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Abstract: Shannon differential entropy is extensively applied in the literature as a measure of
dispersion or uncertainty. Nonetheless, there are other measurements, such as the cumulative residual
Tsallis entropy (CRTE), that reveal interesting effects in several fields. Motivated by this, we study
and compute Tsallis measures for the concomitants of the generalized order statistics (CGOS) from
the iterated Farlie-Gumbel-Morgenstern (IFGM) bivariate family. Some newly introduced information
measures are also being considered for CGOS within the framework of the IFGM family, including
Tsallis entropy, CRTE, and an alternative measure of CRTE of order η. Applications of these results
are given for order statistics and record values with uniform, exponential, and power marginals
distributions. In addition, the empirical cumulative Tsallis entropy is suggested as a method to calculate
the new information measure. Finally, a real-world data set has been analyzed for illustrative purposes,
and the performance is quite satisfactory.
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1. Introduction

Let Z be a random variable (RV) having probability density function (PDF) gZ(z). Shannon [33]
defined entropy for a RV Z as

H(Z) = −

∫ ∞

0
gZ(z) log gZ(z)dz.
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The non-additive generalization of Shannon’s entropy of order η, suggested by Tsallis [37], is
known as Tsallis entropy. This measure plays an important role in the uncertainty measurements of an
RV Z, which is defined as

Hη(Z) =
1

η − 1

(
1 −

∫ ∞

0
gηZ(z)dz

)
, (1.1)

where 0 < η , 1. When η −→ 1, Tsallis entropy approaches Shannon entropy.
There are many applications of this new entropy, especially in physics [7], earthquakes [2], stock

exchanges [20], plasma [23], and income distribution [35]. For more information about Tsallis entropy,
we recommend reading Tsallis [38]. Several generalizations of Shannon entropy have been developed,
which make these entropies sensitive to different kinds of probability distributions via the addition
of a few additional parameters. A new measure of Shannon entropy, cumulative residual entropy
(CRE), was introduced by Rao et al. [30] by taking into account the survival function instead of the
probability density function. CRE is considered more stable and mathematically sound due to its
more regular survival function (SF) than the PDF. Moreover, distribution functions exist even when
probability density functions do not exist (e.g., Govindarajulu, power-Pareto, and generalized lambda
distributions). CRE measure is based on SF GZ(z). According to his definition, CRE is defined as

J(Z) = −

∫ ∞

0
GZ(z) log GZ(z)dz.

A cumulative residual Tsallis entropy (CRTE) of order η, which is represented by ζη(Z), was
introduced by Sati and Gupta [32]. This CRTE is defined as

ζη(Z) =
1

η − 1

(
1 −

∫ ∞

0
G
η

Z(z)dz
)
, η > 0, η , 1. (1.2)

When η −→ 1, CRTE approaches CRE.
The CRTE may also be represented in terms of the mean residual life function of Z, which is another

useful representation defined as

ζη(Z) =
1
η

E[m(Zη)]. (1.3)

Rajesh and Sunoj [31] unveiled an alternative measure for CRTE denoted by the order η, which is
defined as

ξη(Z) =
1

η − 1

(∫ ∞

0
(GZ(z) −G

η

Z(z))dz
)
, η > 0, η , 1. (1.4)

The characteristics of the residual Tsallis entropy for order statistics (OSs) were studied by Shrahili
and Kayid [34]. Mohamed [24] recently conducted a study on the CRTE and its dynamic form, which
is based on the Farlie-Gumbel-Morgenstern (FGM) family. When prior information is presented in the
form of marginal distributions, it is advantageous to model bivariate data using marginal distributions.
The FGM family is one of these families that has been the subject of a significant amount of study.
The FGM family is represented by the bivariate cumulative distribution function (CDF) GZ,X(z, x) =
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GZ(z)GX(x)[1 + θ(1−GZ(z))(1−GX(x))], −1 ≤ θ ≤ 1, where GZ(z) and GX(x) are the marginal CDFs of
two RVs Z and X, respectively. Literature indicates that several modifications have been implemented
in the FGM family to increase the correlation between its marginals. Extensive families have been
the subject of a great number of studies, each of which has a unique point of view. Examples of these
studies are Barakat et al. [6], Abd Elgawad and Alawady [1], Alawady et al. [4], Chacko and Mary [10],
Husseiny et al. [17,18], and Nagy et al. [26]. It was demonstrated by Huang and Kotz [15] that a single
iteration may result in a doubling of the correlation between marginals in FGM. This was established
through the use of a single iteration. The joint CDF iterated FGM (IFGM) family with a single iteration
is denoted by IFGM(γ, ω) and defined as

GZ,X(z, x) = GZ(z)GX(x)
[
1 + γGZ(z)GX(x) + ωGZ(z)GX(x)GZ(z)GX(x)

]
. (1.5)

The corresponding joint PDF (JPDF) is given by

gZ,X(z, x) = gZ(z)gX(x)
[
1 + γ(1 − 2GZ(z))(1 − 2GX(x)) + ωGZ(z)GX(x)(2 − 3GZ(z))(2 − 3GX(x))

]
.

(1.6)

Classical FGM can clearly be regarded as a special case of the IFGM(γ, ω) family (1.5)–(1.6) by
putting ω = 0. If the two marginals GZ(z) and GX(x) are continuous, Huang and Kotz [15] showed
that the natural parameter space Ω (which is the admissible set of the parameters γ and ω that makes

GZ,X(z, x) is a genuine CDF) is convex, where Ω = {(γ, ω) : −1 ≤ γ ≤ 1;−1 ≤ γ+ω;ω ≤ 3−γ+
√

9−6γ−3γ2

2 }.
Additionally, if the marginals are uniform, the correlation coefficient is ρ =

γ

3 + ω
12 . Finally, the maximal

correlation coefficient attained for this family is max ρ = 0.434, versus max ρ = 1
3 = 0.333 achieved

for γ = 1 in the original FGM [16]. The JPDF of the IFGM copula is plotted in Figure 1. Figure
1 illustrates subfigures that exhibit unique parameter values. Each subfigure from (a) to (f) had the
parameter values arranged in a vector form (γ, ω).

Figure 1. The JPDF for IFGM copula.

As a unifying model for ascendingly ordered RVs, generalized order statistics (GOSs) have drawn
more and more attention. The GOSs model was first presented by Kamps [21]. It is made up of several
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pertinent models of ordered RVs, such as order statistics (OSs), record values, sequential OSs (SOSs),
and progressive censored type-II OSs (POS-II). The RVs Z(r, n, m̃, κ), r = 1, 2, ..., n, are called GOSs
based on a continuous CDF GZ(z) with the PDF gZ(z), if their JPDF has the form

f (m̃,κ)
1,...,n:n(z1, ..., zn)=κGγn−1

Z (zn)gZ(zn)
n−1∏
i=1

γi Gγi−γi+1−1
Z (zi)gZ(zi),

where G−1(0) ≤ z1 ≤ ... ≤ zn ≤ G−1(1), κ > 0, γi = n + κ − i +
∑n−1

t=i mt > 0, i = 1, . . . , n − 1, and m̃ =

(m1,m2, . . . ,mn−1) ∈ R. In this paper, we assume that the parameters γ1, . . . , γn−1, and γn = κ, are
pairwise different, i.e., γt , γs, t , s, t, s = 1, 2, ..., n. We obtain a very wide subclass of GOSs that
contains m-GOSs (where m1 = ... = mn−1 = m), OSs, POS-II, and SOSs. The PDF of the rth GOS and
the JPDF of the rth and sth GOSs, 1 ≤ r < s ≤ n, respectively, are given by Kamps and Cramer [22].

fZ(r,n,m̃,κ)(z) = Cr

r∑
i=1

αi;rG
γi−1
Z (z)gZ(z), z ∈ R, 1 ≤ r ≤ n, (1.7)

fZ(r,n;m̃,κ),Z(s,n;m̃,κ)(z, x) = Cs

 s∑
i=r+1

αi;r;s

GZ(x)

GZ(z)

γi
  r∑

i=1

αi;rG
γi

Z (z)

 gZ(z)

GZ(z)

gZ(x)

GZ(x)
, z < x, (1.8)

where G = 1 −G is (SF) of G, Cr =
r∏

i=1
γi, αi;r =

r∏
j=1
j,i

1
γ j−γi

, 1 ≤ i ≤ r ≤ n, and αi;r;s =
s∏

j=r+1
j,i

1
γ j−γi

, r + 1 ≤

i ≤ s ≤ n.
When dealing with selection and prediction difficulties, the meaning of concomitants is a vital

tool. The idea of concomitants of OSs (COSs) was first proposed by David [11]. Refer to David
and Nagaraja [12] for a comprehensive understanding of the COS. Many studies have been published
on the concomitants of the GOSs (CGOSs) model. Researchers such as Alawady et al. [5], Beg and
Ahsanullah [8], and Domma and Giordano [13] have studied this issue. The CGOSs models, however,
have only been studied in a restricted number of studies when γt , γs, t , s, t, s = 1, 2, ..., n. These
include Abd Elgawad and Alawady [1], and Mohie El-Din et al. [25].

Let (Zi, Xi), i = 1, 2, ..., n, be a random sample from a continuous bivariate CDF GZ,X(z, x). If we
denote Z(r, n, m̃, κ) as the rth GOS of the Z sample values, then the X values associated with Z(r, n, m̃, κ)
is called the concomitant of the rth GOS and is denoted by X[r,n,m̃,κ], r = 1, 2, ..., n. The PDF of the
concomitant of rth GOS is given by

g[r,n,m̃,κ](x) =

∫ ∞

−∞

gX|Z(x|z) fZ(r,n,m̃,κ)(z)dz. (1.9)

More generally, for 1 ≤ r < s ≤ n, the JPDF of the concomitants of rth and sth GOSs is given by

g[r,s,n,m̃,κ](x1, x2) =

∫ ∞

−∞

∫ x1

−∞

gX|Z(x1|z1)gX|Z(x2|z2) fZ(r,n,m̃,κ),Z(s,n,m̃,κ)(z1, z2)dz2dz1. (1.10)

Motivation and the purpose of the work

Mohamed [24] exhibited CRTE features in CGOSs that were based on FGM. Suter et al. [36]
conducted another study that examined Tsallis entropy in CGOSs resulting from FGM. We generalize
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the previous articles by investigating Tsallis measures in CGOS from IFGM in more general
scenarios. The objectives that inspired this study are as follows: Tsallis entropy measures based on
CGOSs with interesting features are introduced in a broad framework. We considered sub models
through a comprehensive numerical analysis, including OSs, record values, and k-record values. An
in-depth analysis of reaching satisfactory results using the nonparametric estimate of these measures.
More sophistication and flexibility are provided by the suggested distribution (IFGM) for modeling
complicated data sets. This is why we used actual data in our analysis.

The arrangement of this paper is organized as follows: In Section 2, we obtain some
characterization results on concomitants X[r,n,m̃,k] based on IFGM(γ, ω) as Tsallis entropy, CRTE, and
alternate measure of CRTE. In Section 3, we extend and compute some examples of information
measures for the concomitants X[r,n,m̃,k] from IFGM(γ, ω). We use the empirical method in
combination with CGOS based on the IFGM family, to estimate the CRTE in Section 4. Finally, in
Section 5, a bivariate real-world data set has been probed, and we examine the Tsallis entropy and
CRTE. Finally, Section 6 concludes the work.

2. Theoretical results

In this section, we derived Tsallis entropy, CRTE, and an alternative measure CRTE for CGOS
based on the IFGM(γ, ω) family. First, we will point out some important results that we will use in
deducing these measures. Husseiny et al. [17] derived the PDF, CDF, and SF for the concomitant
X[r,n,m̃,k] of the rth GOS, respectively, as follows:

g[r,n,m̃,k](x) = (1 + δ(m̃,k)
r,n:1 )gX(x) + (δ(m̃,k)

r,n:2 − δ
(m̃,k)
r,n:1 )gV1(x) − δ(m̃,k)

r,n:2 gV2(x), (2.1)

G[r,n,m̃,k](x) = GX(x)
[
1 + δ(m̃,k)

r,n:1 (1 −GX(x)) + δ(m̃,k)
r,n:2 (GX(x) −G2

X(x))
]
, (2.2)

and

G[r,n,m̃,k](x) = GX(x)
[
1 − δ(m̃,k)

r,n:1 GX(x) − δ(m̃,k)
r,n:2 G2

X(x)
]
, (2.3)

where Vi ∼ Gi+1
X , i = 1, 2, δ(m̃,k)

r,n:1 = γCr−1

r∑
i=1

ai(r)
(

1−γi
1+γi

)
and δ(m̃,k)

r,n:2 = ωCr−1

r∑
i=1

ai(r)
(

1−γi
1+γi

) (
3−γi
2+γi

)
.

2.1. Tsallis entropy for CGOS of ordered η

Theorem 2.1. Tsallis entropy of concomitants of the rth GOS based on the IFGM(γ, ω) is given by

Hη[r,n,m̃,k](x) =
1

η − 1
(1 −

N(η)∑
j=0

j∑
p=0

(η
j

) ( j
p

)
(δ(m̃,k)

r,n:1 ) j−p(δ(m̃,k)
r,n:2 )pEU[(gX(G−1

X (U)))η−1

(1 − 2U) j−p(2U − 3U2)p]),

where N(x) = ∞, if x is non-integer, and N(x) = x, if x is integer, and U is a uniform RV on (0,1).

Proof. Using (1.1) and (2.1), Tsallis entropy is provided by

Hη[r,n,m̃,k](x) =
1

η − 1

(
1 −

∫ ∞

0
gη[r,n,m̃,k](x)dx

)
AIMS Mathematics Volume 9, Issue 9, 23268–23290.
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=
1

η − 1

(
1 −

∫ ∞

0
gηX(x)

(
1 + δ(m̃,k)

r,n:1 (1 − 2GX(x)) + δ(m̃,k)
r,n:2 GX(x)(2 − 3GX(x))

)η
dx

)
=

1
η − 1

1 − N(η)∑
j=0

j∑
p=0

(η
j

) ( j
p

)
(δ(m̃,k)

r,n:1 ) j−p(δ(m̃,k)
r,n:2 )pE

[
gη−1

X (x)(1 − 2GX(x)) j−p

(2GX(x) − 3GX(x)2)p
])
. (2.4)

�

Remark 2.1. If m̃ = 0 and k = 1. The Tsallis entropy of the concomitant of the rth OS based on the
IFGM(γ, ω) is given by

Hη[r:n](x) =
1

η − 1

1 − N(η)∑
j=0

j∑
p=0

(η
j

) ( j
p

)
(Ω1,r:n) j−p(Ω2,r:n)pE

[
gη−1

X (x)(1 − 2GX(x)) j−p

(2GX(x) − 3GX(x)2)p
])

where Ω1,r:n =
γ(n−2r+1)

n+1 and Ω2,r:n = ω
[

r(2n−3r+1)
(n+1)(n+2)

]
, (cf. Husseiny et al. [17]).

Remark 2.2. If m̃ = −1 and k = 1. Tsallis entropy of the concomitant of the nth upper record value
based on IFGM(γ, ω) is given by

Hη[n](x) =
1

η − 1

1 − N(η)∑
j=0

j∑
p=0

(η
j

) ( j
p

)
(∆n:1) j−p(∆n:2)pE

[
gη−1

X (x)(1 − 2GX(x)) j−p

(2GX(x) − 3GX(x)2)p
])
,

where ∆n:1 = γ(2−(n−1) − 1) and ∆n:2 = ω(2−(n−2) − 3−(n−1) − 1).

Remark 2.3. Tsallis entropy for the concomitant of the nth upper k-record value based on IFGM(γ, ω)
is given by

Hη[n,k](x) =
1

η − 1

1 − N(η)∑
j=0

j∑
p=0

(η
j

) ( j
p

)
(∇n,k:1) j−p(∇n,k:2)pE

[
gη−1

X (x)(1 − 2GX(x)) j−p

(2GX(x) − 3GX(x)2)p
])
,

where ∇n,k:1 = γ
(
2( k

k+1 )n − 1
)

and ∇n,k:2 = ω
(
4( k

k+1 )n − 3( k
k+2 )n − 1

)
. (cf. Nagy and Alrasheedi [27]).

2.2. CRTE for CGOS of ordered η

Theorem 2.2. CRTE for CGOS based on the IFGM(γ, ω) is given by

ζη[r,n,m̃,k](x) =
1

η − 1

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−sEU

[
(U)2i−s(1 − U)η

gX(G−1
X (U))

] ,
where U is a uniform RV on (0,1).
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Proof. Using (1.2) and (2.3), then CRTE is provided by

ζη[r,n,m̃,k](x) =
1

η − 1

(
1 −

∫ ∞

0
G
η

[r,n,m̃,k](x)dx
)

=
1

η − 1

(
1 −

∫ ∞

0
G
η

X(x)
[
1 −GX(x)(δ(m̃,k)

r,n:1 − δ
(m̃,k)
r,n:2 GX(x))

]η
dx

)
=

1
η − 1

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−s

E
[
g−1

X (x)(1 −GX(x))η(GX(x))2i−s
])
. (2.5)

�

Remark 2.4. If m̃ = 0 and k = 1. The CRTE of the concomitant of the rth OS based on the IFGM(γ, ω)
is given by

ζη[r:n](x) =
1

η − 1

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(Ω1,r:n)s(Ω2,r:n)i−sE

[
g−1

X (x)(1 −GX(x))η

(GX(x))2i−s
])
.

Remark 2.5. If m̃ = −1 and k = 1. CRTE of the concomitant of the nth upper record value based on
the IFGM(γ, ω) is given by

ζη[n](x) =
1

η − 1

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(∆n:1)s(∆n:2)i−sE

[
g−1

X (x)(1 −GX(x))η

(GX(x))2i−s
])
.

Remark 2.6. CRTE of the concomitant of the nth upper k-record value based on the IFGM(γ, ω) is
given by

ζη[n,k](x) =
1

η − 1

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(∇n,k:1)s(∇n,k:2)i−sE

[
g−1

X (x)(1 −GX(x))η

(GX(x))2i−s
])
.

2.3. Alternate measure of CRTE for CGOS of ordered η

For the concomitant X[r,n,m̃,k] of the rth GOS, the moment of X[r,n,m̃,k] based on the IFGM(γ, ω) (cf.
Husseiny et al. [17]) is given by

µ[r,n,m̃,k](x) = (1 + δ(m̃,k)
r,n:1 )µX + (δ(m̃,k)

r,n:2 − δ
(m̃,k)
r,n:1 )µV1 − δ

(m̃,k)
r,n:2 µV2 . (2.6)

Theorem 2.3. The alternative measure of CRTE for CGOS based on IFGM(γ, ω) is given by

ξη[r,n,m̃,k](x) =
1

η − 1

µ[r,n,m̃,k](x) −
N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−s

AIMS Mathematics Volume 9, Issue 9, 23268–23290.
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EU

[
(U)2i−s(1 − U)η

gX(G−1
X (U))

])
,

where U is a uniform RV on (0,1).

Proof. Using (1.4) and (2.6), the alternative measure of CRTE is provided by

ξη[r,n,m̃,k](x) =
1

η − 1

(∫ ∞

0
(G[r,n,m̃,k](x) −G

η

[r,n,m̃,k](x))dx
)

=
1

η − 1

(
µ[r,n,m̃,k](x) −

∫ ∞

0
G
η

X(x)
[
1 −GX(x)(δ(m̃,k)

r,n:1 − δ
(m̃,k)
r,n:2 GX(x))

]η
dx

)
=

1
η − 1

µ[r,n,m̃,k](x) −
N(η)∑
i=0

i∑
s=0

(η
i

) ( s
p

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−s

E
[
g−1

X (x)(1 −GX(x))η(GX(x))2i−s
])
. (2.7)

�

Theorem 2.4. Let X[r,n,m̃,k] be a CGOS based on a continuous CDF GX(x) with the PDF gX(x). For all
η > 0, we have

ξη[r,n,m̃,k](x) = E(Xη[r,n,m̃,k]) + E(Hη[r,n,m̃,k](X)),

where

Hη[r,n,m̃,k](u) =

∫ u

0
m′[r,n,m̃,k](x)G

η−1
[r,n,m̃,k](x)dx, u > 0.

Proof. Using (1.3) and m[r,n,m̃,k](x)λ[r,n,m̃,k](x) = 1 + m′[r,n,m̃,k](x), where

λ[r,n,m̃,k](x) =
g[r,n,m̃,k](x)

G[r,n,m̃,k](x)
.

Then, we obtain

ξη[r,n,m̃,k](x) =

∫ ∞

0
m[r,n,m̃,k](x)λ[r,n,m̃,k](x)G

η

[r,n,m̃,k](x)dx

= E(Xη[r,n,m̃,k]) +

∫ ∞

0
m′[r,n,m̃,k](x)G

η

[r,n,m̃,k](x)dx,

for all η > 0. Upon using Fubini’s theorem, we obtain∫ ∞

0
m′[r,n,m̃,k](x)G

η

[r,n,m̃,k](x)dx =

∫ ∞

0
m′[r,n,m̃,k](x)dx

∫ ∞

x
g[r,n,m̃,k](u)G

η−1
[r,n,m̃,k](x)dudx

=

∫ ∞

0
g[r,n,m̃,k](u)

∫ u

0
m′[r,n,m̃,k](x)G

η−1
[r,n,m̃,k](x)dxdu.

This gives the desired result. �

AIMS Mathematics Volume 9, Issue 9, 23268–23290.



23276

Remark 2.7. If m̃ = 0 and k = 1. The alternative measure of CRTE for concomitant of the rth OSs
based on the IFGM(γ, ω) is given by

ξη[r:n](x) =
1

η − 1

µ[r:n](x) −
N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(Ω1,r:n)s(Ω2,r:n)i−s

E
[
g−1

X (x)(1 −GX(x))η(GX(x))2i−s
])
.

Remark 2.8. If m̃ = −1 and k = 1. The alternative measure of CRTE for concomitant of the nth upper
record value based on the IFGM(γ, ω) is given by

ξη[n](x) =
1

η − 1

µ[n](x) −
N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(∆n:1)s(∆n:2)i−s

E
[
g−1

X (x)(1 −GX(x))η(GX(x))2i−s
])
.

Remark 2.9. The alternative measure of CRTE for concomitant of the nth upper k-record value based
on the IFGM(γ, ω) is given by

ξη[n,k](x) =
1

η − 1

µ[n,k](x) −
N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(∇n,k:1)s(∇n,k:2)i−s

E
[
g−1

X (x)(1 −GX(x))η(GX(x))2i−s
])
.

3. Illustrative examples with numerical study of Tsallis entropy and CRTE

In this section, we study the Tsallis entropy, CRTE, and alternate measure of CRTE for CGOS
in IFGM(γ, ω) for some popular distributions. We consider the extended Weibull (EW) family of
distributions, which was developed by Gurvich et al. [14], as a case study. The CDF of EW is given by

GX(x) = 1 − e−τH(x;ε), x > 0, τ > 0,

where H(x; ε) is a differentiable, nonnegative, continuous, and monotonically increasing function when
x depends on the parameter vector ε. Also, H(x; ε) −→ 0+ as x −→ 0+ and H(x; ε) −→ +∞ as
x −→ +∞. This CDF is denoted by EW (τ, ε) and has the following PDF:

gX(x) = τh(x; ε)e−τH(x;ε), x > 0,

where h(x; ε) is the derivative of H(x; ε) with respect to x. Several important models are included in the
EW, including the Rayleigh, Pareto, Weibull, uniform, and exponential distributions (ED). For further
details about this family, see Jafari et al. [19].

Example 3.1. Consider two variables, Z and X, that possess ED from IFGM (represented by IFGM-
ED) (i.e. GX(x) = 1 − e−θx, x, θ > 0 ). Based on (2.4), we get the Tsallis entropy in X[r,n,m̃,k] as follows:

Hη[r,n,m̃,k](x) =
1

η − 1

1 − N(η)∑
j=0

j∑
p=0

j−p∑
l=0

p∑
u=0

(η
j

) ( j
p

) ( j − p
l

) ( p
u

)
(−1)l+u(2) j−p−l(3)p−u(δ(m̃,k)

r,n:1 ) j−p

(δ(m̃,k)
r,n:2 )pθη−1β(1 + p, η + j − u − 1)

)
.
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Example 3.2. Consider Z and X to be power distributions derived from IFGM (i.e. GX(x) = xc, 0 ≤
x ≤ 1, c > 0 ). ThenHη[r,n,m̃,k](x) is given by

Hη[r,n,m̃,k](x) =
1

η − 1

1 − N(η)∑
j=0

j∑
p=0

j−p∑
t=0

p∑
w=0

(η
j

) ( j
p

) ( j − p
t

) ( p
w

)
(−1)t(2)t+p−w(−3)w(δ(m̃,k)

r,n:1 ) j−p

(δ(m̃,k)
r,n:2 )p cη

1 − η + c(t + p + w + η)

)
.

Example 3.3. Suppose that Z and X have EW based on IFGM with (i.e. GX(x) = 1 − e−τH(x;ε), x >

0, τ > 0, ). Then, we have the Tsallis entropy in X[r,n,m̃,k] as follows:

H(EW)η[r,n,m̃,k](x) =
1

η − 1

1 − N(η)∑
j=0

j∑
p=0

(η
j

) ( j
p

)
(δ(m̃,k)

r,n:1 ) j−p(δ(m̃,k)
r,n:2 )pE

[
[(τh(x; ε))e(−τH(x;ε))]η−1

(2e(−τH(x;ε)) − 1) j−p(4e(−τH(x;ε)) − 3(e(−τH(x;ε)))2 − 1)p
])
.

Example 3.4. Assume that Z and X both possess IFGM-ED. Based on (2.5), we obtain the CRTE in
X[r,n,m̃,k] as follows:

ζη[r,n,m̃,k](x) =
1

θ(η − 1)

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−sβ(2i − s + 1, η)

 .
Example 3.5. Assume that the uniform distributions of Z and X come from an IFGM (i.e. GX(x) =

x, 0 ≤ x ≤ 1 ). Based on (2.5), we obtain the CRTE in X[r,n,m̃,k] as follows:

ζη[r,n,m̃,k](x) =
1

η − 1

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−sβ(2i − s + 1, η + 1)

 .
Example 3.6. Let us say that Z and X have EW according to IFGM. From (2.5), we get the CRTE in
X[r,n,m̃,k] as follows:

ζ(EW)η[r,n,m̃,k](x) =
1

η − 1

1 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−s

E
[
(τh(x; ε)e−τH(x;ε))−1(e−τH(x;ε))η(1 − e−τH(x;ε))2i−s

])
.

Example 3.7. Assume that Z and X both possess IFGM-ED. Based on (2.7), we have the alternate
measure of CRTE in X[r,n,m̃,k] as follows:

ξη[r,n,m̃,k](x) =
1

θ(η − 1)


1 − δ(m̃,k)

r,n:1

2
−
δ(m̃,k)

r,n:2

3

 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−s

β(2i − s + 1, η)) .

Example 3.8. Assume that the uniform distributions of Z and X come from IFGM. Based on (2.7), we
obtain the alternate measure of CRTE in X[r,n,m̃,k] as follows:

ξη[r,n,m̃,k](x) =
1

(η − 1)

1
2

1 − δ(m̃,k)
r,n:1

3
−
δ(m̃,k)

r,n:2

6

 − N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−s

β(2i − s + 1, η + 1)) .
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Example 3.9. Let us say that Z and X have EW, according to IFGM. Based on (2.7), we obtain the
alternate measure of CRTE in X[r,n,m̃,k] as follows:

ξη[r,n,m̃,k](x) =
1

η − 1

µEW[r,n,m̃,k](x) −
N(η)∑
i=0

i∑
s=0

(η
i

) ( i
s

)
(−1)2i−s(δ(m̃,k)

r,n:1 )s(δ(m̃,k)
r,n:2 )i−s

E
[
(τh(x; ε)e−τH(x;ε))−1(e−τH(x;ε))η(1 − e−τH(x;ε))2i−s

])
.

As shown in Tables 1–4 of the IFGM-ED, the Tsallis entropy and the CRTE for X[r:n] and X[n]

are presented. After running the numbers through MATHEMATICA version 12, we can deduce the
following properties from Tables 1–4.

• When γ = 0.9, η = 5, and θ = 0.5, the value of Hη[r:n](x) goes up as n goes up. When γ = −0.5,
η = 10, and θ = 1, the value of Hη[r:n](x) goes down as n goes up. But Hη[r:n](x) stays the same
for all ω values when n = 7 and r = 5 (look at Table 1).
• We see that when γ is 0.9, η is 5, and θ is 0.5, and when γ is -0.5, η is 10, and θ is 1, the value of
Hη[n](x) goes down as n goes up, and it almost stays the same when n = 10 (look at Table 2).
• When γ = 0.9, η = 5, and θ = 0.5, the value of ζη[r:n](x) goes down as n goes up. On the other

hand, when γ = −0.5, η = 10, and θ = 1, the value of ζη[r:n](x) goes up as n goes up. It gets bigger
as n gets bigger, but ζη[r:n](x) stays the same for all ω values when n = 7 and r = 5 (look at Table
3).
• When γ = 0.9, η = 5, and θ = 0.5, the value of ζη[n](x) goes down as n goes up. When γ = −0.5,
η = 10, and θ = 1, the value of ζη[n](x) goes up as n goes up, and the value of ζη[n](x) stays the
same at n = 22 (look at Table 4).

4. Estimating of CRTE

For the purpose of calculating the CRTE for concomitant X[r,n,m̃,k], we employ empirical estimators
in this section. Next, we’ll examine the issue of estimating the CRTE for CGOS using the empirical
CRTE. Consider the IFGM sequence (Zi, Xi) for each i = 1, 2, ..., n. In accordance with (2.7), the
emperical CRTE of the set X[r,n,m̃,k] can be computed as follows:

ξ̂η[r,n,m̃,k](x) =
1

η − 1

(∫ ∞

0
(Ĝ[r,n,m̃,k](x) − Ĝ

η

[r,n,m̃,k](x))dx
)

=
1

η − 1

(∫ ∞

0

(
(1 − ĜX(x))

[
1 − ĜX(x)(δ(m̃,k)

r,n:1 − δ
(m̃,k)
r,n:2 ĜX(x))

]
−(1 − ĜX(x))η[

1 − ĜX(x)(δ(m̃,k)
r,n:1 − δ

(m̃,k)
r,n:2 ĜX(x))

]η)
dx

)
=

1
η − 1

n−1∑
j=1

∫ x( j+1)

x( j)

(
(1 − ĜX(x))

[
1 − ĜX(x)(δ(m̃,k)

r,n:1 − δ
(m̃,k)
r,n:2 ĜX(x))

]
−(1 − ĜX(x))η[

1 − ĜX(x)(δ(m̃,k)
r,n:1 − δ

(m̃,k)
r,n:2 ĜX(x))

]η
dx

)
=

1
η − 1

n−1∑
j=1

∆ j

(
(1−

j
n

)
[
1 −

j
n

(
δ(m̃,k)

r,n:1 − δ
(m̃,k)
r,n:2

j
n

)]
− (1 −

j
n

)η
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1 −

j
n

(
δ(m̃,k)

r,n:1 − δ
(m̃,k)
r,n:2

j
n

)]η)
,

where for any CDF G(.), the symbol Ĝ(.) stands for the empirical CDF of G(.), and ∆ j = x( j+1) − x( j),

j = 1, 2..., n − 1, are the sample spacings based on ordered random samples of X j.

Example 4.1. Define a random sample from the IFGM-ED as (Zi, Xi), where i ranges from 1 to n.
The sample spacings, denoted by ∆ j, are considered to be independent RVs. Furthermore, ∆ j exhibits
the ED with a mean of 1

θ(n− j) , where j ranges from 1 to n − 1. For additional information, refer to
Chandler [9] and Pyke [29]. Then the expected value and variance of the empirical CRTE in X?

[r] are
given by

E
[
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]
=
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=
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. (4.2)

Example 4.2. Again, for completeness, we study here the empirical CRTE of the concomitant X?
[r]

of the rth upper record value Z?
r based on the IFGM copula. In this case, the sample spacings ∆ j,

j = 1, 2, ..., n − 1, are independent, and each of them has the beta distribution with parameters 1 and
n. According to Pyke [29], the expectation and variance of the empirical CRTE of the concomitant X?

[r]
are as follows:

E
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.

Figures 2 and 3 illustrate the relationship between CRTE and empirical CRTE in X[r:n] from IFGM-
ED (γ, ω), at n = 50. Figures 2 and 3 can be used to obtain the following properties:

(1) When the θ values are increased, the CRTE and the empirical CRTE have values that are
practically identical to one another.
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(2) At most ω and γ values, CRTE and empirical CRTE have identical results, particularly when
ω = 0 for all r values.

(a) γ = 0.9, ω = −1.4 and θ = 1.5.

CRTE

empirical CRTE

10 20 30 40 50
r

0.05

0.10
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(b) γ = 0.9, ω = −1.4 and θ = 3.
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r0.00
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(c) γ = −0.5, ω = −0.4 and θ = 3.
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(d) γ = −0.5, ω = 1.4 and θ = 5.
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Figure 2. Representation of CRTE and empirical CRTE in X[r:n] based on IFGM-ED for
n = 50 and η = 20.

(a) γ = −0.2 and θ = 2.
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(b) γ = −0.9 and θ = 2.
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(c) γ = 0.4 and θ = 5.
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(d) γ = 0.9 and θ = 7.
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Figure 3. Representation of CRTE and empirical CRTE in X[r:n] based on IFGM-ED(γ, ω =

0) for n = 50 and η = 20.
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5. Real data application

This section includes analyses of a real-world data set. The data set relates to n = 50 simulated
simple computer series systems consisting of a processor and a memory. The data was gathered and
analyzed based on Oliveira et al. [28]. The data set contains n = 50 simulated rudimentary computer
systems with processors and memory. An operating computer will be able to operate when both parts
are working properly (the processors and memory). Assume the system is nearing the end of its
lifecycle. The degeneration advances rapidly in a short period of time [3]. In a short time (in hours),
the degeneration advances rapidly. In the case of the first component, a deadly shock can destroy
either it or the second component at random, due to the system’s greater vulnerability to shocks. We
fit the ED to the processor lifetime and memory lifetime separately. As an illustration of the data,
Figures 4 and 5 provide a basic statistical analysis. The maximum likelihood estimates of the scale
parameters (θi), i = 1, 2, are 1.24079 and 1.08616, γ = 0.175473, and ω = 2.16024. Table 5 examines
the Tsallis entropy and CRTE for IFGM-ED(0.17543,2.16024). For the concomitants X[r:50],
r = 1, 2, 24, 25, 49, 50, i.e., the lower and upper extremes’ concomitants, and the central values’
concomitants. We observe that theHη[r:50](x) and ζη[r:50](x) have maximum values at extremes.


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Figure 4. Some summary plots of the processor lifetime data set.
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Figure 5. Some summary plots of memory lifetime data set.

Table 5. The Tsallis entropy and CRTE of IFGM-ED at γ2 = 0.175 and ω2 = 2.160.
r 1 2 24 25 49 50

H5[r:50](x) 0.0736041 0.066275 0.0909935 0.100391 0.23817 0.238162
ζ5[r:50](x) 0.189322 0.188401 0.177055 0.177312 0.192772 0.193385

6. Conclusion and future work

Given its simplicity and adaptability, IFGM surpasses most FGM generalizations, even though its
efficiency is similar to some of those generalizations (such as the Huang–Kotz FGM) in that it has a
similar range of correlation coefficients. The CDFs used in this work were consistently formed by
linearly combining simpler distributions, due to the advantages they offer. Tsallis entropy and its
associated measures for concomitant were derived from IFGM, and a numerical analysis was
conducted to uncover certain characteristics of these measures based on GOSs. Special cases were
also extracted from this study, for example, OSs, record values, and k-record values. Furthermore,
non-parametric estimators of CRTE were derived. The outcomes of an empirical examination of the
CRTE are distinct. Finally, an illustrative analysis of a bivariate real-world data set was performed,
and the proposed method performs exceptionally well. In the future work, some bivariate distribution
families will be considered, including the Huang-kotz, Cambanis, and Sarmanov families, as well as
various applications of the CRTE in CGOS. Additionally, we will investigate the quantile function
based on Tsallis measures from concomitants. Also, for the estimation problem, we will discuss at
least two estimation methods for this model: maximum likelihood and Besyain. Further, a Monte
Carlo simulation will be conducted to test the estimator’s performance against the empirical measure
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as well as the exact formula presented in this paper.
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