1990), 450–481. https://doi.org/10.1137/0911026 doi: 10.1137/0911026
    [7] M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268 (2014), 17–38. https://doi.org/10.1016/j.jcp.2014.02.031 doi: 10.1016/j.jcp.2014.02.031
    [8] D. C. Del Rey Fernández, J. E. Hicken, D. W. Zingg, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95 (2014), 171–196. https://doi.org/10.1016/j.compfluid.2014.02.016 doi: 10.1016/j.compfluid.2014.02.016
    [9] M. H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes, J. Comput. Phys., 111 (1994), 220–236, https://doi.org/10.1006/jcph.1994.1057 doi: 10.1006/jcph.1994.1057
    [10] J. Nordström, C. La Cognata, Energy stable boundary conditions for the nonlinear incompressible Navier-Stokes equations, Math. Comput., 88 (2019), 665–690. https://doi.org/10.1090/mcom/3375 doi: 10.1090/mcom/3375
    [11] J. Nordström, F. Laurén, The spatial operator in the incompressible Navier–Stokes, Oseen and Stokes equations, Comput. Meth. Appl. Mech. Eng., 363 (2020), https://doi.org/10.1016/j.cma.2020.112857 doi: 10.1016/j.cma.2020.112857
    [12] J. Chan, C. G. Taylor, Efficient computation of Jacobian matrices for entropy stable summation-by-parts schemes, J. Comput. Phys., 448 (2022). https://doi.org/10.1016/j.jcp.2021.110701 doi: 10.1016/j.jcp.2021.110701
    [13] T. C. Papanastasiou, N. Malamataris, K. Ellwood, A new outflow boundary condition. Int. J. Numer. Meth. Fluids, 14 (1992), 587–608. https://doi.org/10.1002/fld.1650140506 doi: 10.1002/fld.1650140506
    [14] J. Nordström, A roadmap to well posed and stable problems in computational physics, J. Sci. Comput., 71 (2017), 365–385. https://doi.org/10.1007/s10915-016-0303-9 doi: 10.1007/s10915-016-0303-9
    [15] P. J. Roache, Code verification by the method of manufactured solutions, J. Fluid. Eng-T. ASME, 124 (2002), 4–10. https://doi.org/10.1115/1.1436090 doi: 10.1115/1.1436090
    [16] M. Svärd, J. Nordström, On the order of accuracy for difference approximations of initial-boundary value problems, J. Comput. Phys., 218 (2006), 333–352. https://doi.org/10.1016/j.jcp.2006.02.014 doi: 10.1016/j.jcp.2006.02.014
    [17] M. Svärd, J. Nordström, On the convergence rates of energy-stable finite-difference schemes, J. Comput. Phys., 397 (2019). https://doi.org/10.1016/j.jcp.2019.07.018 doi: 10.1016/j.jcp.2019.07.018
    [18] L. Kovasznay, Laminar flow behind a two-dimensional grid, Math. Proc. Cambridge, 344 (1948), 58–62. https://doi.org/10.1017/S0305004100023999 doi: 10.1017/S0305004100023999
    [19] M. Galbraith, 5th International Workshop on High-Order CFD Methods, VI2 Smooth Gaussian bump. https://acdl.mit.edu/HOW5/WorkshopPresentations/HOW5_Welcome.pdf
    [20] O. Ålund, J. Nordström, Encapsulated high order difference operators on curvilinear non-conforming grids, J. Comput. Phys., 385 (2019), 209–224, https://doi.org/10.1016/j.jcp.2019.02.007 doi: 10.1016/j.jcp.2019.02.007
    [21] T. Lundquist, F. Laurén, J. Nordström, A multi-domain summation-by-parts formulation for complex geometries, J. Comput. Phys., 463 (2022). https://doi.org/10.1016/j.jcp.2022.111269 doi: 10.1016/j.jcp.2022.111269
    [22] J. Nordström, K. Forsberg, C. Adamsson, P. Eliasson, Finite volume methods, unstructured meshes and strict stability for hyperbolic problems, Appl. Numer. Math., 45 (2003), 453–473. https://doi.org/10.1016/S0168-9274(02)00239-8 doi: 10.1016/S0168-9274(02)00239-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1218) PDF downloads(93) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog