

AIMS Mathematics, 9(1): 1346–1357. DOI: 10.3934/math.2024066 Received: 18 October 2023 Revised: 23 November 2023 Accepted: 30 November 2023 Published: 08 December 2023

http://www.aimspress.com/journal/Math

## **Research** article

# Sufficient conditions for triviality of Ricci solitons

## Nasser Bin Turki and Sharief Deshmukh\*

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

\* Correspondence: Email: shariefd@ksu.edu.sa.

Abstract: We found conditions on an *n*-dimensional Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  to be trivial. First, we showed that under an appropriate upper bound on the squared length of the covariant derivative of the potential field  $\mathbf{u}$ , the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  reduces to a trivial soliton. We also showed that appropriate upper and lower bounds on the Ricci curvature  $Ric(\mathbf{u}, \mathbf{u})$  of a compact Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  with potential field  $\mathbf{u}$  geodesic vector field makes it a trivial soliton. We showed that if the Ricci operator S of the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is invariant under the potential field  $\mathbf{u}$ , then  $(M, g, \mathbf{u}, \lambda)$  is trivial and the converse is also true. Finally, it was shown that if the potential field  $\mathbf{u}$  of a connected Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is a concurrent vector field, then the Ricci soliton is shrinking.

**Keywords:** Ricci soliton; potential field; geodesic vector field; concurrent vector field **Mathematics Subject Classification:** 35Q51, 53B25, 53B50

## 1. Introduction

In first decade of the nineteenth century, Poincare made the following conjecture: "A compact simply connected three-manifold without boundary is diffeomorphic to the three sphere  $S^3$ ." A more general conjecture than Poincare conjecture is Thurston's geometrization conjecture, which says that any closed three-manifold can be decomposed into pieces such that each piece has a locally homogeneous metric and are  $S^3$ ,  $R^3$ ,  $H^3$ ,  $S^2 \times R$ ,  $H^2 \times R$ , SL(2, R),  $nil^3$  and  $sol^3$ . With the aim of proving the geometrization conjecture, Hamilton [1] initiated a program in 1982 called Ricci flow that starts with a given Riemannian metric  $g_0$  on a smooth *n*-dimensional manifold *M* and evolves it as a one-parameter family of metrics g(s) satisfying

$$\partial_s g = -2Ric, \quad g(0) = g_0,$$

where Ric is the Ricci tensor of the evolving metric g(s). The generalized fixed points of the Ricci flow are those manifolds that change by a diffeomorphism and a rescaling under the Ricci flow. More

precisely, let *M* be an *n*-dimensional smooth manifold and (M, g(s)) be a solution of the Ricci flow such that  $g(0) = g_0$ . Let  $f_s : M \to M$  be a one-parameter family of diffeomorphisms generated by the family of vector fields X(s) and let  $\rho(s)$  be a time-dependent scale factor, then a solution of the Ricci flow of the form  $g(s) = \rho(s) f_s^*(g)$  is called Ricci soliton. Thus, a Ricci soliton is a generalized fixed point of the Ricci flow, viewed as a dynamical system on the space of Riemannian metrics modulo diffeomorphisms and scalings. Taking the derivative of the above equation with respect to *s*, substituting s = 0 and assuming  $\dot{\rho}(0) = -2\lambda$ ,  $\rho(0) = 1$ ,  $f_0 = id$ ,  $X(0) = \mathbf{u}$ , we get

$$\frac{1}{2}\mathbf{f}_{\mathbf{u}}g + \operatorname{Ric} = \lambda g, \tag{1.1}$$

where  $\lambda$  is a constant,  $\pounds_{\mathbf{u}}$  is the Lie-derivative of g with respect to **u** and Ric is the Ricci tensor of (M, g). We shall denote a Ricci soliton by  $(M, g, \mathbf{u}, \lambda)$ . The topic Ricci soliton is important in geometry as well as global analysis, especially since it was deployed in settling the famous Poincarè conjecture. The vector field **u** appearing in Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is called the potential field of the Ricci soliton. If the potential field **u** is Killing; that is,  $\pounds_{\mathbf{u}}g = 0$ , then the definition of Ricci soliton implies

$$\operatorname{Ric} = \lambda g;$$

that is, the Ricci soliton is an Einstein manifold. In this case the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is called a trivial Ricci soliton.

In [1–7], authors found different conditions under which a Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is a trivial Ricci soliton. For compact gradient Ricci solitons in [5], the author derived several identities, and later in [6] these identities were used to prove that a compact gradient shrinking Ricci soliton, which is locally conformally flat, must be trivial. In [8], authors used the Ricci mean value  $\delta$  of an *n*-dimensional compact gradient Ricci soliton  $(M, g, \nabla f, \lambda)$  defined by

$$\delta = \frac{1}{nV} \int_{M} Ric\left(\nabla f, \nabla f\right),$$

where *V* is the volume of *M* and *Ric*  $(\nabla f, \nabla f)$  is the Ricci curvature in the direction of  $\nabla f$ , to prove for  $n \ge 2$  that  $\delta \ge 0$ ; the equality holds if, and only if, the Ricci soliton is trivial. Similarly, in [9] the author has considered Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  of positive Ricci curvature and has shown that if the potential field **u** is a Jacobi-type vector field, then the Ricci soliton is trivial.

Apart from finding conditions under which a Ricci soliton is trivial, there are several important aspects of the geometry of Ricci solitons. For instance, on space times such as spherically symmetric static space times Lorentzian plane-symmetric static space times and Kantowski Sachs space times, treated as Ricci solitons, the role of potential field on these respective space times is studied in [3, 10–13], respectively.

We denote by  $\eta$  the smooth one-form dual to **u** that is

$$\eta(X) = g(X, \mathbf{u}),$$

for smooth vector field X on M, then we obtain a skew-symmetric tensor field F defined on M by

$$\frac{1}{2}d\eta\left(X,Y\right)=g\left(F(X),Y\right)$$

AIMS Mathematics

for smooth vector fields X and Y on M.

One of the important questions on Ricci solitons is to find conditions under which a Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is trivial. Note that the squared length of the covariant derivative of potential field **u** is given by

$$\|\nabla \mathbf{u}\|^2 = \sum_{i=1}^n g\left(\nabla_{u_i} \mathbf{u}, \nabla_{u_i} \mathbf{u}\right),$$

where  $\{u_1, u_2, \dots, u_n\}$  is a local orthonormal frame on M,  $n = \dim M$ . Also, we define

$$||F||^{2} = \sum_{i=1}^{n} g(F(u_{i}), F(u_{i})).$$

Our first result is the following:

**Theorem 1.** If the covariant derivative of the potential field **u** of a connected Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  satisfies

$$\|\nabla \mathbf{u}\|^2 \le \|F\|^2,$$

then the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is trivial.

Recall that if potential field **u** is Killing makes  $(M, g, \mathbf{u}, \lambda)$  a trivial Ricci soliton. In [14], authors introduced the notion of the geodesic vector field. Note that a Killing vector field of constant length is a geodesic vector field, and there are many examples of geodesic vector fields that are not Killing. Recall that a vector field  $\xi$  on a Riemannian (M, g) is said to be a geodesic vector field if

$$\nabla_{\mathcal{E}}\xi = 0$$

that is, the integral curves of  $\xi$  are geodesics. An interesting example is provided by the vector field  $\xi$  of a proper tran-Sasakian manifold  $(M, g, \phi, \xi, \eta, \alpha, \beta)$ , which is a geodesic vector field that is not killing [15, 16]. A similar example is provided by the vector field  $\xi$  of a Kenmotsu manifold  $(M, g, \phi, \xi, \eta)$  [17].

In our next result on an *n*-dimensional Ricci soliton  $(M, g, \mathbf{u}, \lambda)$ , we use the condition that the potential field **u** is a geodesic vector field to prove the following:

**Theorem 2.** If the Ricci curvature Ric ( $\mathbf{u}$ ,  $\mathbf{u}$ ) of an n-dimensional compact Ricci soliton (M, g,  $\mathbf{u}$ ,  $\lambda$ ) with scalar curvature  $\tau$  satisfies

$$\|F\|^2 \le Ric(\mathbf{u},\mathbf{u}) \le \frac{\tau}{n} \|\mathbf{u}\|^2$$

and the potential field **u** is a geodesic vector field, then the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is trivial.

For an *n*-dimensional Ricci soliton  $(M, g, \mathbf{u}, \lambda)$ , we let  $\{\varphi_t\}$  be the local flow of the potential field  $\mathbf{u}$ , then the Ricci operator S of  $(M, g, \mathbf{u}, \lambda)$  is said to be invariant under  $\mathbf{u}$  if

$$S \circ d\varphi_t = d\varphi_t \circ S$$

or, equivalently,

$$\pounds_{\mathbf{u}}S = 0.$$

If the Ricci operator *S* of the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is invariant under the potential field  $\mathbf{u}$ , then we have the following characterization of a trivial Ricci soliton.

AIMS Mathematics

**Theorem 3.** If the Ricci operator S an n-dimensional compact Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is invariant under the potential field  $\mathbf{u}$  and satisfies

$$(\nabla S)(U, \mathbf{u}) = (\nabla S)(\mathbf{u}, U)$$

for each vector field U on M, then  $(M, g, \mathbf{u}, \lambda)$  is a trivial Ricci soliton and the converse also holds.

A Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is said to be shrinking if the constant is  $\lambda > 0$  [1]; it is an important question to find geometric conditions under which a Ricci soliton is shrinking. One of important classical vector fields is concurrent vector field  $\xi$  on a Riemannian manifold (M, g), which obeys

 $\nabla_U \xi = U$ 

for any smooth vector field U on M. This means that the holonomy group of M leaves a point of M invariant [18, 19]. In our final result, we use the condition that the potential field  $\mathbf{u}$  of the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is a concurrent vector field to prove the following:

**Theorem 4.** Let  $(M, g, \mathbf{u}, \lambda)$  be an n-dimensional connected Ricci soliton with  $\mathbf{u}$  as a concurrent vector field, then  $(M, g, \mathbf{u}, \lambda)$  is a shrinking Ricci soliton.

#### 2. Preliminaries

Suppose  $(M, g, \mathbf{u}, \lambda)$  is an *n*-dimensional Ricci soliton, then by Eq 1.1 we have

$$\frac{1}{2}\mathfrak{t}_{\mathbf{u}}g + \operatorname{Ric} = \lambda g.$$

We denote by S the Ricci operator of  $(M, g, \mathbf{u}, \lambda)$  satisfying

$$\operatorname{Ric}(U, V) = g(S(U), V), \quad U, V \in \mathfrak{X}(M),$$

where  $\mathfrak{X}(M)$  is the Lie-algebra of vector field on M. Using the following expressions

$$(\pounds_{\mathbf{u}}g)(U,V) = g(\nabla_U \mathbf{u},V) + g(\nabla_V \mathbf{u},U)$$

and

$$(d\eta)(U,V) = g(\nabla_U \mathbf{u}, V) - g(\nabla_V \mathbf{u}, U),$$

we derive

$$g\left(\nabla_{U}\mathbf{u},V\right) = \frac{1}{2}\left(\pounds_{\mathbf{u}}g\right)\left(U,V\right) + \frac{1}{2}d\eta\left(U,V\right);$$

that is,

$$g\left(\nabla_{U}\mathbf{u},V\right) = \lambda g\left(U,V\right) - \operatorname{Ric}\left(U,V\right) + g\left(F(U),V\right).$$
(2.1)

Equation 2.1 implies

$$\nabla_U \mathbf{u} = \lambda U - S(U) + F(U). \tag{2.2}$$

Recall that the scalar curvature  $\tau$  of the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is given by

$$\tau = \operatorname{tr} S = \sum_{i=1}^{n} \operatorname{Ric} \left( u_i, u_i \right),$$

where  $\{u_1, ..., u_n\}$  is a local orthonormal frame on M,  $n = \dim M$ .

AIMS Mathematics

**Lemma 2.1.** Let  $(M, g, \mathbf{u}, \lambda)$  be an n-dimnesional Ricci soliton, then

(*i*) div $\mathbf{u} = n\lambda - \tau$ ;

(*ii*) 
$$||S - \frac{\tau}{n}I||^2 = -n\left(\lambda - \frac{\tau}{n}\right)^2 + ||\nabla \mathbf{u}||^2 - ||F||^2$$
.

*Proof.* Using Eq 2.2, we have

$$\operatorname{div} \mathbf{u} = n\lambda - \operatorname{tr} S + 0 = n\lambda - \tau,$$

where we used tr.F = 0. This proves (i). Also, Eq 2.2 implies

$$S(U) = \lambda U + F(U) - \nabla_U \mathbf{u};$$

that is,

$$S(U) - \frac{\tau}{n}U = \left(\lambda - \frac{\tau}{n}\right)U + F(U) - \nabla_U \mathbf{u}.$$

Thus, we have

$$||S - \frac{\tau I}{n}||^{2} = n\left(\lambda - \frac{\tau}{n}\right)^{2} + ||F||^{2} + ||\nabla \mathbf{u}||^{2} - 2\left(\lambda - \frac{\tau}{n}\right) \operatorname{div} \mathbf{u} - 2\sum_{i=1}^{n} g\left(\nabla_{u_{i}}\mathbf{u}, F(u_{i})\right),$$

where  $\{u_1, ..., u_n\}$  is a local orthonormal frame on *M*.

Now, using Eq 2.2 and (i) in Lemma 2.1, we obtain the result in (ii).

#### 3. Proof of Theorem 1

Using the definition of Ricci soliton 1.1, we have

$$\begin{aligned} \frac{1}{4} \left| \mathbf{\pounds}_{\mathbf{u}} g \right|^2 &= \frac{1}{4} \sum_{i=1}^n \left( \left( \mathbf{\pounds}_{\mathbf{u}} g \right) \left( u_i, u_j \right) \right)^2 \\ &= \sum_{i=1}^n \left( \lambda g \left( u_i, u_j \right) - \operatorname{Ric} \left( u_i, u_j \right) \right)^2 \\ &= \sum_{i=1}^n \left( \lambda g \left( u_i, u_j \right) - g \left( S \left( u_i \right), u_j \right) \right)^2 \\ &= n\lambda^2 + \|S\|^2 - 2\lambda \sum_{i=1}^n g \left( u_i, u_j \right) g \left( S \left( u_i \right), u_j \right) \\ &= n\lambda^2 + \|S\|^2 - 2\lambda \sum_{i=1}^n g \left( S \left( u_i \right), u_i \right) \\ &= n\lambda^2 + \|S\|^2 - 2\lambda\tau \\ &= \left( \|S\|^2 - \frac{\tau^2}{n} \right) + n\lambda^2 - 2\lambda\tau + \frac{\tau^2}{n}. \end{aligned}$$

Thus,

$$\frac{1}{4} |\mathbf{\pounds}_{\mathbf{u}}g|^2 = \left( ||S||^2 - \frac{\tau^2}{n} \right) + n \left(\lambda - \frac{\tau}{n}\right)^2.$$
(3.1)

AIMS Mathematics

Also, note that

$$||S - \frac{\tau}{n}I||^{2} = ||S||^{2} + \frac{\tau^{2}}{n} - 2\frac{\tau}{n}\sum_{i=1}^{n}g(S(u_{i}), u_{i})$$
$$= ||S||^{2} - \frac{\tau^{2}}{n}.$$
(3.2)

Using 3.2 in (ii) of Lemma 2.1, we obtain

$$||S||^{2} - \frac{\tau^{2}}{n} = -n\left(\lambda - \frac{\tau}{n}\right)^{2} + ||\nabla \mathbf{u}||^{2} - ||F||^{2}.$$

Combining it with Eq 3.1, we conclude

$$\frac{1}{4} |\mathbf{\pounds}_{\mathbf{u}}g|^2 = ||\nabla \mathbf{u}||^2 - ||F||^2.$$

Hence, using the condition in the statement, we conclude  $f_u g = 0$ ; that is,  $(M, g, \mathbf{u}, \lambda)$  is a trivial soliton.

**Remark 3.1.** As Theorem 1 suggests, the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  with potential field  $\mathbf{u}$  satisfying

$$\|\nabla \mathbf{u}\|^2 \le \|F\|^2$$

is trivial. It is natural to expect to see through an example of a nontrivial Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  that the potential field  $\mathbf{u}$  does not satisfy the above condition. We consider the n-dimensional Euclidean space  $(\mathbf{E}^n, g)$  with Euclidean metric g and the vector field  $\mathbf{u}$  defined by

$$\mathbf{u} = \sum_{i=1}^{n} u^{i} \frac{\partial}{\partial u^{i}},$$

where  $u^1, ..., u^n$  are the Euclidean coordinates, then we have

$$\pounds_{\mathbf{u}}g = 2g$$

and

$$\frac{1}{2}\pounds_{\mathbf{u}}g + Ric = g.$$

This shows that  $(\mathbf{E}^n, g, \mathbf{u}, 1)$  is an n-dimensional nontrivial Ricci soliton. It follows that  $\mathbf{u}$  is a closed field and, therefore, F = 0. Moreover, we have

$$\|\nabla \mathbf{u}\|^2 = n;$$

that is, we have

$$\|\nabla \mathbf{u}\|^2 > \|F\|^2$$
.

AIMS Mathematics

#### 4. Proof of Theorem 2

Assume that the potential field **u** of the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is a geodesic vector field; that is,

$$\nabla_{\mathbf{u}}\mathbf{u} = 0. \tag{4.1}$$

By virtue of Eqs 2.2 and 4.4, we have

$$S(\mathbf{u}) = \lambda \mathbf{u} + F(\mathbf{u}); \tag{4.2}$$

that is,

$$\operatorname{Ric}\left(\mathbf{u},\mathbf{u}\right) = \lambda \|\mathbf{u}\|^{2},\tag{4.3}$$

where we used  $g(F(\mathbf{u}), \mathbf{u}) = 0$ , owing to skew-symmetry of *F*. Also, on using (i) in Lemma 2.1, we have that

$$\operatorname{div}\left(\frac{1}{2}\|\mathbf{u}\|^{2}\mathbf{u}\right) = g\left(\nabla_{\mathbf{u}}\mathbf{u},\mathbf{u}\right) + \frac{1}{2}\|\mathbf{u}\|^{2}\operatorname{div}(\mathbf{u})$$
$$= \frac{1}{2}\|\mathbf{u}\|^{2}\left(n\lambda - \tau\right).$$

Integrating the above equation and using Eq 4.3, we conclude

$$\int_M \left( \operatorname{Ric}(\mathbf{u}, \mathbf{u}) - \frac{\tau}{n} ||\mathbf{u}||^2 \right) = 0$$

Using the condition in the statement, we conclude

$$\operatorname{Ric}(\mathbf{u}, \mathbf{u}) = \frac{\tau}{n} ||\mathbf{u}||^2.$$
(4.4)

Comparing Eqs 4.3 and 4.4, we have

$$\tau = n\lambda; \tag{4.5}$$

using it in (ii) of Lemma 2.1, we have

$$||S - \frac{\tau}{n}I||^2 = ||\nabla \mathbf{u}||^2 - ||F||^2;$$
(4.6)

in (i) of Lemma 2.1, we have

$$\operatorname{div}\mathbf{u} = 0. \tag{4.7}$$

Finally, the integral formula of Yano [20] and Eq 4.7 implies

$$\int_{M} \left( \operatorname{Ric}(\mathbf{u}, \mathbf{u}) + \frac{1}{2} |\mathbf{\pounds}_{\mathbf{u}}g|^{2} - ||\nabla \mathbf{u}||^{2} \right) = 0.$$
(4.8)

Using Eqs 4.6 and 4.8, we conclude

$$\int_{M} \left( \operatorname{Ric}(\mathbf{u}, \mathbf{u}) + \frac{1}{2} |\mathfrak{L}_{\mathbf{u}}g|^{2} - ||S - \frac{\tau}{n}I||^{2} - ||F||^{2} \right) = 0.$$
(4.9)

AIMS Mathematics

Note that in view of Eq 4.9, Eq 3.1 takes the form

$$\frac{1}{4}|\mathbf{\pounds}_{\mathbf{u}}g|^2 = \left(S^2 - \frac{\tau^2}{n}\right),$$

and using Eq 3.2, we conclude

$$\frac{1}{4} |\mathbf{\pounds}_{\mathbf{u}}g|^2 = ||S - \frac{\tau}{n}I||^2.$$

Using the above equation in integral 4.9, we have

$$\int_M ||S - \frac{\tau}{n}I||^2 = \int_M \left(||F||^2 - \operatorname{Ric}(\mathbf{u}, \mathbf{u})\right).$$

Now, using the lower bound on  $Ric(\mathbf{u}, \mathbf{u})$  in the statement, we conclude

$$||S - \frac{\tau}{n}I|| = 0;$$

that is, in view of Eq 4.5,

$$S = \lambda I$$
.

Hence,  $(M, g, \mathbf{u}, \lambda)$  is trivial.

#### 5. Proof of Theorem 3

Suppose  $(M, g, \mathbf{u}, \lambda)$  is an *n*-dimensional compact Ricci soliton such that the Ricci operator S satisfies

$$(\nabla S)(U, \mathbf{u}) = (\nabla S)(\mathbf{u}, U), \quad U \in \mathfrak{X}(M)$$
(5.1)

and is invariant under the potential field **u**; that is,

$$\pounds_{\mathbf{u}}S = 0. \tag{5.2}$$

Using Eq 5.2, we have

$$[\mathbf{u}, S U] = S [\mathbf{u}, U], \quad U \in \mathfrak{X}(M),$$

which in view of Eq 2.2 gives

$$(\nabla S)(\mathbf{u}, U) = F(SU) - S(FU), \quad U \in \mathfrak{X}(M).$$
(5.3)

Now, define a function  $\psi$  on *M* by

$$\psi = \frac{1}{2} \|\mathbf{u}\|^2,$$

then using Eq 2.2 and symmetry of the Ricci operator and skew symmetry of the operator *F*, we find the gradient  $\nabla \psi$  of  $\psi$  as

$$\nabla \psi = \lambda \mathbf{u} - S(\mathbf{u}) - F(\mathbf{u}). \tag{5.4}$$

Note that by using Lemma 2.1, we have

$$\operatorname{div}\left(\lambda\mathbf{u}\right) = \left(n\lambda^2 - \lambda\tau\right). \tag{5.5}$$

AIMS Mathematics

Next, we compute the divergence of *S* (**u**) while using Eqs 2.2, 5.1 and 5.3 through a local orthonormal frame  $\{u_1, .., u_n\}$ , and we have

$$\operatorname{div}(S\mathbf{u}) = \sum_{j=1}^{n} g\left(\nabla_{u_j} S\mathbf{u}, u_j\right) = \sum_{j=1}^{n} g\left((\nabla S)\left(u_j, \mathbf{u}\right) + S\left(\nabla_{u_j} \mathbf{u}\right), u_j\right)$$
$$= \sum_{j=1}^{n} g\left((\nabla S)\left(\mathbf{u}, u_j\right) + S\left(\lambda u_j - S\left(u_j\right) + F(u_j)\right), u_j\right)$$
$$= \sum_{j=1}^{n} g\left(F\left(Su_j\right) - S\left(Fu_j\right), u_j\right) + \lambda \tau - ||S||^2 + \sum_{j=1}^{n} g\left(F(u_j), S\left(u_j\right)\right)$$

Since S is symmetric and F is skew symmetric, it follows that

$$\sum_{j=1}^{n} g\left(F(u_{j}), S\left(u_{j}\right)\right) = 0.$$
(5.6)

Thus, we confirm

$$\operatorname{div}\left(S\,\mathbf{u}\right) = \lambda \tau - \left\|S\right\|^{2}.\tag{5.7}$$

Thus, using Eq 5.4, we have

$$\Delta \psi = \operatorname{div} \left( \lambda \mathbf{u} - S \left( \mathbf{u} \right) - F \left( \mathbf{u} \right) \right),$$

which in view of Eqs 5.4 and 5.7, we have

$$\Delta \psi = n\lambda^2 - 2\lambda\tau + \|S\|^2 - \operatorname{div}(F(\mathbf{u}));$$

integrating the above equation, we reach

$$\int_{M} \left( n\lambda^{2} - 2\lambda\tau + \|S\|^{2} \right) = 0.$$
(5.8)

We rearrange the above integral as

$$\int_{M} \frac{1}{n} (n\lambda - \tau)^{2} + \int_{M} \left( ||S||^{2} - \frac{1}{n}\tau^{2} \right) = 0,$$
(5.9)

and as by Schwartz's inequality  $||S||^2 \ge \frac{1}{n}\tau^2$ , both integrands in the above equation are nonnegative and we can confirm

$$\int_{M} \frac{1}{n} (n\lambda - \tau)^{2} = 0 \text{ and } \int_{M} \left( ||S||^{2} - \frac{1}{n}\tau^{2} \right) = 0.$$
 (5.10)

Thus, we conclude that

$$\tau = n\lambda \tag{5.11}$$

and

$$\|S\|^2 = \frac{1}{n}\tau^2.$$
 (5.12)

Now, the Eq 5.12 is equal in the Schwartz's inequality and it holds if, and only if,

$$S = -\frac{\tau}{n}I,\tag{5.13}$$

AIMS Mathematics

and combining it with Eq 5.11, we confirm

$$Ric = \lambda g. \tag{5.14}$$

Hence,  $(M, g, \mathbf{u}, \lambda)$  is trivial Ricci soliton.

Conversely, if  $(M, g, \mathbf{u}, \lambda)$  is trivial Ricci soliton, then the potential field  $\mathbf{u}$  is Killing and, therefore, the flow  $\{\varphi_t\}$  consists of isometries. Hence, the Ricci operator  $S = \lambda I$  is invariant under  $\mathbf{u}$ . Moreover, the condition

$$(\nabla S)(U,\mathbf{u}) = (\nabla S)(\mathbf{u},U), \quad U \in \mathfrak{X}(M)$$
(5.15)

holds. This completes the proof.

#### 6. Proof of Theorem 4

Suppose the potential field **u** is a concurrent vector field, then we have [18, 19]

$$\nabla_U \mathbf{u} = U \tag{6.1}$$

and, consequently, we have

$$R(U, V)\mathbf{u} = \nabla_U V - \nabla_V U - [U, V] = 0.$$

Using a local frame  $\{u_1, ..., u_n\}$ , we have

$$Ric(U,\mathbf{u}) = \sum_{i=1}^{n} g(R(u_i, U)\mathbf{u}, u_i) = 0.$$

On the basis of it, we conclude

$$S\left(\mathbf{u}\right) = 0. \tag{6.2}$$

Now, using Eq 2.2, we have

$$\nabla_{\mathbf{u}}\mathbf{u} = \lambda \mathbf{u} - S(\mathbf{u}) + F(\mathbf{u}),$$

which in view of Eqs 6.1 and 6.2 yields

$$(1 - \lambda)\mathbf{u} = F(\mathbf{u}).$$

Taking the inner product with  $\mathbf{u}$  in the above equation and paying attention to skew-symmetry of F, we reach

$$(1 - \lambda) \|\mathbf{u}\|^2 = 0.$$

Since  $\mathbf{u} = 0$  together with Eq 6.1 gives a contradiction, the above equation on connected *M* implies  $\lambda = 1$ ; that is, the Ricci soliton is shrinking.

AIMS Mathematics

#### 7. Conclusions

In Theorems 1 and 2, we discussed conditions under which a Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is trivial. In Theorem 2, we used that the potential field  $\mathbf{u}$  is a geodesic vector field, and in Theorem 4, it was shown that if the potential field  $\mathbf{u}$  is a concurrent vector field, then the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  is shrinking. There is yet another important vector field defined on a Riemannian manifold called the incompressible vector field [21]; this notion was taken from fluid dynamics, where the velocity field of an incompressible fluid satisfies the equation of continuity. A smooth vector field  $\xi$  on a Riemannian manifold (M, g) is said to be incompressible if div $\xi = 0$ . In view of Theorems 2 and 4, it will be interesting to study the behavior of the Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  under the condition that the potential field  $\mathbf{u}$  is incompressible. It is worth finding a condition under which a Ricci soliton  $(M, g, \mathbf{u}, \lambda)$  with the potential field  $\mathbf{u}$  is incompressible and trivial.

## Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

### Acknowledgments

This project was supported by the Researchers Supporting Project number (RSP2023R413), King Saud University, Riyadh, Saudi Arabia.

## **Conflict of interest**

The authors declare no conflict of interest.

## References

- 1. B. Chow, P. Lu, L. Ni, Hamiltonís Ricci flow, American Mathematical Society, 2006.
- 2. S. Deshmukh, N. B. Turki, H, Alsodais, Characterizations of trivial Ricci solitons, *Adv. Math. Phys.*, **2020** (2020), 9826570. https://doi.org/10.1155/2020/9826570
- 3. A. T. Ali, S. Khan, Ricci soliton vector fields of Kantowski Sachs spacetimes, *Mod. Phys. Lett. A*, **37** (2022), 2250146. https://doi.org/10.1142/S0217732322501462
- 4. N. Bin Turki, A. M. Blaga, S. Deshmukh, Soliton-type equations on a Riemannian manifold, *Mathematics*, **10** (2022), 633. https://doi.org/10.3390/math10040633
- 5. X. Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, *J. Geom. Anal.*, **17** (2007), 425–433. https://doi.org/10.1007/BF02922090
- 6. X. Cao, B. Wang, Z. Zhang, On locally conformally flat gradient shrinking Ricci solitons, *Commun. Contemp. Math.*, **13** (2011), 269–282. https://doi.org/10.1142/S0219199711004191
- 7. S. Deshmukh, H. Alsodais, A Note on Ricci solitons, *Symmetry*, **12** (2020), 289. https://doi.org/10.3390/sym12020289

- F. J. Li, J. Zhou, Rigidity characterization of compact Ricci solitons, J. Korean Math. Soc., 56 (2019), 1475–1488. https://doi.org/10.4134/JKMS.j180747
- 9. S. Deshmukh, Jacobi-type vector fields on Ricci solitons, *B. Math. Soc. Sci. Math.*, **55** (2012), 41–50.
- Tahirullah, A. T. Ali, S. Khan, Ricci soliton vector fields of spherically symmetric static spacetimes, Mod. Phys. Lett. A, 36 (2021), 2150014. https://doi.org/10.1142/S0217732321500140
- Y. Li, M. Erdogdu, A. Yuvaz, Nonnull soliton surface associated with the Betchov-Da Rios equation, *Rep. Math. Phys.*, **90** (2022), 241–255. https://doi.org/10.1016/S0034-4877(22)00068-4
- Z. Chen, Y. Li, S. Sarkar, S. Dey, A. Bhattacharyya, Ricci soliton and certain related metrics on a three dimensional trans-Sasakian manifold, *Universe*, 8 (2022), 595. https://doi.org/10.3390/universe8110595
- 13. Y. Li, M. Erdogdu, A. Yavuz, Differential geometric approach of Betchow-Da Rios soliton equation, *Hacet. J. Math. Stat.*, **52** (2023), 114–125. https://doi.org/10.15672/hujms.1052831
- S. Deshmukh, V. A. Khan, Geodesic vector fields and Eikonal equation on a Riemannian manifold, *Indagat. Math.*, **30** (2019), 542–552. https://doi.org/10.1016/j.indag.2019.02.001
- 15. S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, *Mediterr. J. Math.*, **13** (2016), 2951–2958. https://doi.org/10.1007/s00009-015-0666-4
- 16. I. Al-Dayel, S. Deshmukh, On compact trans-Sasakian manifolds, *Adv. Math. Phys.*, **2022** (2022), 9239897. https://doi.org/10.1155/2022/9239897
- K. Kenmotsu, A class of almost contact Riemannian manifolds, *Tohoku Math. J.*, 24 (1972), 93– 103. https://doi.org/10.2748/tmj/1178241594
- K. Yano, Sur le parallelisme et la concourance dans l'espace de Riemann, *Proc. Imp. Acad.*, 19 (1943), 189–197. https://doi.org/10.3792/pia/1195573583
- K. Yano, B. Y. Chen, On the concurrent vector fields of immersed manifolds, *Kodai Math. Sem. Rep.*, 23 (1971), 343–350. https://doi.org/10.2996/kmj/1138846372
- 20. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, 1970.
- 21. N. Bin Turki, A note on incompressible vector fields, *Symmetry*, **15** (2023), 1479. https://doi.org/10.3390/sym15081479



© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)