Research article Special Issues

Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution

  • Received: 06 June 2024 Revised: 01 July 2024 Accepted: 23 July 2024 Published: 31 July 2024
  • MSC : 62G30, 94A17

  • Shannon differential entropy is extensively applied in the literature as a measure of dispersion or uncertainty. Nonetheless, there are other measurements, such as the cumulative residual Tsallis entropy (CRTE), that reveal interesting effects in several fields. Motivated by this, we study and compute Tsallis measures for the concomitants of the generalized order statistics (CGOS) from the iterated Farlie-Gumbel-Morgenstern (IFGM) bivariate family. Some newly introduced information measures are also being considered for CGOS within the framework of the IFGM family, including Tsallis entropy, CRTE, and an alternative measure of CRTE of order $ \eta $. Applications of these results are given for order statistics and record values with uniform, exponential, and power marginals distributions. In addition, the empirical cumulative Tsallis entropy is suggested as a method to calculate the new information measure. Finally, a real-world data set has been analyzed for illustrative purposes, and the performance is quite satisfactory.

    Citation: I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady. Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution[J]. AIMS Mathematics, 2024, 9(9): 23268-23290. doi: 10.3934/math.20241131

    Related Papers:

  • Shannon differential entropy is extensively applied in the literature as a measure of dispersion or uncertainty. Nonetheless, there are other measurements, such as the cumulative residual Tsallis entropy (CRTE), that reveal interesting effects in several fields. Motivated by this, we study and compute Tsallis measures for the concomitants of the generalized order statistics (CGOS) from the iterated Farlie-Gumbel-Morgenstern (IFGM) bivariate family. Some newly introduced information measures are also being considered for CGOS within the framework of the IFGM family, including Tsallis entropy, CRTE, and an alternative measure of CRTE of order $ \eta $. Applications of these results are given for order statistics and record values with uniform, exponential, and power marginals distributions. In addition, the empirical cumulative Tsallis entropy is suggested as a method to calculate the new information measure. Finally, a real-world data set has been analyzed for illustrative purposes, and the performance is quite satisfactory.



