
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(9): 23291–23312.
DOI: 10.3934/math.20241132
Received: 10 June 2024
Revised: 15 July 2024
Accepted: 23 July 2024
Published: 01 August 2024

Research article

An explicit Jacobian for Newton’s method applied to nonlinear initial
boundary value problems in summation-by-parts form

Jan Nordström1,2,*, Fredrik Laurén1 and Oskar Ålund1

1 Department of Mathematics, Applied Mathematics, Linköping University, SE-581 83, Linköping,
Sweden

2 Department of Mathematics and Applied Mathematics, University of Johannesburg, P.O. Box 524,
Auckland Park 2006, South Africa

* Correspondence: Email: jan.nordstrom@liu.se.

Abstract: We derived an explicit form of the Jacobian for discrete approximations of a nonlinear
initial boundary value problems (IBVPs) in matrix-vector form. The Jacobian is used in Newton’s
method to solve the corresponding nonlinear system of equations. The technique was exemplified
on the incompressible Navier-Stokes equations discretized using summation-by-parts (SBP) difference
operators and weakly imposed boundary conditions using the simultaneous approximation term (SAT)
technique. The convergence rate of the iterations is verified by using the method of manufactured
solutions. The methodology in this paper can be used on any numerical discretization of IBVPs in
matrix-vector form, and it is particularly straightforward for approximations in SBP-SAT form.

Keywords: nonlinear initial boundary value problems; Jacobian; Newton’s method; incompressible
Navier-Stokes equations; summation-by-parts; weak boundary conditions
Mathematics Subject Classification: 65M06, 65M22

1. Introduction

Nonlinear systems of partial differential equations are common in computational science and
engineering, and present multiple challenges. Stability is needed for reliability and high accuracy
for fine solution details. For fast turnaround and timely result delivery, generic systems of nonlinear
equations from discretizations of the form

F (ϕ) = 0 (1.1)

must be solved efficiently [1]. Several techniques exist to solve (1.1); for example, dual-time stepping
[2, 3], optimization algorithms [4], or iterative methods [1]. Among the classical iterative methods,

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241132

23292

Newton’s method is an effective choice due to its quadratic convergence order. The obvious drawback
with Newton’s method is that the Jacobian must be known. Methods that bypass this requirement and
instead approximate the Jacobian lead to lower convergence orders. A typical example is the secant
method [1]. Alternatively, by using Newton-Krylov methodologies [5], only the action of the Jacobian
is required and can be approximated by JF (ϕk)δu ≈ (F (ϕk + δu) −F (ϕk))/δ, where δ is small and u
depends on the subspaces in the Krylov iterations. The advantage of Newton-Krylov methods is that
an explicit Jacobian is never required, but sophisticated preconditioners becomes necessary [6] instead.

The focus in this paper is to facilitate the use of Newton’s method where the key component is an
exact explicit form of the Jacobian of (1.1). To exemplify our technique, we will use finite-difference
operators in summation-by-parts (SBP) form [7, 8] to discretize the incompressible Navier-Stokes
(INS) equations in space. The boundary conditions will be weakly imposed via the simultaneous
approximation term (SAT) technique [9]. In [10, 11], a discretization based on the SBP-SAT technique
of the nonlinear INS equations was proven to be stable, which is the key prerequisite.

Based on the formulation in [10], we show how the Jacobian can be explicitly calculated. It is also
shown that the Jacobian has a block structure, where several blocks can be precomputed and reused
when forming F , making the procedure very efficient.

To keep the paper focused on the derivation of the Jacobian, we follow [10] and consider a Cartesian
grid. Exact Jacobians for numerical discretizations have recently been developed in [12] for so-called
entropy stable numerical discretizations in SBP form in a periodic setting. Our new technique is not
restricted to such specific discretizations, and we include the specific Jacobian related to the boundary
conditions. The technique demonstrated in this paper can be used in a straightforward way on any
numerical method for IBVPs that can be formulated in matrix-vector form. In addition, it can be
readily extended to curvilinear and unstructured grids, arbitrary dimensions, and other sets of linear
and nonlinear equations. In principle, all that is needed for the existence of the Jacobian is that F
is differentiable with respect to ϕ. This covers the various nonlinearities that arise in discretizations
of the Navier-Stokes equations (both compressible and incompressible). However, the feasibility of
explicitly deriving the Jacobian is highly dependent on the way in which F is presented. As we shall
see, discretizations in SBP-SAT form are particularly straightforward to differentiate, making Newton’s
method an attractive solution method.

The rest of the paper proceeds as follows. We introduce the continuous problem in Section 2 and
present the semi-discrete formulation in Section 3. The Jacobian of the discretization is derived in
Section 4. Implicit time integration is discussed in Section 5 and numerical experiments are performed
in Section 6. Finally, conclusions are drawn in Section 7.

2. Problem formulation

As an illustrative example of our technique, we consider the scenario illustrated in Figure 1. An
incompressible fluid is moving from left to right. Hence, the left side is an inflow boundary, where
Dirichlet conditions are imposed, and the right side is an outflow boundary, where natural boundary
conditions [13] are imposed. The lower part of the domain is a no-slip wall and the upper side is an
outflow boundary, where again natural conditions are imposed. The initial-boundary value problem for

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23293

the INS equations that we consider is

Ĩ w⃗t +L(w⃗) = 0 (x, y) ∈ Ω t > 0
H w⃗ = g⃗ (x, y) ∈ ∂Ω t > 0

Ĩ w⃗ = Ĩ f⃗ (x, y) ∈ Ω t = 0 .

(2.1)

Ω

West:
u = g1
v = g2

South: u = v = 0

North:
p− εvy = g5
−εuy = g6

East:
p− εux = g3
−εvx = g4

Figure 1. Illustration of the computational domain Ω and the specific boundary conditions.

In (2.1), w⃗ = (u, v, p)⊤, where u, v are the velocities in the x, y direction, respectively, and p is the
pressure. Furthermore, Ω = [0, 1]2 is the domain and ∂Ω its boundary. The initial data f⃗ and boundary
data g⃗ are sufficiently smooth and compatible functions and the spatial operator is given by [10]

L(w⃗) =
1
2

[
A w⃗x + (A w⃗)x + B w⃗y + (B w⃗)y

]
− ϵ Ĩ[w⃗xx + w⃗yy] . (2.2)

The matrices in (2.1) and (2.2) are

A =


u 0 1
0 u 0
1 0 0

 , B =


v 0 0
0 v 1
0 1 0

 , Ĩ =


1 0 0
0 1 0
0 0 0


and ϵ > 0 is the viscosity coefficient. To obtain a stable discretization with the SBP-SAT technique, the
nonlinear convective terms in (2.1) are split into a skew-symmetric form in (2.2) by taking an average
between the conservative and non-conservative formulations [10]. This formulation is possible due to
the divergence constraint. Lastly, the explicit form of the boundary conditionsH w⃗ = g⃗ reads

u = g1 v = g2 at x = 0 (West)
p − ϵux = g3 −ϵvx = g4 at x = 1 (East)

u = 0 v = 0 at y = 0 (South)
p − ϵvy = g5 −ϵuy = g6 at y = 1 (North) .

(2.3)

For completeness, we will show how to bound the solution. Only the south side of the domain is
discussed explicitly for simplicity. Details of the upcoming analysis are found in [10].

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23294

For two vector functions ϕ⃗, ψ⃗ defined on Ω, we introduce the inner product and norm

⟨ ϕ⃗, ψ⃗⟩ =

∫
Ω

ϕ⃗
⊤
ψ⃗dΩ, ∥ ϕ⃗∥2 = ⟨ ϕ⃗, ϕ⃗⟩ .

By multiplying (2.1) by 2 w⃗⊤ from the left and integrating over Ω, we get

d
dt
∥ w⃗∥2Ĩ + 2ϵ∥∇ w⃗∥2Ĩ = BT , (2.4)

where ∇ w⃗ = (∇u,∇v,∇p)⊤, ∥∇ w⃗∥2
Ĩ

is a dissipative volume term, and

BT =
∫

South
w⃗⊤(B w⃗ − 2ϵ Ĩ w⃗y)dx

contains the boundary terms evaluated at the south boundary. The other boundary terms are assumed
dissipative and ignored. Imposing u = v = 0 results in BT = 0. Integrating (2.4) in time (assuming
homogeneous boundary conditions on all sides) leads to

∥ w⃗∥2Ĩ (T) + 2ϵ
∫ T

0
∥∇ w⃗∥2Ĩ dt ≤ ∥ f ∥2Ĩ , (2.5)

which bounds the semi-norm of the solution (∥ w⃗∥2
Ĩ
) and its gradients (∥∇ w⃗∥2

Ĩ
) for any time.

3. The semi-discrete scheme

A brief introduction of the SBP-SAT technique is provided below, see [7, 8] for extensive reviews.
We discretize the domain Ω = [0, 1]2 with N + 1 and M + 1 grid points; xi = i/N, i = 0, . . . ,N and y j =

j/M, j = 0, . . . ,M and let n = (N + 1)(M + 1) denote the total number of grid points. A scalar function
q = q(x, y) defined on Ω is thereby represented on the grid by q = (q00, . . . , q0M, . . . qN0, . . . qNM)⊤

where qi j = q(xi, y j). For the vector-valued function w⃗ = (u, v, p)⊤, the approximation is arranged
as w⃗ = (u⊤,v⊤,p⊤)⊤. Let Dx = (P−1

x Qx) ⊗ IM+1 and Dy = IN+1 ⊗ (P−1
y Qy), where ⊗ denotes the

Kronecker product. Then the approximations of the spatial derivatives are given by

Dxu ≈ ux, Dyu ≈ uy .

The matrices Px,y are diagonal and positive definite, so that P = Px ⊗ Py forms a quadrature rule that
defines the norm ∥ w⃗∥2I3⊗P

= w⃗⊤(I3 ⊗ P) w⃗ ≈
!
Ω

w⃗⊤ w⃗dΩ. We have also introduced Ik, which is the
identity matrix of size k. Moreover, the matrices Qx,y satisfy the SBP property

Qx + Q⊤x = EN − E0x Qy + Q⊤y = EM − E0y , (3.1)

where E0x,y = diag(1, 0, 0, . . . , 0) and EN,M = diag(0, 0, 0, . . . , 1) are matrices of appropriate sizes.
By using the notation above, the semi-discrete approximation of (2.1) becomes [10]

Ĩ w⃗t +L(w⃗) = S(w⃗) . (3.2)

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23295

The discrete spatial operator is given by

L(w⃗) =
1
2

[
A(I3 ⊗Dx) w⃗ + (I3 ⊗Dx)Aw⃗ +B(I3 ⊗Dy) w⃗ + (I3 ⊗Dy)B w⃗

]
− ϵĨ[(I3 ⊗Dx)2 + (I3 ⊗Dy)2] w⃗ ,

and the block matrices are

A =


U 0 I

0 U 0
I 0 0

 , B =


V 0 0
0 V I
0 I 0

 , Ĩ =


I 0 0
0 I 0
0 0 0

 ,
where U ,V ∈ Rn×n are diagonal matrices holding u,v, respectively. The matrices I and 0 are the
identity and the zero matrix of size n × n. Furthermore, S(w⃗) contains penalty terms that enforce the
boundary conditions.

The purpose of the SAT S(w⃗) is i) to enforce the boundary conditions in (2.3) and ii) to stabilize
the solution. One penalty term for each of the boundary conditions in (2.3) will be constructed. Let
k ∈ {W, E, S ,N}. The SAT at boundary k that enforces the boundary condition Hk w⃗ = g⃗ has the general
form

S
k(w⃗) = (I3 ⊗ P

−1)Σk(I3 ⊗ P
k)(H k w⃗ − g⃗) . (3.3)

In (3.3), Σk is the penalty matrix to be determined for stability at boundary k. The quadratures are

P k =


E0x ⊗ Py on the west boundary (k = W)
EN ⊗ Py on the east boundary (k = E)
Px ⊗ E0y on the south boundary (k = S)
Px ⊗ EM on the north boundary (k = N) .

For the boundary conditions listed in (2.3), the penalty terms are

S
W(w⃗) = (I3 ⊗ P

−1)ΣW(I3 ⊗ P
W)


u − g1

v − g2

u − g1

︸ ︷︷ ︸
H

W w⃗− g⃗

S
E(w⃗) = (I3 ⊗ P

−1)ΣE(I3 ⊗ P
E)


p − ϵDxu − g3

−ϵDxv − g4

0

︸ ︷︷ ︸
H

E w⃗− g⃗

S
S (w⃗) = (I3 ⊗ P

−1)ΣS (I3 ⊗ P
S)


u − 0
v − 0
v − 0

︸ ︷︷ ︸
H

S w⃗−0

S
N(w⃗) = (I3 ⊗ P

−1)ΣN(I3 ⊗ P
N)


−ϵDyu − g6

p − ϵDyv − g5

0

︸ ︷︷ ︸
H

N w⃗− g⃗

,

(3.4)

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23296

where

ΣW =


−U/2 + ϵD⊤

x 0 0
0 −U/2 + ϵD⊤

x 0
0 0 −I

 , ΣE = (I3 ⊗ I)

ΣS =


−V /2 + ϵD⊤

y 0 0

0 −V /2 + ϵD⊤
y 0

0 0 −I

 , ΣN = (I3 ⊗ I) .

As an example, the south penalty term can be written as

S
S (w⃗) = (I3 ⊗ P

−1)


−V P Su/2 + ϵD⊤

yP
Su

−V P Sv/2 + ϵD⊤
yP

Sv

−P Sv

 , (3.5)

which is a more convenient notation for the derivation of the Jacobian in Section 4.
We will show in the following section that this specific choice of penalty matrices leads to nonlinear

stability. The total penalty term in (3.2) becomes

S(w⃗) =
∑

k∈{W,E,S ,N}

S(w⃗)k . (3.6)

For completeness, we also show schematically how to obtain an energy estimate (again, all details
can be found in [10]). Similarly to the continuous analysis, we omit all boundaries except for the south
one. By mimicking the continuous path [14], we multiply (3.2) by 2 w⃗⊤(I3 ⊗ P) from the left and use
the SBP property (3.1) to get

d
dt
∥ w⃗∥2Ĩ⊗P + 2ϵ∥∇ w⃗∥2Ĩ⊗P = BT , (3.7)

where ∥∇ w⃗∥2
Ĩ⊗P
= (I3 ⊗Dx w⃗)⊤(I3 ⊗ P)Ĩ(I3 ⊗Dx w⃗) + (I3 ⊗Dy w⃗)⊤(I3 ⊗ P)Ĩ(I3 ⊗Dy w⃗) is the

dissipative volume term corresponding to the continuous one and

BT = w⃗⊤(I3 ⊗ P
S)B w⃗ − 2ϵ w⃗⊤(I3 ⊗ P

S)Ĩ(I3 ⊗Dy) w⃗︸ ︷︷ ︸
I

+2 w⃗(I3 ⊗ P)SS (w⃗)︸ ︷︷ ︸
II

(3.8)

contains all terms evaluated at the boundary.
The semi-norm of the solution (∥ w⃗∥2

Ĩ⊗P
) is bounded if the right-hand side of (3.7) is non-positive.

By expanding (3.8) and using the explicit form of SS (w⃗) stated in (3.4), we find

BT = v⊤P S (Uu + V v + 2p − 2ϵDyv) − 2ϵu⊤P SDyu︸ ︷︷ ︸
I

−2v⊤P S (Uu/2 + V v/2 + p⊤v − ϵDyv) + 2ϵu⊤P SDyu︸ ︷︷ ︸
II

= 0 ,

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23297

where term I is obtained from the governing equation and term II from the penalty term. As in
the continuous setting, the boundary terms vanish. Integrating (3.7) in time (assuming homogeneous
dissipative boundary conditions at all boundaries) leads to

∥ w⃗∥2Ĩ⊗P (T) + 2ϵ
∫ T

0
∥∇ w⃗∥2Ĩ⊗P dt ≤ ∥f∥2Ĩ⊗P ,

which is the semi-discrete version of the estimate in (2.5).

4. Exact computation of the Jacobian

In this section, we will explicitly compute the Jacobian of L and S in (3.2). Let h : Rn → Rn,
where n = (N + 1)(M + 1) is the total number of grid points, be a differentiable vector function. For a
given vector u = (u00, . . . uNM)⊤ ∈ Rn, h outputs the vector h(u) = (h00, . . . hNM)⊤ ∈ Rn. The Jacobian
matrix Jh ∈ Rn×n of h is given by

Jh =


∂h00
∂u00

. . . ∂h00
∂uNM

...
. . .

...
∂hNM
∂u00

. . . ∂hNM
∂uNM

 .
We will first derive the Jacobian of the different terms in L(w⃗) and, at the end, add the terms and

state the complete result. To start, consider the vector function

h(u) =


h00
...

hNM

 =


u00
...

uNM

 = u .

Since
∂h00

∂u00
= 1

∂h00

∂u01
= 0

∂h00

∂u02
= 0 . . .

∂h00

∂uNM
= 0

∂h01

∂u00
= 0

∂h01

∂u01
= 1

∂h01

∂u02
= 0 . . .

∂h01

∂uNM
= 0

...

∂hNM

∂u00
= 0

∂hNM

∂u01
= 0

∂hNM

∂u02
= 0 . . .

∂hNM

∂uNM
= 1 ,

the Jacobian of h(u) = u becomes Ju = I . Now let

h(u) =


h00
...

hNM

 =Dxu =


D0,0 . . . D0,NM
...

. . .
...

DNM,0 . . . DNM,MN




u00
...

uNM


=


D0,0u00 + · · · + D0,NMuNM

...

DNM,0u00 + · · · + DNM,MNuNM

 .
Then, in the same way

∂h00

∂u00
= D0,0

∂h00

∂u01
= D0,1

∂h00

∂u02
= D0,2 . . .

∂h00

∂uNM
= D0,NM

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23298

∂h01

∂u00
= D1,0

∂h01

∂u01
= D1,1

∂h01

∂u02
= D1,2 . . .

∂h01

∂uNM
= D1,NM

...

∂hNM

∂u00
= DNM,0

∂hNM

∂u01
= DNM,1

∂hNM

∂u02
= DNM,2 . . .

∂hNM

∂uNM
= DNM,NM .

Thus, JDxu =Dx.
To derive the Jacobian of the nonlinear term, UDxu, we let

h(u) = UDxu =


u00[D0,0u00 + · · · + D0,NMuNM]

...

uNM[DNM,0u00 + · · · + DNM,MNuNM]

 =


u00(Dxu)00
...

uNM(Dxu)NM

 .
By using the product rule, we get that

∂h00

∂u00
= u00D0,0 + (Dxu)00

∂h00

∂u01
= u00D0,1 . . .

∂h00

∂uNM
= u00D0,NM

∂h01

∂u00
= u01D1,0

∂h01

∂u01
= u01D1,1 + (Dxu)01 . . .

∂h01

∂uNM
= u00D0,NM

...

∂hNM

∂u00
= uNM DNM,0

∂hNM

∂u01
= uNM DNM,1 . . .

∂hNM

∂uNM
= uNM DNM,NM + (Dxu)NM .

Hence,

JUDxu =


u00D0,0 + (Dxu)00 u00D0,1 . . . u00D0,NM

u01D1,0 u01D1,1 + (Dxu)01 . . . u01D1,NM
...

uNMDNM,0 uNMDNM,1 . . . uNMDNM,NM + (Dxu)NM


=


u00D0,0 u00D0,1 . . . u00D0,NM

u01D1,0 u01D1,1 . . . u01D1,NM
...

uNMDNM,0 uNMDNM,1 . . . uNMDNM,NM

︸ ︷︷ ︸
UDx

+


(Dxu)00 0 . . . 0

0 (Dxu)01 . . . 0
...

0 0 . . . (Dxu)NM

︸ ︷︷ ︸
Dxu

= UDx +Dxu ,

where Dxu = diag(Dxu).
In a similar manner, for

h(u) =DxUu =


D0,0u2

00 + · · · + D0,NMu2
NM

...

DNM,0u2
00 + · · · + DNM,MNu2

NM


AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23299

we get that

∂h00

∂u00
= 2D0,0u00

∂h00

∂u01
= 2D0,1u01 . . .

∂h00

∂uNM
= 2D0,NMuNM

∂h01

∂u00
= 2D1,0u00

∂h01

∂u01
= 2D1,1u01 . . .

∂h01

∂uNM
= 2D1,NMuNM

...

∂hNM

∂u00
= 2DNM,0u00

∂hNM

∂u01
= 2DNM,1u01 . . .

∂h01

∂uNM
= 2DNM,NMuNM .

Hence, JDxUu = 2DxU . To summarize, we have shown that

Ju = I , JDxu =Dx, JUDxu = UDx +Dxu, JDxUu = 2DxU . (4.1)

4.1. The Jacobian of the spatial operator

Having established these building blocks, we next consider the terms in L(w⃗). Since these terms
have a block structure, so will their Jacobians. Let h1,h2,h3 : R3n → Rn be differentiable functions of
w⃗ and define h̃ : R3n → R3n given by

h̃(w⃗) =


h1(w⃗)
h2(w⃗)
h3(w⃗)

 .
Since

h1 =


h1

00
h1

01
...

h1
NM

 and w⃗ =


u
v
p


it follows that

Jh1
00
=
∂h1

00

∂ w⃗
=

(
∂h1

00
∂w00

. . .
∂h1

00
∂w3NM

)
=

(
∂h1

00
∂u

∂h1
00

∂v

∂h1
00

∂p

)
∈ R1×3n

and similarly for every element in h1. Therefore, the Jacobian of h1 can be expressed as

Jh1 =
∂h1

∂ w⃗
=



∂h1
00

∂u

∂h1
00

∂v

∂h1
00

∂p
∂h1

01
∂u

∂h1
01

∂v

∂h1
01

∂p
...

...
...

∂h1
NM
∂u

∂h1
NM
∂v

∂h1
NM
∂p


=

(
∂h1

∂u
∂h1

∂v
∂h1

∂p

)
∈ Rn×3n .

The same holds for h2 and h3. Thus, the Jacobian of h̃ is given by

Jh̃ =


∂h1

∂u
∂h1

∂v
∂h1

∂p
∂h2

∂u
∂h2

∂v
∂h2

∂p
∂h3

∂u
∂h3

∂v
∂h3

∂p

 ∈ R3n×3n

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23300

and each block in Jh̃ is of size n × n.
For the first term in L(w⃗), A(I3 ⊗Dx) w⃗, we get

h̃(w⃗) =


h1(w⃗)
h2(w⃗)
h3(w⃗)

 = A(I3 ⊗Dx) w⃗ =


UDxu +Dxp

UDxv
Dxu

 =

UDxu +Dxp

Dxvu

Dxu

 .
The last identities are useful when deriving JA(I3⊗Dx) w⃗. By using (4.1), we get that

∂h1

∂u
= UDx +Dxu

∂h1

∂v
= 0

∂h1

∂p
=Dx

∂h2

∂u
=Dxv

∂h2

∂v
= UDx

∂h2

∂p
= 0

∂h3

∂u
=Dx

∂h3

∂v
= 0

∂h3

∂p
= 0 .

Thus,

JA(I3⊗Dx) w⃗ =


UDx +Dxu 0 Dx

Dxv UDx 0

Dx 0 0

 .
Likewise for the second term in L(w⃗), (I3 ⊗Dx)Aw⃗, note that

(I3 ⊗Dx)Aw⃗ =


DxUu +Dxp

DxUv
Dxu

 =

DxUu +Dxp

DxV u
Dxu

 ,
where we have used that V u = Uv. Hence,

J(I3⊗Dx)Aw⃗ =


2DxU 0 Dx

DxV DxU 0
Dx 0 0

 .
The next two terms in L(w⃗) are treated in a similar manner and we get that

JB(I3⊗Dy) w⃗ =


V Dy Dyu 0

0 V Dy +Dyv Dy

0 Dy 0


J(I3⊗Dy)B w⃗ =


DyV DyU 0
0 2DyV Dy

0 Dy 0

 .
Finally, the contribution to the Jacobian of the linear viscous terms simply becomes

J−ϵĨ[(I3⊗Dx)2+(I3⊗Dy)2] w⃗ = −


ϵ(D2

x +D
2
y) 0 0

0 ϵ(D2
x +D

2
y) 0

0 0 0

 .
Adding all of the terms proves the following proposition, which is the first of the two main results

of this paper.

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23301

Proposition 1. The Jacobian JL of the discrete operator L in (3.2) is

JL =


J11

1
2

(
Dyu +DyU

)
Dx

1
2

(
Dxv +DxV

)
J22 Dy

Dx Dy 0

 (4.2)

where

J11 =
1
2

(
UDx +Dxu + 2DxU + V Dy +DyV

)
− ϵ(D2

x +D
2
y)

J22 =
1
2

(
V Dy +Dyv + 2DyV +UDx +DxU

)
− ϵ(D2

x +D
2
y) .

4.2. The Jacobian of the penalty terms

By following the procedure presented above, we next derive the Jacobian for S(w⃗). To start, we
rewrite SS (w⃗) as

S
S (w⃗) =


S

S
1

S
S
2

S
S
3

 = (I3 ⊗ P
−1)


−V P Su/2 + ϵD⊤

yP
Su

−V P Sv/2 + ϵD⊤
yP

Sv

−P Sv

 ∈ R3n . (4.3)

The Jacobian of SS (w⃗) is

JSS =


∂SS

1
∂u

∂SS
1

∂v

∂SS
1

∂p
∂SS

2
∂u

∂SS
2

∂v

∂SS
2

∂p
∂SS

3
∂u

∂SS
3

∂v

∂SS
3

∂p

 ∈ R3n×3n .

The first block in JSS becomes

∂SS
1

∂u
=

(
−

∂

∂u
P −1V P Su/2︸ ︷︷ ︸
=P −1V P S /2

+
∂

∂u
ϵP −1D⊤yP

Su︸ ︷︷ ︸
=ϵP −1D⊤

yP S

)
= P −1

(
−V /2 + ϵD⊤y

)
P S .

Since P S is diagonal, we have V P su = UP Sv and the second block is

∂SS
1

∂v
=

(
−

∂

∂v
P −1UP Sv/2︸ ︷︷ ︸
=P −1UP S /2

+
∂

∂v
ϵP −1D⊤xP

Su︸ ︷︷ ︸
=0

)
= −P −1UP S /2 .

Note that SS does not depend on p and also that SS
2 and SS

3 are both independent of u. Hence, the
remaining non-zero blocks of JSS are

∂SW
2

∂v
= P −1(−V + ϵD⊤

y)P S ,
∂SW

3

∂v
= −P −1P S ,

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23302

where we have used that V P sv = P sV v. Therefore,

JSS = (I3 ⊗ P
−1)


−V /2 + ϵD⊤

y −U/2 0

0 −V + ϵD⊤
y 0

0 −I 0

 (I3 ⊗ P
S) .

For non-homogeneous boundary conditions, the boundary data g will affect the Jacobian if the SATs
are nonlinear with respect to w⃗. We illustrate this by considering SW

1 (the first block in SW), which
we rewrite in a similar manner as we did for SS

1 in (4.3) and get

S
W
1 (w⃗) = P −1(−U/2 + ϵD⊤

x)PW(u − g1)
= −P −1UPW(u − g1)/2 + ϵP −1D⊤

xP
W(u − g1) .

Note that the terms −P −1UPW(u − g1)/2 and ϵP −1D⊤
xP

W(u − g1) are nonlinear and linear with
respect to w⃗ (via u), respectively. The Jacobian to the linear term simply becomes

∂

∂u

(
ϵP −1D⊤

xP
W(u − g1)

)
=

∂

∂u

(
ϵP −1D⊤

xP
Wu

)
︸ ︷︷ ︸

=ϵP −1D⊤xPW

−
∂

∂u

(
ϵP −1D⊤

xP
Wg1

)
︸ ︷︷ ︸

=0

.

For the nonlinear term, we use that UPW = PWU and Ug1 = g1u, which yield

−
∂

∂u

(
P −1PWU (u − g1)/2

)
= −

∂

∂u

(
P −1PWUu)/2

)
︸ ︷︷ ︸

=−P −1PWU

+
∂

∂u

(
P −1PWg1u)/2

)
︸ ︷︷ ︸

=P −1PWg1/2

= P −1(−U + g1/2)PW

Since SW
1 is independent of both v and p, its Jacobian becomes

JSW
1

(w⃗) =
(
P −1(−(U − g1/2) + ϵD⊤

x)PW 0 0
)
∈ Rn×3n

The Jacobian of the other penalty terms are derived in a similar manner and we have therefore
proved the second main result of this paper.

Proposition 2. The Jacobian of the total penalty term (3.6) is

JS(w⃗) =
∑

k∈{W,E,S ,N}

JSk(w⃗) , (4.4)

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23303

where

JSW (w⃗) = (I3 ⊗ P
−1)


−(U − g1/2) + ϵD⊤

x 0 0

−(V − g2)/2 −U/2 + ϵD⊤
x 0

−I 0 0

 (I3 ⊗ P
W)

JSE (w⃗) = (I3 ⊗ P
−1P E)


−ϵDx 0 I
0 −ϵDx 0
0 0 0


JSS (w⃗) = (I3 ⊗ P

−1P S)


−V /2 + ϵD⊤

y −U/2 0

0 −V + ϵD⊤
y 0

0 −I 0

 (I3 ⊗ P
S)

JSN (w⃗) = (I3 ⊗ P
−1P N)


−ϵDy 0 0
0 −ϵDy I
0 0 0

 .
Remark 1. We see from Proposition 1 and Proposition 2 that parts of the blocks in the Jacobian of
both JL and JS are obtained directly from the construction ofL. The few remaining parts are obtained
by i) matrix multiplications between a diagonal matrix and a non-diagonal one (for example, UDx)
and ii) matrix additions. This leads to few new additional operations and hence efficiency.

5. The fully discrete scheme

To evolve the system (3.2) in time, we will, for simplicity and ease of explanation, use the implicit
backward Euler method. More accurate and efficient methods could be used in the same manner in
practice. For an ordinary differential system of equations of the form

Mϕt +H(ϕ) = 0 ,

where ϕ is a function defined on the grid and M is a constant matrix, the backward Euler scheme
becomes

M(ϕi+1 − ϕi)
∆t

+H(ϕi+1) = 0 . (5.1)

In (5.1), ∆t is the size of the time step and the superindices i and i + 1 are the solution at time level i
and i + 1, respectively.

In order to obtain ϕi+1, the system of nonlinear equations in (5.1) must be solved. One strategy is
to first form the function in (1.1), which results in

F (ϕi+1) =
M(ϕi+1 − ϕi)

∆t
+H(ϕi+1) . (5.2)

If we find a vector ϕ∗ such that F (ϕ∗) = 0, then ϕi+1 = ϕ∗. To solve (5.2), we employ Newton’s
method [1], which is described in Algorithm 1. This allows us to solve a sequence of linear systems of
equations and arrive at an approximation of ϕi+1.

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23304

Algorithm 1 Newton’s method

1: Input: ϕ0 and tolerance tol
2: Output: An approximation of ϕ∗, where F (ϕ∗) = 0
3: for j = 0, 1, 2, . . . do
4: solve JF (ϕ j)h j = −F (ϕ j)
5: set ϕ j+1 = ϕ j + h j

6: if ∥F (ϕ j+1)∥ < tol then
7: return ϕ j+1

8: end if
9: end for

For the INS equations, ϕ = w⃗,H(ϕ) = L(ϕ) − S(ϕ), andM = Ĩ . Hence, (5.2) becomes

F (w⃗i+1) =
1
∆t



ui+1

vi+1

0

 −

ui

vi

0


 +L(w⃗i+1) − S(w⃗i+1) . (5.3)

Furthermore, JH (w⃗) = JL(w⃗) − JS(w⃗), which yields

JF (w⃗) =
1
∆t

Ĩ + JL(w⃗) − JS(w⃗) , (5.4)

to be used in the Newton iterations. In (5.4), JL(w⃗) and JS(w⃗) are given in Proposition 1 and
Proposition 2, respectively.

6. Numerical experiments

A simple finite-difference approximation of the Jacobian is given by [5]

Ji, j ≈ Ĵi, j =
F i(w⃗ + δ je j) − F i(w⃗)

δ j
. (6.1)

The approximation in (6.1) was used during the implementation of the analytical expression of JF since
we expected ∥J − Ĵ∥∞ to be small. This allowed us to write unit tests ensuring that the Jacobian had
been correctly implemented, by comparing it to the approximation. In (6.1), a small δ leads to a good
approximation. However, note that if δ is chosen too small, the approximation will be contaminated by
floating-point roundoff errors, which limits the practically achievable accuracy of J [5].

Computing difference approximations of the Jacobian also allowed us to compare the efficiency
of Newton’s method using approximate versus analytical Jacobians. Note that computing the
approximation (6.1) requires n evaluations of F , resulting in O(n2) complexity, compared to the O(n)
complexity of evaluating the exact Jacobian. Table 1 shows the execution times for evaluating the
analytical Jacobian versus computing the approximation (6.1) at increasing resolutions.

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23305

Table 1. Execution times for computing the exact Jacobian of F versus execution times
computing an approximate Jacobian using the finite difference approximation (6.1). Even
at low resolutions, using difference approximations to compute the Jacobian is clearly
unrealistic.

Resolution Exact FD approximation
5 × 5 0.005s 0.858s

10 × 10 0.006s 13.85s
15 × 15 0.006s 76.49s
20 × 20 0.007s 261.6s

As expected, due to the large number of evaluations of F needed to compute the approximation,
such a strategy quickly becomes infeasible.

It is readily seen that the number of floating point operations needed to evaluate the discrete spatial
operator L grows linearly with the degrees of freedom n. Consider, for example, the term A(I3 ⊗

Dx) w⃗. The first product, (I3 ⊗Dx) w⃗, are finite difference approximations at each point in the grid,
resulting in Cn operations, where C depends on the width of the difference stencil. The matrix A
is a 3-by-3 block matrix with diagonal blocks, and so results in another O(n) number of operations.
Analogously, the remaining terms in L each contribute O(n) operations. The arithmetic complexity
of evaluating a penalty term S is O(

√
n) (assuming equal resolution in the horizontal and vertical

directions), since S acts only on the grid boundary. Hence, the arithmetic complexity of evaluating F
is O(n).

Let us study the arithmetic complexity of evaluating the Jacobian JF of F . Inspecting the form
of the Jacobian JL in Proposition 1 we see a number of terms that need to be evaluated. The partial
derivatives Dxu, Dyv, etc, have already been computed as part of the evaluation of L, and hence
can be disregarded. Similarly, terms that do not depend on the solution, such as Dx, D2

x, etc, can be
disregarded since they remain constant throughout the simulation. Finally, we have terms of the type
UDx, DyV , etc. These are all products of a diagonal matrix and a banded difference stencil matrix,
and each contribute with O(n) operations. Summing the terms uses O(n) operations. Therefore, the
arithmetic complexity of evaluating JL is O(n). In fact, the number of operations needed to evaluate
products like UDx or DyV do not exceed the number of operations needed to compute the discrete
partial derivatives involved in L. Hence, the cost ratio of evaluating JL and evaluating L is less than 1
(i.e., the additional cost of evaluating JL is small). As before, the arithmetic complexity of evaluating
the Jacobian with respect to a boundary penalty S is O(

√
n) since it acts only on the boundary of the

grid. Thus, the total arithmetic complexity of evaluating JF is less than the cost of evaluating F .

6.1. The order of accuracy

The method of manufactured solution [15] is used to verify the implementation. In all computations
in this subsection, the initial guess is the solution from the previous time step and the tolerance tol in
Algorithm 1 is set to 10−12. For the SBP operators SBP21 and SBP42, the expected orders of accuracy
for the system (3.2) are 2 and 3, respectively [16, 17].

Remark 2. The SBP21 and SBP42 operators (in general, SBPpq) are difference operators that satisfy
the SBP property (3.1) and all derivations in this paper hold for these difference operators. The

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23306

numbers pq correspond to the interior accuracy and accuracy on the boundaries, respectively. For
a diagonal norm based SBPpq operator, Df = fx + O(hl), where l = p in the interior and l = p/2
at the boundaries. For stable approximations, this leads, in general, to p + 1 order accurate solutions
[16, 17].

The manufactured solution we have used is

u = 1 + 0.1 sin(3πx − 0.01t) sin(3πy − 0.01t)
v = sin(3πx − 0.01t) sin(3πy − 0.01t)
p = cos(3πx − 0.01t) cos(3πy − 0.01t) .

(6.2)

Inserting (6.2) into (2.1) leads to a non-zero right-hand side k⃗(t, x, y), which is evaluated on the grid
and added to the right-hand side of (3.2) by the vector k⃗(t). Since k⃗ is independent of w⃗, it does not
affect the Jacobian. The initial and boundary data are also taken from (6.2). The step size is chosen
to be ∆t = 10−5 and the computations are terminated at t = 1. Next, we compute the pointwise error
vector e⃗ and its L2-norm ∥ e⃗∥I3⊗P . The spatial convergence rate for the SBP operators is given by
r = log(∥e∥i/∥e∥ j)/ log((j − 1)/(i − 1)), where i and j refer to the number of grid points in both spatial
dimensions. The order of accuracy in space are presented in Table 2 and agree well with the theory.

Table 2. Error and convergence rate.

operator SBP21 SBP42
N ∥e∥ r ∥e∥ r
21 4.13e-02 – 1.90e-02 –
41 9.73e-03 2.16 2.19e-03 3.23
61 4.17e-03 2.13 6.34e-04 3.12
81 2.28e-03 2.12 2.70e-04 3.01

Theoretical 2 3

Next, we consider the steady-state problem of (2.1) and (3.2), which means that the goal is to find
w⃗∗ such that

L(w⃗∗) = S(w⃗∗) . (6.3)

As before, we want to find an approximation to the vector w⃗∗ which satisfies

F (w⃗∗) = L(w⃗∗) − S(w⃗∗) = 0 . (6.4)

The Jacobian of F is JF (w⃗) = JL(w⃗) − JS(w⃗). When the iterate w⃗k is far away from w⃗∗, Newton’s
method may not converge and other techniques must initially be applied. We choose the SOR method
[1] until ∥F(w⃗k)∥∞ is sufficiently small. For SOR, the next iterate is given by w⃗k+1

= w⃗k(1 − α) +
(w⃗k
− hk)α, where hk is the Newton step from Algorithm 1 and α ∈ (0, 1].

To verify our procedure, we choose the steady manufactured solution to be [18]

u = 1 − eλx cos(2πy) v =
1

2π
λeλx sin(2πy)

p =
1
2

(
1 − e2λx

)
λ =

1
2ϵ
−

√
1

4ϵ2 + 4π2

(6.5)

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23307

and the computational domain is changed toΩ = [−0.5, 1]×[−1, 1] for ϵ = 1/20. Inserting (6.5) into
the time-independent version of (2.1) leads to k⃗(t, x, y) = 0. The initial guess is w⃗0

= (1, 1, . . . , 1)⊤

and the tolerance tol in Algorithm 1 is again set to 10−12. Table 3 shows the error and convergence
rates, which again agree well with the theory. In Figure 2, the streamlines and the velocity field are
illustrated for the converged solution on the grid containing 100 × 100 points. They agree well with
previous results [18].

Figure 2. Streamlines and the velocity field of (6.5).

Table 3. Error and (accuracy) convergence rate of (6.5).

operator SBP21 SBP42
N ∥e∥ r ∥e∥ r
21 2.04e-01 – 4.95e-02 –
41 4.56e-02 2.16 6.86e-03 2.85
61 2.04e-02 1.98 2.20e-03 2.80
81 1.16e-02 1.97 9.76e-04 2.83

101 7.46e-03 1.97 5.16e-04 2.85
Theoretical 2 3

6.2. The convergence rate of the Newton iteration

Next, we will test the main development in this paper. For w⃗k sufficiently close to w⃗∗, Newton’s
method converges quadratically in any norm [1], which means that ek+1 = Ce2

k , where C varies
marginally between iterations and ek = ∥ w⃗

k
− w⃗∗∥. To verify that, we consider a grid of size 100×100

with the SBP42 operator. The exact solution w⃗∗ is approximated by the last iterate. By the assumption
that C is constant, the relation

ek+1

ek
≈

(
ek

ek−1

)p

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23308

is obtained for a general convergence rate p, which yields

p ≈
log(ek+1/ek)
log(ek/ek−1)

.

The error ek = ∥ w⃗
k
− w⃗∗∥∞ is presented in Table 4 together with the estimations of p. The convergence

rate agrees well with the expected theoretical one, which verifies that the Jacobian of F is correct.

Table 4. Errors and the estimated (iterative) convergence rates of (6.5).

k ∥ek∥∞ p
1 3.56e+00 –
2 1.85e+01 –
3 1.89e+00 -1.38
4 1.21e+00 0.20
5 5.53e-01 1.74
6 1.10e-01 2.07
7 3.21e-03 2.19
8 3.31e-06 1.94
9 4.14e-12 1.98

Theoretical 2

Next, we move on to a more realistic case where the boundary data is set to g1 = 1, g2 = g3 =

g4 = g5 = g6 = 0, and ϵ = 0.01, which will lead to a boundary layer. The computations are performed
on Ω = [0, 1]2 with 200 × 200 grid points with the SBP42 operator. Figure 3 illustrates u for the
converged solution and the iterative convergence order, p, is presented in Table 5. The estimated
iterative convergence order agrees well with what is theoretically expected.

Figure 3. Viscous flow over a solid surface. The plot illustrates u for the converged solution.

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23309

Table 5. Errors and the estimated (iterative) convergence rates for the flow over a solid
surface.

k ∥ek∥∞ p
1 1.68e+00 –
2 6.17e-01 –
3 1.15e-01 1.67
4 4.37e-03 1.95
5 1.02e-05 1.85
6 5.51e-11 2.00

Theoretical 2

In the last experiment, we consider the incompressible Euler equation using a curvilinear grid.
Both the south and north sides are solid surfaces, where the normal velocity is zero. The west side is
an inflow boundary where u = 1 and v = 0 are specified, and at the east side, p = 0 is imposed. We
change the domain toΩ = [−1.5, 1.5]×[0, 0.8] and include a smooth bump at the south boundary given
by y(x) = 0.0625e−25x2

[19] . In Figure 4, the converged solution is illustrated and the estimated iterative
convergence rate p is presented in Table 6 for the initial guess (u0;v0;p0) = (1, . . . , 1; 0, . . . , 0; 1, . . . 1).
Again, the results agree well with the theoretical value.

Figure 4. Inviscid flow over a smooth bump. The plot illustrates the velocity field (arrows)
and u (color figure) at the converged solution.

Table 6. Errors and the estimated (iterative) convergence rates for the bump.

k ∥ek∥∞ p
1 3.56e+00 –
2 4.91e-01 –
3 1.74e-02 1.69
4 3.33e-05 1.87
5 1.55e-10 1.96

Theoretical 2

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23310

Remark 3. In the example above containing the curvilinear grid, the geometry is included in the
definition of the derivative operators [20]. This simplifies the derivation of the corresponding Jacobian
since no special consideration of the metric terms are required. The work in [20] was extended in [21]
to included even more complex geometries with several sub-domains and non-conforming interfaces.
In general, as long as the discretization can be written in a matrix-vector form (including unstructured
mesh discretizations [22]), the additional effort to derive the Jacobian is small.

7. Conclusions

We derived an explicit expression for the Jacobian of a finite-difference discretization of the
incompressible Navier-Stokes equations. Both the Jacobian of the system of equations and the
Jacobian of the related boundary condition was computed exactly. By using the block structure
of the discretization, we showed that the Jacobian had a block structure as well, which leads to a
compact and clean expression. We also showed that large parts of the Jacobian were computed by
evaluating the discretization. We showed that the Jacobian could be used both in steady-state and time-
dependent simulations. The numerical discretization was verified by manufactured solutions and the
spatial convergence rates agreed well with the theoretical expectations. Furthermore, the computed
estimates of the iterative convergence rates for Newton’s method was two, which verified that the
Jacobian was correctly computed. The methodology used in this paper is general and can be used in
a straightforward manner for any numerical discretization of initial boundary value problems that can
be written in matrix-vector form. The method is particularly straightforward for approximations in
SBP-SAT form.

Author contributions

J. N.: Conceptualization, Methodology, Funding acquisition, Project administration, Supervision,
Writing–review and editing; F. L., O. Å.: Conceptualization, Formal analysis, Methodology, Software,
Validation, Visualization, Writing–original draft.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

J. N. was supported by Vetenskapsrådet, Sweden [award 2021-05484 VR] and the University of
Johannesburg.

Conflict of interest

The authors declare no conflict of interest.

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

23311

References

1. A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, 2nd Edition, Vol. 37 of Texts in Applied
Mathematics, Springer-Verlag, Berlin, 2007. https://doi.org/10.1007/b98885

2. A. Jameson, Time dependent calculations using multigrid, with applications to unsteady
flows past airfoils and wings, in: 10th Computational Fluid Dynamics Conference, (1991).
https://doi.org/10.2514/6.1991-1596

3. J. Nordström, A. A. Ruggiu, Dual time-stepping using second derivatives, J. Sci. Comput., 81
(2019), 1050–1071. https://doi.org/10.1007/s10915-019-01047-5

4. J. Nocedal, S. J. Wright, Numerical optimization, 2nd Edition, Springer Series in Operations
Research and Financial Engineering, Springer, New York, 2006.

5. D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches and
applications, J. Comput. Phys., 193 (2004), 357–397. https://doi.org/10.1016/j.jcp.2003.08.010

6. P. N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci.
Statist. Comput., 11 (1990), 450–481. https://doi.org/10.1137/0911026

7. M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value
problems, J. Comput. Phys., 268 (2014), 17–38. https://doi.org/10.1016/j.jcp.2014.02.031

8. D. C. Del Rey Fernández, J. E. Hicken, D. W. Zingg, Review of summation-by-parts operators
with simultaneous approximation terms for the numerical solution of partial differential equations,
Comput. Fluids, 95 (2014), 171–196. https://doi.org/10.1016/j.compfluid.2014.02.016

9. M. H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary conditions for finite-difference
schemes solving hyperbolic systems: Methodology and application to high-order compact
schemes, J. Comput. Phys., 111 (1994), 220–236, https://doi.org/10.1006/jcph.1994.1057

10. J. Nordström, C. La Cognata, Energy stable boundary conditions for the nonlinear incompressible
Navier-Stokes equations, Math. Comput., 88 (2019), 665–690. https://doi.org/10.1090/mcom/3375

11. J. Nordström, F. Laurén, The spatial operator in the incompressible Navier–Stokes,
Oseen and Stokes equations, Comput. Meth. Appl. Mech. Eng., 363 (2020),
https://doi.org/10.1016/j.cma.2020.112857

12. J. Chan, C. G. Taylor, Efficient computation of Jacobian matrices for entropy stable summation-
by-parts schemes, J. Comput. Phys., 448 (2022). https://doi.org/10.1016/j.jcp.2021.110701

13. T. C. Papanastasiou, N. Malamataris, K. Ellwood, A new outflow boundary condition. Int. J. Numer.
Meth. Fluids, 14 (1992), 587–608. https://doi.org/10.1002/fld.1650140506

14. J. Nordström, A roadmap to well posed and stable problems in computational physics, J. Sci.
Comput., 71 (2017), 365–385. https://doi.org/10.1007/s10915-016-0303-9

15. P. J. Roache, Code verification by the method of manufactured solutions, J. Fluid. Eng-T. ASME,
124 (2002), 4–10. https://doi.org/10.1115/1.1436090

16. M. Svärd, J. Nordström, On the order of accuracy for difference approximations of initial-boundary
value problems, J. Comput. Phys., 218 (2006), 333–352. https://doi.org/10.1016/j.jcp.2006.02.014

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

https://dx.doi.org/https://doi.org/10.1007/b98885
https://dx.doi.org/https://doi.org/10.2514/6.1991-1596
https://dx.doi.org/https://doi.org/10.1007/s10915-019-01047-5
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2003.08.010
https://dx.doi.org/https://doi.org/10.1137/0911026
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.02.031
https://dx.doi.org/https://doi.org/10.1016/j.compfluid.2014.02.016
https://dx.doi.org/https://doi.org/10.1006/jcph.1994.1057
https://dx.doi.org/https://doi.org/10.1090/mcom/3375
https://dx.doi.org/https://doi.org/10.1016/j.cma.2020.112857
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110701
https://dx.doi.org/https://doi.org/10.1002/fld.1650140506
https://dx.doi.org/https://doi.org/10.1007/s10915-016-0303-9
https://dx.doi.org/https://doi.org/10.1115/1.1436090
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2006.02.014

23312

17. M. Svärd, J. Nordström, On the convergence rates of energy-stable finite-difference schemes, J.
Comput. Phys., 397 (2019). https://doi.org/10.1016/j.jcp.2019.07.018

18. L. Kovasznay, Laminar flow behind a two-dimensional grid, Math. Proc. Cambridge, 344 (1948),
58–62. https://doi.org/10.1017/S0305004100023999

19. M. Galbraith, 5th International Workshop on High-Order CFD Methods, VI2 Smooth Gaussian
bump. https://acdl.mit.edu/HOW5/WorkshopPresentations/HOW5_Welcome.pdf

20. O. Ålund, J. Nordström, Encapsulated high order difference operators on
curvilinear non-conforming grids, J. Comput. Phys., 385 (2019), 209–224,
https://doi.org/10.1016/j.jcp.2019.02.007

21. T. Lundquist, F. Laurén, J. Nordström, A multi-domain summation-by-parts formulation for
complex geometries, J. Comput. Phys., 463 (2022). https://doi.org/10.1016/j.jcp.2022.111269

22. J. Nordström, K. Forsberg, C. Adamsson, P. Eliasson, Finite volume methods, unstructured
meshes and strict stability for hyperbolic problems, Appl. Numer. Math., 45 (2003), 453–473.
https://doi.org/10.1016/S0168-9274(02)00239-8

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 9, 23291–23312.

https://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.07.018
https://dx.doi.org/https://doi.org/10.1017/S0305004100023999
https://acdl.mit.edu/HOW5/WorkshopPresentations/HOW5_Welcome.pdf
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.02.007
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2022.111269
https://dx.doi.org/https://doi.org/10.1016/S0168-9274(02)00239-8
https://creativecommons.org/licenses/by/4.0

	Introduction
	Problem formulation
	The semi-discrete scheme
	Exact computation of the Jacobian
	The Jacobian of the spatial operator
	The Jacobian of the penalty terms

	The fully discrete scheme
	Numerical experiments
	The order of accuracy
	The convergence rate of the Newton iteration

	Conclusions

