We found conditions on an $ n $-dimensional Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ to be trivial. First, we showed that under an appropriate upper bound on the squared length of the covariant derivative of the potential field $ \mathbf{u} $, the Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ reduces to a trivial soliton. We also showed that appropriate upper and lower bounds on the Ricci curvature $ Ric\left(\mathbf{u}, \mathbf{u}\right) $ of a compact Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ with potential field $ \mathbf{u} $ geodesic vector field makes it a trivial soliton. We showed that if the Ricci operator $ S $ of the Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ is invariant under the potential field $ \mathbf{u} $, then $ \left(M, g, \mathbf{u}, \lambda \right) $ is trivial and the converse is also true. Finally, it was shown that if the potential field $ \mathbf{u} $ of a connected Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ is a concurrent vector field, then the Ricci soliton is shrinking.
Citation: Nasser Bin Turki, Sharief Deshmukh. Sufficient conditions for triviality of Ricci solitons[J]. AIMS Mathematics, 2024, 9(1): 1346-1357. doi: 10.3934/math.2024066
We found conditions on an $ n $-dimensional Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ to be trivial. First, we showed that under an appropriate upper bound on the squared length of the covariant derivative of the potential field $ \mathbf{u} $, the Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ reduces to a trivial soliton. We also showed that appropriate upper and lower bounds on the Ricci curvature $ Ric\left(\mathbf{u}, \mathbf{u}\right) $ of a compact Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ with potential field $ \mathbf{u} $ geodesic vector field makes it a trivial soliton. We showed that if the Ricci operator $ S $ of the Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ is invariant under the potential field $ \mathbf{u} $, then $ \left(M, g, \mathbf{u}, \lambda \right) $ is trivial and the converse is also true. Finally, it was shown that if the potential field $ \mathbf{u} $ of a connected Ricci soliton $ \left(M, g, \mathbf{u}, \lambda \right) $ is a concurrent vector field, then the Ricci soliton is shrinking.
[1] | B. Chow, P. Lu, L. Ni, Hamiltonís Ricci flow, American Mathematical Society, 2006. |
[2] | S. Deshmukh, N. B. Turki, H, Alsodais, Characterizations of trivial Ricci solitons, Adv. Math. Phys., 2020 (2020), 9826570. https://doi.org/10.1155/2020/9826570 doi: 10.1155/2020/9826570 |
[3] | A. T. Ali, S. Khan, Ricci soliton vector fields of Kantowski Sachs spacetimes, Mod. Phys. Lett. A, 37 (2022), 2250146. https://doi.org/10.1142/S0217732322501462 doi: 10.1142/S0217732322501462 |
[4] | N. Bin Turki, A. M. Blaga, S. Deshmukh, Soliton-type equations on a Riemannian manifold, Mathematics, 10 (2022), 633. https://doi.org/10.3390/math10040633 doi: 10.3390/math10040633 |
[5] | X. Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal., 17 (2007), 425–433. https://doi.org/10.1007/BF02922090 doi: 10.1007/BF02922090 |
[6] | X. Cao, B. Wang, Z. Zhang, On locally conformally flat gradient shrinking Ricci solitons, Commun. Contemp. Math., 13 (2011), 269–282. https://doi.org/10.1142/S0219199711004191 doi: 10.1142/S0219199711004191 |
[7] | S. Deshmukh, H. Alsodais, A Note on Ricci solitons, Symmetry, 12 (2020), 289. https://doi.org/10.3390/sym12020289 |
[8] | F. J. Li, J. Zhou, Rigidity characterization of compact Ricci solitons, J. Korean Math. Soc., 56 (2019), 1475–1488. https://doi.org/10.4134/JKMS.j180747 doi: 10.4134/JKMS.j180747 |
[9] | S. Deshmukh, Jacobi-type vector fields on Ricci solitons, B. Math. Soc. Sci. Math., 55 (2012), 41–50. |
[10] | Tahirullah, A. T. Ali, S. Khan, Ricci soliton vector fields of spherically symmetric static spacetimes, Mod. Phys. Lett. A, 36 (2021), 2150014. https://doi.org/10.1142/S0217732321500140 doi: 10.1142/S0217732321500140 |
[11] | Y. Li, M. Erdogdu, A. Yuvaz, Nonnull soliton surface associated with the Betchov-Da Rios equation, Rep. Math. Phys., 90 (2022), 241–255. https://doi.org/10.1016/S0034-4877(22)00068-4 doi: 10.1016/S0034-4877(22)00068-4 |
[12] | Z. Chen, Y. Li, S. Sarkar, S. Dey, A. Bhattacharyya, Ricci soliton and certain related metrics on a three dimensional trans-Sasakian manifold, Universe, 8 (2022), 595. https://doi.org/10.3390/universe8110595 doi: 10.3390/universe8110595 |
[13] | Y. Li, M. Erdogdu, A. Yavuz, Differential geometric approach of Betchow-Da Rios soliton equation, Hacet. J. Math. Stat., 52 (2023), 114–125. https://doi.org/10.15672/hujms.1052831 doi: 10.15672/hujms.1052831 |
[14] | S. Deshmukh, V. A. Khan, Geodesic vector fields and Eikonal equation on a Riemannian manifold, Indagat. Math., 30 (2019), 542–552. https://doi.org/10.1016/j.indag.2019.02.001 doi: 10.1016/j.indag.2019.02.001 |
[15] | S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math., 13 (2016), 2951–2958. https://doi.org/10.1007/s00009-015-0666-4 doi: 10.1007/s00009-015-0666-4 |
[16] | I. Al-Dayel, S. Deshmukh, On compact trans-Sasakian manifolds, Adv. Math. Phys., 2022 (2022), 9239897. https://doi.org/10.1155/2022/9239897 doi: 10.1155/2022/9239897 |
[17] | K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103. https://doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594 |
[18] | K. Yano, Sur le parallelisme et la concourance dans l'espace de Riemann, Proc. Imp. Acad., 19 (1943), 189–197. https://doi.org/10.3792/pia/1195573583 doi: 10.3792/pia/1195573583 |
[19] | K. Yano, B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep., 23 (1971), 343–350. https://doi.org/10.2996/kmj/1138846372 doi: 10.2996/kmj/1138846372 |
[20] | K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, 1970. |
[21] | N. Bin Turki, A note on incompressible vector fields, Symmetry, 15 (2023), 1479. https://doi.org/10.3390/sym15081479 doi: 10.3390/sym15081479 |