    加载中


    [1] M. A. Abd Elgawad, M. A. Alawady, On concomitants of generalized order statistics from generalized FGM family under a general setting, Math. Slovaca., 72 (2022), 507–526. http://doi.org/10.1515/ms-2022-0033 doi: 10.1515/ms-2022-0033
    [2] S. Abe, N. Suzuki, Law for the distance between successive earthquakes, J. Geophys. Res.-Solid Earth., 108 (2003), 2113. http://doi.org/10.1029/2002JB002220 doi: 10.1029/2002JB002220
    [3] H. H. Ahmad, E. M. Almetwally, D. A. Ramadan, Investigating the Relationship between Processor and Memory Reliability in Data Science: A Bivariate Model Approach, Mathematics, 11 (2023), 2142. http://doi.org/10.3390/math11092142 doi: 10.3390/math11092142
    [4] M. A. Alawady, H. M. Barakat, G. M. Mansour, I. A. Husseiny, Information measures and concomitants of $k-$record values based on Sarmanov family of bivariate distributions, Bull. Malays. Math. Sci. Soc., 46 (2023), 9. https://doi.org/10.1007/s40840-022-01396-9 doi: 10.1007/s40840-022-01396-9
    [5] M. A. Alawady, H. M. Barakat, S. Xiong, M. A. Abd Elgawad, On concomitants of dual generalized order statistics from Bairamov-Kotz-Becki Farlie-Gumbel-Morgenstern bivariate distributions, Asian-Eur. J. Math., 14 (2021), 2150185. https://doi.org/10.1142/S1793557121501850 doi: 10.1142/S1793557121501850
    [6] H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from generalization of FGM bivariate-generalized exponential distribution, J. Stat. Theory Appl., 18 (2019), 309–322. https://doi.org/10.2991/jsta.d.190822.001 doi: 10.2991/jsta.d.190822.001
    [7] C. Beck, Generalised information and entropy measures in physics, Contemp. Phys., 50 (2009), 495–510. https://doi.org/10.1080/00107510902823517 doi: 10.1080/00107510902823517
    [8] M. I. Beg, M. Ahsanullah, Concomitants of generalized order statistics from Farlie-Gumbel-Morgenstern distributions, Stat. Methodol., 5 (2008), 1–20. http://doi.org/10.1016/j.stamet.2007.04.001 doi: 10.1016/j.stamet.2007.04.001
    [9] K. N. Chandler, The distribution and frequency of record values, J. R. Stat. Soc. Ser. B, 14 (1952), 220–228.
    [10] M. Chacko, M. S. Mary, Concomitants of k-record values arising from morgenstern family of distributions and their applications in parameter estimation, Stat. Pap., 54 (2013), 21–46. http://doi.org/10.1007/s00362-011-0409-y doi: 10.1007/s00362-011-0409-y
    [11] H. A. David, Concomitants of order statistics, Bull. Int. Stat. Inst., 45 (1973), 295–300.
    [12] H. A. David, H. N. Nagaraja, Concomitants of Order Statistics, In: Handbook of Statistics, 487–513, 1998. http://doi.org/10.1016/S0169-7161(98)16020-0
    [13] F. Domma, S. Giordano, Concomitants of m-generalized order statistics from generalized Farlie Gumbel Morgenstern distribution family, J. Comput. Appl. Math., 294 (2016), 413–435. http://doi.org/10.1016/j.cam.2015.08.022 doi: 10.1016/j.cam.2015.08.022
    [14] M. R. Gurvich, A. T. Di-Benedetto, S. V. Ranade, A new statistical distribution for characterizing the random strength of brittle materials, J. Mater. Sci., 32 (1997), 2559–2564. https://doi.org/10.1023/A:1018594215963 doi: 10.1023/A:1018594215963
    [15] J. S. Huang, S. Kotz, Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions, Biometrika, 71 (1984), 633–636. http://doi.org/10.1093/biomet/71.3.633 doi: 10.1093/biomet/71.3.633
    [16] J. S. Huang, S. Kotz, Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb, Metrika, 49 (1999), 135–145. http://doi.org/10.1007/s001840050030 doi: 10.1007/s001840050030
    [17] I. A. Husseiny, M. A. Alawady, S. A. Alyami, M. A. Abd Elgawad, Measures of extropy based on concomitants of generalized order statistics under a general framework from iterated Morgenstern family, Mathematics, 11 (2023), 1377. http://doi.org/10.3390/math11061377 doi: 10.3390/math11061377
    [18] I. A. Husseiny, H. M. Barakat, G. M. Mansour, M. A. Alawady, Information measures in record and their concomitants arising from Sarmanov family of bivariate distributions, J. Comput. Appl. Math., 408 (2022), 114120. https://doi.org/10.1016/j.cam.2022.114120 doi: 10.1016/j.cam.2022.114120
    [19] A. A. Jafari, Z. Almaspoor, S. Tahmasebi, General results on bivariate extended Weibull Morgenstern family and concomitants of its generalized order statistics, Ricerche Mat., 73 (2024), 1471–1492. https://doi.org/10.1007/s11587-021-00680-3 doi: 10.1007/s11587-021-00680-3
    [20] Z. Q. Jiang, W. Chen, W. X. Zhou, Scaling in the distribution of intertrade durations of Chinese stocks, Phys. A,, 387 (2008), 5818–5825. https://doi.org/10.1016/j.physa.2008.06.039
    [21] U. Kamps, A Concept of Generalized Order Statistics, Wiesbaden: Vieweg+Teubner Verlag, 1995. https://doi.org/10.1007/978-3-663-09196-7
    [22] U. Kamps, E. Cramer, On distribution of generalized order statistics, Statistics, 35 (2001), 269–280. https://doi.org/10.1080/02331880108802736 doi: 10.1080/02331880108802736
    [23] J. Lima, R. Silva, and J. Santos, Plasma oscillations and nonextensive statistics, Phys. Rev. E, 61 (2000), 3260. https://doi.org/10.1103/PhysRevE.61.3260 doi: 10.1103/PhysRevE.61.3260
    [24] M. S. Mohamed, On cumulative residual Tsallis entropy and its dynamic version of concomitants of generalized order statistics, Commun. Stat. Theory Methods, 51 (2022), 2534–2551. https://doi.org/10.1080/03610926.2020.1777306 doi: 10.1080/03610926.2020.1777306
    [25] M. M. Mohie El-Din, M. M. Amein, M. S. Mohamed, Concomitants of case-Ⅱ of generalized order statistics from Farlie-Gumbel-Morgenstern distributions, Phys. Rev. E, 3 (2015), 345–353.
    [26] M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, et al., Inference and other aspects for $q$-Weibull distribution via generalized order statistics with applications to medical datasets, AIMS Mathematics, 9 (2024), 8311–8338. https://doi.org/10.3934/math.2024404 doi: 10.3934/math.2024404
    [27] M. Nagy, A. F. Alrasheedi, Weighted extropy measures in general Morgenstern family under k-record values with application to medical data, AIP Adv., 14 (2024), 015153. http://doi.org/10.1063/5.0188895 doi: 10.1063/5.0188895
    [28] R. P. Oliveira, J. A. Achcar, J. Mazucheli, W. Bertoli, A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties, Reliab. Eng. Syst., 211 (2021), 107528. https://doi.org/10.1016/j.ress.2021.107528 doi: 10.1016/j.ress.2021.107528
    [29] R. Pyke, Spacings, J. Roy. Stat. Soc.: Ser. B (Methodol.) 27 (1965), 395–436. https://doi.org/10.1016/j.ress.2021.107528
    [30] M. Rao, Y. Chen, B. Vemuri, F. Wang, Cumulative Residual Entropy: A New Measure of Information, IEEE Trans. Inf. Theory, 50 (2004), 1220–1228. https://doi.org/10.1109/TIT.2004.828057 doi: 10.1109/TIT.2004.828057
    [31] G. Rajesh, S. M. Sunoj. Some properties of cumulative Tsallis entropy of order a, Stat. Pap., 60 (2019), 933–943. https://doi.org/10.1007/s00362-016-0855-7
    [32] M. M. Sati, N. Gupta, Some Characterization Results on Dynamic Cumulative Residual Tsallis Entropy, J. Probab. Stat., 2015 (2015), 694203. https://doi.org/doi.org/10.1155/2015/694203 doi: 10.1155/2015/694203
    [33] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [34] M. Shrahili, M. Kayid, Uncertainty quantification based on residual Tsallis entropy of order statistics, AIMS Mathematics, 9 (2024), 18712–18731. https://doi.org/10.3934/math.2024910 doi: 10.3934/math.2024910
    [35] A. D. Soares, N. J. Moura, M. B. Ribeiro, Tsallis statistics in the income distribution of Brazil, Chaos Soliton. Fract., 88 (2016), 158–171. https://doi.org/10.1016/j.chaos.2016.02.026 doi: 10.1016/j.chaos.2016.02.026
    [36] F. Suter, I. Cernat, M. Dergan, Some Information Measures Properties of the GOS-Concomitants from the FGM Family, Entropy, 24 (2022), 1361. https://doi.org/10.3390/e24101361 doi: 10.3390/e24101361
    [37] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [38] C. Tsallis, Introduction to Nonextensive Statistical Mechanics, New York: Springer-Verlag, 2009. http://doi.org/10.1007/978-0-387-85359-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(666) PDF downloads(66) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog