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Abstract: We found conditions on an n-dimensional Ricci soliton (M, g,u, λ) to be trivial. First,
we showed that under an appropriate upper bound on the squared length of the covariant derivative
of the potential field u, the Ricci soliton (M, g,u, λ) reduces to a trivial soliton. We also showed
that appropriate upper and lower bounds on the Ricci curvature Ric (u,u) of a compact Ricci
soliton (M, g,u, λ) with potential field u geodesic vector field makes it a trivial soliton. We showed
that if the Ricci operator S of the Ricci soliton (M, g,u, λ) is invariant under the potential field u,
then (M, g,u, λ) is trivial and the converse is also true. Finally, it was shown that if the potential field u
of a connected Ricci soliton (M, g,u, λ) is a concurrent vector field, then the Ricci soliton is shrinking.
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1. Introduction

In first decade of the nineteenth century, Poincare made the following conjecture: “A compact
simply connected three-manifold without boundary is diffeomorphic to the three sphere S 3.”A more
general conjecture than Poincare conjecture is Thurston’s geometrization conjecture, which says that
any closed three-manifold can be decomposed into pieces such that each piece has a locally
homogeneous metric and are S 3, R3, H3, S 2 × R, H2 × R, S L (2,R), nil3 and sol3. With the aim of
proving the geometrization conjecture, Hamilton [1] initiated a program in 1982 called Ricci flow that
starts with a given Riemannian metric g0 on a smooth n-dimensional manifold M and evolves it as a
one-parameter family of metrics g (s) satisfying

∂sg = −2Ric, g (0) = g0,

where Ric is the Ricci tensor of the evolving metric g (s). The generalized fixed points of the Ricci
flow are those manifolds that change by a diffeomorphism and a rescaling under the Ricci flow. More
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precisely, let M be an n-dimensional smooth manifold and (M, g (s)) be a solution of the Ricci flow such
that g (0) = g0. Let fs : M → M be a one-parameter family of diffeomorphisms generated by the family
of vector fields X(s) and let ρ(s) be a time-dependent scale factor, then a solution of the Ricci flow of the
form g (s) = ρ (s) f ∗s (g) is called Ricci soliton. Thus, a Ricci soliton is a generalized fixed point of the
Ricci flow, viewed as a dynamical system on the space of Riemannian metrics modulo diffeomorphisms
and scalings. Taking the derivative of the above equation with respect to s, substituting s = 0and
assuming

.
ρ (0) = −2λ, ρ (0) = 1, f0 = id, X(0) = u, we get

1
2

£ug + Ric = λg, (1.1)

where λ is a constant, £u is the Lie-derivative of g with respect to u and Ric is the Ricci tensor of (M, g).
We shall denote a Ricci soliton by (M, g,u, λ). The topic Ricci soliton is important in geometry as well
as global analysis, especially since it was deployed in settling the famous Poincarè conjecture. The
vector field u appearing in Ricci soliton (M, g,u, λ) is called the potential field of the Ricci soliton. If
the potential field u is Killing; that is, £ug = 0, then the definition of Ricci soliton implies

Ric = λg;

that is, the Ricci soliton is an Einstein manifold. In this case the Ricci soliton (M, g,u, λ) is called a
trivial Ricci soliton.

In [1–7], authors found different conditions under which a Ricci soliton (M, g,u, λ) is a trivial Ricci
soliton. For compact gradient Ricci solitons in [5], the author derived several identities, and later in [6]
these identities were used to prove that a compact gradient shrinking Ricci soliton, which is locally
conformally flat, must be trivial. In [8], authors used the Ricci mean value δ of an n-dimensional
compact gradient Ricci soliton (M, g,∇ f , λ) defined by

δ =
1

nV

∫
M

Ric (∇ f ,∇ f ) ,

where V is the volume of M and Ric (∇ f ,∇ f ) is the Ricci curvature in the direction of ∇ f , to prove
for n ≥ 2 that δ ≥ 0; the equality holds if, and only if, the Ricci soliton is trivial. Similarly, in [9] the
author has considered Ricci soliton (M, g,u, λ) of positive Ricci curvature and has shown that if the
potential field u is a Jacobi-type vector field, then the Ricci soliton is trivial.

Apart from finding conditions under which a Ricci soliton is trivial, there are several important
aspects of the geometry of Ricci solitons. For instance, on space times such as spherically symmetric
static space times Lorentzian plane-symmetric static space times and Kantowski Sachs space times,
treated as Ricci solitons, the role of potential field on these respective space times is studied in [3, 10–
13], respectively.

We denote by η the smooth one-form dual to u that is

η (X) = g (X,u) ,

for smooth vector field X on M, then we obtain a skew-symmetric tensor field F defined on M by

1
2

dη (X,Y) = g (F(X),Y)
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for smooth vector fields X and Y on M.
One of the important questions on Ricci solitons is to find conditions under which a Ricci

soliton (M, g,u, λ) is trivial. Note that the squared length of the covariant derivative of potential field
u is given by

∥∇u∥2 =
n∑

i=1

g
(
∇uiu,∇uiu

)
,

where {u1, u2, . . . , un} is a local orthonormal frame on M, n = dimM. Also, we define

∥F∥2 =
n∑

i=1

g (F (ui) , F (ui)) .

Our first result is the following:

Theorem 1. If the covariant derivative of the potential field u of a connected Ricci soliton (M, g,u, λ)
satisfies

∥∇u∥2 ≤ ∥F∥2 ,

then the Ricci soliton (M, g,u, λ) is trivial.

Recall that if potential field u is Killing makes (M, g,u, λ) a trivial Ricci soliton. In [14], authors
introduced the notion of the geodesic vector field. Note that a Killing vector field of constant length
is a geodesic vector field, and there are many examples of geodesic vector fields that are not Killing.
Recall that a vector field ξ on a Riemannian (M, g) is said to be a geodesic vector field if

∇ξξ = 0;

that is, the integral curves of ξ are geodesics. An interesting example is provided by the vector field ξ
of a proper tran-Sasakian manifold (M, g, ϕ, ξ, η, α, β), which is a geodesic vector field that is not
killing [15, 16]. A similar example is provided by the vector field ξ of a Kenmotsu
manifold (M, g, ϕ, ξ, η) [17].

In our next result on an n-dimensonal Ricci soliton (M, g,u, λ), we use the condition that the
potential field u is a geodesic vector field to prove the following:

Theorem 2. If the Ricci curvature Ric (u,u) of an n-dimensional compact Ricci soliton (M, g,u, λ)
with scalar curvature τ satisfies

∥F∥2 ≤ Ric (u,u) ≤
τ

n
∥u∥2

and the potential field u is a geodesic vector field, then the Ricci soliton (M, g,u, λ) is trivial.

For an n-dimensional Ricci soliton (M, g,u, λ), we let {φt} be the local flow of the potential field u,
then the Ricci operator S of (M, g,u, λ) is said to be invariant under u if

S ◦ dφt = dφt ◦ S

or, equivalently,
£uS = 0.

If the Ricci operator S of the Ricci soliton (M, g,u, λ) is invariant under the potential field u, then we
have the following characterization of a trivial Ricci soliton.
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Theorem 3. If the Ricci operator S an n-dimensional compact Ricci soliton (M, g,u, λ) is invariant
under the potential field u and satisfies

(∇S ) (U,u) = (∇S ) (u,U)

for each vector field U on M, then (M, g,u, λ) is a trivial Ricci soliton and the converse also holds.

A Ricci soliton (M, g,u, λ) is said to be shrinking if the constant is λ > 0 [1]; it is an important
question to find geometric conditions under which a Ricci soliton is shrinking. One of important
classical vector fields is concurrent vector field ξ on a Riemannian manifold (M, g), which obeys

∇Uξ = U

for any smooth vector field U on M. This means that the holonomy group of M leaves a point of
M invariant [18, 19]. In our final result, we use the condition that the potential field u of the Ricci
soliton (M, g,u, λ) is a concurrent vector field to prove the following:

Theorem 4. Let (M, g,u, λ) be an n-dimensional connected Ricci soliton with u as a concurrent vector
field, then (M, g,u, λ) is a shrinking Ricci soliton.

2. Preliminaries

Suppose (M, g,u, λ) is an n-dimensional Ricci soliton, then by Eq 1.1 we have

1
2

£ug + Ric = λg.

We denote by S the Ricci operator of (M, g,u, λ) satisfying

Ric (U,V) = g (S (U),V) , U,V ∈ X(M),

where X(M) is the Lie-algebra of vector field on M. Using the following expressions

(£ug) (U,V) = g (∇Uu,V) + g (∇Vu,U)

and
(dη) (U,V) = g (∇Uu,V) − g (∇Vu,U) ,

we derive
g (∇Uu,V) =

1
2

(£ug) (U,V) +
1
2

dη (U,V) ;

that is,
g (∇Uu,V) = λg (U,V) − Ric (U,V) + g (F(U),V) . (2.1)

Equation 2.1 implies
∇Uu = λU − S (U) + F(U). (2.2)

Recall that the scalar curvature τ of the Ricci soliton (M, g,u, λ) is given by

τ = tr.S =
n∑

i=1

Ric (ui, ui) ,

where {u1, ..., un} is a local orthonormal frame on M, n = dimM.
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Lemma 2.1. Let (M, g,u, λ) be an n-dimnesional Ricci soliton, then

(i) divu = nλ − τ;

(ii) ∥S − τ
n I∥2 = −n

(
λ − τ

n

)2
+ ∥∇u∥2 − ∥F∥2.

Proof. Using Eq 2.2, we have
divu = nλ − trS + 0 = nλ − τ,

where we used tr.F = 0. This proves (i). Also, Eq 2.2 implies

S (U) = λU + F(U) − ∇Uu;

that is,
S (U) −

τ

n
U =

(
λ −

τ

n

)
U + F(U) − ∇Uu.

Thus, we have

∥S −
τI
n
∥2 = n

(
λ −

τ

n

)2
+ ∥F∥2 + ∥∇u∥2 − 2

(
λ −

τ

n

)
divu − 2

n∑
i=1

g
(
∇uiu, F(ui)

)
,

where {u1, ..., un} is a local orthonormal frame on M.
Now, using Eq 2.2 and (i) in Lemma 2.1, we obtain the result in (ii).

3. Proof of Theorem 1

Using the definition of Ricci soliton 1.1, we have

1
4
|£ug|2 =

1
4

n∑
i=1

(
(£ug)

(
ui, u j

))2

=

n∑
i=1

(
λg

(
ui, u j

)
− Ric

(
ui, u j

))2

=

n∑
i=1

(
λg

(
ui, u j

)
− g

(
S (ui), u j

))2

= nλ2 + ∥S ∥2 − 2λ
n∑

i=1

g
(
ui, u j

)
g
(
S (ui), u j

)
= nλ2 + ∥S ∥2 − 2λ

n∑
i=1

g (S (ui), ui)

= nλ2 + ∥S ∥2 − 2λτ

=

(
∥S ∥2 −

τ2

n

)
+ nλ2 − 2λτ +

τ2

n
.

Thus,
1
4
|£ug|2 =

(
∥S ∥2 −

τ2

n

)
+ n

(
λ −

τ

n

)2
. (3.1)
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Also, note that

∥S −
τ

n
I∥2 = ∥S ∥2 +

τ2

n
− 2

τ

n

n∑
i=1

g (S (ui), ui)

= ∥S ∥2 −
τ2

n
. (3.2)

Using 3.2 in (ii) of Lemma 2.1, we obtain

∥S ∥2 −
τ2

n
= −n

(
λ −

τ

n

)2
+ ∥∇u∥2 − ∥F∥2.

Combining it with Eq 3.1, we conclude

1
4
|£ug|2 = ∥∇u∥2 − ∥F∥2.

Hence, using the condition in the statement, we conclude £ug = 0; that is, (M, g,u, λ) is a trivial soliton.

Remark 3.1. As Theorem 1 suggests, the Ricci soliton (M, g,u, λ) with potential field u satisfying

∥∇u∥2 ≤ ∥F∥2

is trivial. It is natural to expect to see through an example of a nontrivial Ricci soliton (M, g,u, λ) that
the potential field u does not satisfy the above condition. We consider the n-dimensional Euclidean
space (En, g) with Euclidean metric g and the vector field u defined by

u =
n∑

i=1

ui ∂

∂ui ,

where u1, ..., un are the Euclidean coordinates, then we have

£ug = 2g

and
1
2

£ug + Ric = g.

This shows that (En, g,u, 1) is an n-dimensional nontrivial Ricci soliton. It follows that u is a closed
field and, therefore, F = 0. Moreover, we have

∥∇u∥2 = n;

that is, we have

∥∇u∥2 > ∥F∥2 .
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4. Proof of Theorem 2

Assume that the potential field u of the Ricci soliton (M, g,u, λ) is a geodesic vector field; that is,

∇uu = 0. (4.1)

By virtue of Eqs 2.2 and 4.4, we have

S (u) = λu + F(u); (4.2)

that is,
Ric (u,u) = λ∥u∥2, (4.3)

where we used g (F(u),u) = 0, owing to skew-symmetry of F. Also, on using (i) in Lemma 2.1, we
have that

div
(
1
2
∥u∥2u

)
= g (∇uu,u) +

1
2
∥u∥2div(u)

=
1
2
∥u∥2 (nλ − τ) .

Integrating the above equation and using Eq 4.3, we conclude∫
M

(
Ric(u,u) −

τ

n
∥u∥2

)
= 0.

Using the condition in the statement, we conclude

Ric(u,u) =
τ

n
∥u∥2. (4.4)

Comparing Eqs 4.3 and 4.4, we have
τ = nλ; (4.5)

using it in (ii) of Lemma 2.1, we have

∥S −
τ

n
I∥2 = ∥∇u∥2 − ∥F∥2; (4.6)

in (i) of Lemma 2.1, we have
divu = 0. (4.7)

Finally, the integral formula of Yano [20] and Eq 4.7 implies∫
M

(
Ric(u,u) +

1
2
|£ug|2 − ∥∇u∥2

)
= 0. (4.8)

Using Eqs 4.6 and 4.8, we conclude∫
M

(
Ric(u,u) +

1
2
|£ug|2 − ∥S −

τ

n
I∥2 − ∥F∥2

)
= 0. (4.9)
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Note that in view of Eq 4.9, Eq 3.1 takes the form

1
4
|£ug|2 =

(
S 2 −

τ2

n

)
,

and using Eq 3.2, we conclude
1
4
|£ug|2 = ∥S −

τ

n
I∥2.

Using the above equation in integral 4.9, we have∫
M
∥S −

τ

n
I∥2 =

∫
M

(
∥F∥2 − Ric(u,u)

)
.

Now, using the lower bound on Ric(u,u) in the statement, we conclude

∥S −
τ

n
I∥ = 0;

that is, in view of Eq 4.5,
S = λI.

Hence, (M, g,u, λ) is trivial.

5. Proof of Theorem 3

Suppose (M, g,u, λ) is an n-dimensional compact Ricci soliton such that the Ricci operator S
satisfies

(∇S ) (U,u) = (∇S ) (u,U) , U ∈ X(M) (5.1)

and is invariant under the potential field u; that is,

£uS = 0. (5.2)

Using Eq 5.2, we have
[u, S U] = S [u,U] , U ∈ X(M),

which in view of Eq 2.2 gives

(∇S ) (u,U) = F (S U) − S (FU) , U ∈ X(M). (5.3)

Now, define a function ψ on M by

ψ =
1
2
∥u∥2 ,

then using Eq 2.2 and symmetry of the Ricci operator and skew symmetry of the operator F, we find
the gradient ∇ψ of ψ as

∇ψ = λu − S (u) − F (u) . (5.4)

Note that by using Lemma 2.1, we have

div (λu) =
(
nλ2 − λτ

)
. (5.5)
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Next, we compute the divergence of S (u) while using Eqs 2.2, 5.1 and 5.3 through a local orthonormal
frame {u1, .., un}, and we have

div (S u) =
n∑

j=1

g
(
∇u jS u, u j

)
=

n∑
j=1

g
(
(∇S ) (u j,u) + S

(
∇u ju

)
, u j

)
=

n∑
j=1

g
(
(∇S ) (u, u j) + S

(
λu j − S

(
u j

)
+ F(u j)

)
, u j

)
=

n∑
j=1

g
(
F

(
S u j

)
− S

(
Fu j

)
, u j

)
+ λτ − ∥S ∥2 +

n∑
j=1

g
(
F(u j), S

(
u j

))
.

Since S is symmetric and F is skew symmetric, it follows that
n∑

j=1

g
(
F(u j), S

(
u j

))
= 0. (5.6)

Thus, we confirm
div (S u) = λτ − ∥S ∥2 . (5.7)

Thus, using Eq 5.4, we have
∆ψ = div (λu − S (u) − F (u)) ,

which in view of Eqs 5.4 and 5.7, we have

∆ψ = nλ2 − 2λτ + ∥S ∥2 − div (F (u)) ;

integrating the above equation, we reach∫
M

(
nλ2 − 2λτ + ∥S ∥2

)
= 0. (5.8)

We rearrange the above integral as∫
M

1
n

(nλ − τ)2 +

∫
M

(
∥S ∥2 −

1
n
τ2

)
= 0, (5.9)

and as by Schwartz’s inequality ∥S ∥2 ≥ 1
nτ

2, both integrands in the above equation are nonnegative and
we can confirm ∫

M

1
n

(nλ − τ)2 = 0 and
∫

M

(
∥S ∥2 −

1
n
τ2

)
= 0. (5.10)

Thus, we conclude that
τ = nλ (5.11)

and
∥S ∥2 =

1
n
τ2. (5.12)

Now, the Eq 5.12 is equal in the Schwartz’s inequality and it holds if, and only if,

S =
τ

n
I, (5.13)
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and combining it with Eq 5.11, we confirm

Ric = λg. (5.14)

Hence, (M, g,u, λ) is trivial Ricci soliton.
Conversely, if (M, g,u, λ) is trivial Ricci soliton, then the potential field u is Killing and, therefore,

the flow {φt} consists of isometries. Hence, the Ricci operator S = λI is invariant under u. Moreover,
the condition

(∇S ) (U,u) = (∇S ) (u,U) , U ∈ X(M) (5.15)

holds. This completes the proof.

6. Proof of Theorem 4

Suppose the potential field u is a concurrent vector field, then we have [18, 19]

∇Uu = U (6.1)

and, consequently, we have

R(U,V)u = ∇UV − ∇VU − [U,V] = 0.

Using a local frame {u1, ...un}, we have

Ric (U,u) =
n∑

i=1

g (R(ui,U)u, ui) = 0.

On the basis of it, we conclude

S (u) = 0. (6.2)

Now, using Eq 2.2, we have

∇uu = λu − S (u) + F (u) ,

which in view of Eqs 6.1 and 6.2 yields

(1 − λ) u = F (u) .

Taking the inner product with u in the above equation and paying attention to skew-symmetry of F,
we reach

(1 − λ) ∥u∥2 = 0.

Since u = 0 together with Eq 6.1 gives a contradiction, the above equation on connected M implies
λ = 1; that is, the Ricci soliton is shrinking.
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7. Conclusions

In Theorems 1 and 2, we discussed conditions under which a Ricci soliton (M, g,u, λ) is trivial.
In Theorem 2, we used that the potential field u is a geodesic vector field, and in Theorem 4, it was
shown that if the potential field u is a concurrent vector field, then the Ricci soliton (M, g,u, λ) is
shrinking. There is yet another important vector field defined on a Riemannian manifold called the
incompressible vector field [21]; this notion was taken from fluid dynamics, where the velocity field of
an incompressible fluid satisfies the equation of continuity. A smooth vector field ξ on a Riemannian
manifold (M, g) is said to be incompressible if divξ = 0. In view of Theorems 2 and 4, it will be
interesting to study the behavior of the Ricci soliton (M, g,u, λ) under the condition that the potential
field u is incompressible. It is worth finding a condition under which a Ricci soliton (M, g,u, λ) with
the potential field u is incompressible and trivial.
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